1
|
Zhu Y, Liu Y, Yang K, Wu W, Cheng Y, Ding Y, Gu R, Liu H, Zhang X, Liu Y. Apoptotic vesicles inhibit bone marrow adiposity via wnt/β-catenin signaling. Regen Ther 2025; 29:262-270. [PMID: 40230357 PMCID: PMC11994938 DOI: 10.1016/j.reth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background There is currently increasing focus on aging-related diseases. Osteoporosis is a common disease the incidence of which increases with age. In older patients with osteoporosis, bone marrow mesenchymal stem cells (BMMSCs) have a decreased capacity for osteogenesis and an increased capacity for adipogenesis, causing excessive accumulation of adipose tissue in the bone marrow. Therefore, means of reducing bone marrow adiposity may have therapeutic potential for osteoporosis. Apoptotic vesicles (apoVs) participate in a wide range of physiological processes and have been shown to have therapeutic effects in a variety of diseases. The principal objective of this study was to examine the special properties and regulatory mechanisms of BMMSC-derived apoVs in the treatment of bone marrow adiposity. Results The results showed that apoVs could decrease bone marrow adiposity in osteoporotic mice and prevent adipogenic differentiation of MSCs by activating the Wnt/β-catenin pathway. Conclusion New apoV-based therapies have potential for the treatment of bone marrow adiposity in patients with aging-related osteoporosis and may be further applicable to the treatment of obesity and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Weiliang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanan Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Li H, Zhang Z, Liu J, Wang H. Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges. Biomed Eng Online 2025; 24:41. [PMID: 40200302 PMCID: PMC11980302 DOI: 10.1186/s12938-025-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Bone regeneration is integral to maintaining bone function and integrity in the body, as well as treating bone diseases, such as osteoporosis and defects. However, oxidative stress often poses a significant obstacle during bone regeneration, leading to cell damage, inflammatory responses, and subsequent impediment of normal bone tissue formation. Therefore, to maintain bone regeneration, antioxidant therapy is essential. Bone scaffolds, serving as a temporary support for bone tissue, can provide an ideal microenvironment for cell proliferation and differentiation, effectively promoting bone tissue formation. In recent years, with in-depth research on antioxidants and their mechanisms of action, the development and application of antioxidant bone scaffolds have shown tremendous potential. These antioxidant bone scaffolds not only promote osteogenic differentiation and angiogenesis, but also effectively inhibit the inflammatory response and osteoclast formation, significantly improving the efficiency of bone regeneration. Notably, with the rapid development of nanotechnology, nanozymes with multi-enzyme-like activities have been successfully constructed and encapsulated within bone scaffolds, leading to the proposal of multifunctional antioxidant strategies. Therefore, this review summarizes recent research progress, categorically introducing types of bone scaffolds and antioxidants, elucidating therapeutic strategies of antioxidant bone scaffolds, and identifying current challenges, aiming to provide valuable guidance for subsequent research.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Huiwen Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
3
|
Shao J, Liu S, Chen C, Chen W, Zhu Z, Li L. Aging Impairs Implant Osseointegration Through a Novel Reactive Oxygen Species-Hypoxia-Inducible Factor 1α/p53 Axis. Tissue Eng Part A 2025. [PMID: 40171686 DOI: 10.1089/ten.tea.2024.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Enhancing bone-vessel coupling to form high-quality vascular-rich peri-implant bone is crucial for improving implant prognosis in elder patients. Notably, hypoxia-inducible factor 1α (HIF1α) is known to promote osteogenesis-angiogenesis coupling; however, this effect remains to be investigated in aged bone owing to the dual effect of HIF1α in different aged organs. In this study, HIF1α inhibitor or activator was applied to aged mice and their bone mesenchymal stem cells (BMSCs) to investigate the effects and inner mechanism of HIF1α on the peri-implant osteogenesis and angiogenesis in senescent status. Cell senescence, along with osteogenic and angiogenic abilities of aged BMSCs, was detected, respectively. Meanwhile, a femur implant implantation model was constructed on aged mice, and the bone-vessel coupling of peri-implant bone was observed. Mandibular bone morphology was also detected to further provide evidence for clinical oral implantation. Furthermore, p53 expression was examined in vivo and in vitro following HIF1α intervention. A reactive oxygen species (ROS) scavenger was also adopted to further investigate the roles of ROS in the HIF1α-p53 axis. Results showed that the suppression of HIF1α alleviated senescence and osteogenesis-angiogenesis coupling of aged BMSCs, while its activation aggravated these effects. The mandible phenotype and bone-vessel coupling in aged peri-implant bone also changed accordingly upon regulation of HIF1α. Mechanistically, p53 changed in the same direction as HIF1α in vivo and in vitro. Moreover, the ROS scavenger reversed the HIF1α-p53 relationship and weakened the effect of HIF1α inhibitor on peri-implant bone improvement. In conclusion, in aged mice, highly expressed HIF1α impaired peri-implant bone-vessel coupling and implant osseointegration through p53, and accumulated ROS was a prerequisite for HIF1α to positively regulate p53. These findings provide new insights into the role of HIF1α and the ROS-HIF1α/p53 signaling axis, offering potential therapeutic targets to improve implant outcomes in elderly patients.
Collapse
Affiliation(s)
- Jingjing Shao
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- State Key Laboratory of Oral Diseases &National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Roig-Soriano J, Edo Á, Verdés S, Martín-Alonso C, Sánchez-de-Diego C, Rodriguez-Estevez L, Serrano AL, Abraham CR, Bosch A, Ventura F, Jordan BA, Muñoz-Cánoves P, Chillón M. Long-term effects of s-KL treatment in wild-type mice: Enhancing longevity, physical well-being, and neurological resilience. Mol Ther 2025; 33:1449-1465. [PMID: 39988871 PMCID: PMC11997498 DOI: 10.1016/j.ymthe.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Aging is a major risk factor for pathologies including sarcopenia, osteoporosis, and cognitive decline, which bring suffering, disability, and elevated economic and social costs. Therefore, new therapies are needed to achieve healthy aging. The protein Klotho (KL) has emerged as a promising anti-aging molecule due to its pleiotropic actions modulating insulin, insulin-like growth factor-1, and Wnt signaling pathways and reducing inflammatory and oxidative stress. Here, we explored the anti-aging potential of the secreted isoform of this protein on the non-pathological aging progression of wild-type mice. The delivery of an adeno-associated virus serotype 9 (AAV9) coding for secreted KL (s-KL) efficiently increased the concentration of s-KL in serum, resulting in a 20% increase in lifespan. Notably, KL treatment improved physical fitness, related to a reduction in muscle fibrosis and an increase in muscular regenerative capacity. KL treatment also improved bone microstructural parameters associated with osteoporosis. Finally, s-KL-treated mice exhibited increased cellular markers of adult neurogenesis and immune response, with transcriptomic analysis revealing induced phagocytosis and immune cell activity in the aged hippocampus. These results show the potential of elevating s-KL expression to simultaneously reduce the age-associated degeneration in multiple organs, increasing both life and health span.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Ángel Edo
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Sergi Verdés
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Carlos Martín-Alonso
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Laura Rodriguez-Estevez
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | | | - Assumpció Bosch
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Ciberned, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | - Miguel Chillón
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Unitat de Producció de Vectors (UPV), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
5
|
Lai W, Huang J, Lai X, Wang Y. Exosome-derived Uc.339 as a potential biomarker for bone metastasis from pulmonary adenocarcinoma. Tissue Cell 2025; 93:102747. [PMID: 39908766 DOI: 10.1016/j.tice.2025.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
This study explored the role of Uc.339, which is a highly expressed genomic sequence in tumor cell-derived exosomes, in mediating bone metastasis from lung adenocarcinoma. By integrating clinical samples, in vitro experiments, and in vivo murine models, we elucidated the molecular mechanisms underlying this process. Clinical blood samples from patients with lung adenocarcinoma revealed elevated Uc.339 expression in exosomes, particularly in those with bone metastasis. In vitro experiments using A549 cell-derived exosomes demonstrated an increase in osteoclast formation, implicating Uc.339 in bone microenvironment modulation. Mechanistically, Uc.339 functions as a decoy for miR-339-3p, disrupting the gene expression balance. In vivo experiments in a murine model confirmed disrupted bone microstructure in the presence of elevated Uc.339, alongside altered expression of key regulators, including SQSTM1, RANKL, nuclear factor kappa B, and miR-339-3p. Our findings underscore the systemic impact of Uc.339 in exosomes, suggesting its potential as both a biomarker and a mediator of bone metastasis. Moreover, the identified molecular alterations provide potential therapeutic targets for managing bone metastasis in patients with lung adenocarcinoma. This study contributes to a deeper understanding of the complex interplay between cancer cells and the bone microenvironment, paving the way for targeted interventions and improved clinical outcomes.
Collapse
Affiliation(s)
- Weiqiang Lai
- Department of Thoracic Surgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou City, Jiangxi Province 341000, China
| | - Jinchang Huang
- Department of Pathology, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou City, Jiangxi Province 341000, China
| | - Xuwang Lai
- Department of Oncology, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, Jiangxi Province 341000, China
| | - Yuli Wang
- Department of Oncology, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, Jiangxi Province 341000, China.
| |
Collapse
|
6
|
Lizcano JD, Giakas AM, Goh GS, Abbaszadeh A, Reddy YC, Courtney PM. Fix or Replace? Comparable Outcomes With Internal Fixation and Distal Femoral Replacement for Periprosthetic Fractures Above Total Knee Arthroplasty. J Arthroplasty 2025; 40:1048-1054.e1. [PMID: 39428002 DOI: 10.1016/j.arth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The optimal treatment for periprosthetic fracture (PPfx) around total knee arthroplasty (TKA) remains a topic of debate. Due to its low incidence, comparative studies analyzing arthroplasty and fixation are lacking in the literature. The purpose of this study was to compare the outcomes of distal femoral replacement (DFR) and open reduction and internal fixation open reduction internal fixation (ORIF) for distal femur PPfx. METHODS We reviewed a consecutive series of 99 patients who underwent DFR (n = 54) or ORIF (n = 45) for distal femur PPfx. The indications for DFR were reviewed. Fractures were classified based on their relation to the implant using the Su classification. The primary outcome was rerevision, while secondary endpoints included inpatient complications, mortality within the first year, and mechanical complications such as loosening and non-union. RESULTS Type 2 fractures were the most prevalent type in both groups (DFR 37 versus ORIF 48.9%), while Type 1 fractures were more commonly treated with ORIF (35.6 versus 16.7%) and Type 3 with DFR (46.3 versus 15.6%) (P = 0.003). The preferred techniques in the ORIF group were plate osteosynthesis (66.7%) and retrograde nailing (31.1%). At a mean follow-up of 4.2 years (range, one to 14.1), DFR and ORIF did not demonstrate any difference in revision rates (13 versus 24.4%, P = 0.140) or mortality (3.7 versus 4.4%, P = 0.887). However, more mechanical complications were noted in the ORIF group (22.2 versus 7.4%, P = 0.035). CONCLUSIONS Both DFR and open reduction and internal fixation have comparable revision rates, complications, and clinical outcomes when used in supracondylar periprosthetic distal femur fractures. Longer-term studies are needed to assess DFR survivorship as well as outcomes of newer trauma techniques such as nail-plate combinations.
Collapse
Affiliation(s)
- Juan D Lizcano
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Alec M Giakas
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Graham S Goh
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Ahmad Abbaszadeh
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Yashas C Reddy
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Paul M Courtney
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Becker J, Bühren V, Schmelzer L, Reckert A, Eickhoff SB, Ritz S, Naue J. Molecular age prediction using skull bone samples from individuals with and without signs of decomposition: a multivariate approach combining analysis of posttranslational protein modifications and DNA methylation. Int J Legal Med 2025; 139:157-174. [PMID: 39256256 PMCID: PMC11732915 DOI: 10.1007/s00414-024-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
The prediction of the chronological age of a deceased individual at time of death can provide important information in case of unidentified bodies. The methodological possibilities in these cases depend on the availability of tissues, whereby bones are preserved for a long time due to their mineralization under normal environmental conditions. Age-dependent changes in DNA methylation (DNAm) as well as the accumulation of pentosidine (Pen) and D-aspartic acid (D-Asp) could be useful molecular markers for age prediction. A combination of such molecular clocks into one age prediction model seems favorable to minimize inter- and intra-individual variation. We therefore developed (I) age prediction models based on the three molecular clocks, (II) examined the improvement of age prediction by combination, and (III) investigated if samples with signs of decomposition can also be examined using these three molecular clocks. Skull bone from deceased individuals was collected to obtain a training dataset (n = 86), and two independent test sets (without signs of decomposition: n = 44, with signs of decomposition: n = 48). DNAm of 6 CpG sites in ELOVL2, KLF14, PDE4C, RPA2, TRIM59 and ZYG11A was analyzed using massive parallel sequencing (MPS). The D-Asp and Pen contents were analyzed by high performance liquid chromatography (HPLC). Age prediction models based on ridge regression were developed resulting in mean absolute errors (MAEs)/root mean square errors (RMSE) of 5.5years /6.6 years (DNAm), 7.7 years /9.3 years (Pen) and 11.7 years /14.6 years (D-Asp) in the test set. Unsurprisingly, a general lower accuracy for the DNAm, D-Asp, and Pen models was observed in samples from decomposed bodies (MAE: 7.4-11.8 years, RMSE: 10.4-15.4 years). This reduced accuracy could be caused by multiple factors with different impact on each molecular clock. To acknowledge general changes due to decomposition, a pilot model for a possible age prediction based on the decomposed samples as training set improved the accuracy evaluated by leave-one-out-cross validation (MAE: 6.6-12 years, RMSE: 8.1-15.9 years). The combination of all three molecular age clocks did reveal comparable MAE and RMSE results to the pure analysis of the DNA methylation for the test set without signs of decomposition. However, an improvement by the combination of all three clocks was possible for the decomposed samples, reducing especially the deviation in case of outliers in samples with very high decomposition and low DNA content. The results demonstrate the general potential in a combined analysis of different molecular clocks in specific cases.
Collapse
Affiliation(s)
- J Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - V Bühren
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - L Schmelzer
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - A Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - S B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, 52428, Juelich, Germany
| | - S Ritz
- Institute of Legal Medicine, University Hospital Duesseldorf, 40225, Duesseldorf, Germany.
| | - J Naue
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
Ye L, Hua Z, Ding X, Wang J. Global Highly Cited Publication Trends and Research Hotspots in Osteoporosis and Bone Metabolic Cells: A Bibliometric and Visualization Analysis from 2013 to 2023. Endocr Metab Immune Disord Drug Targets 2025; 25:386-399. [PMID: 39005119 DOI: 10.2174/0118715303300989240702043834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis. OBJECTIVE This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of "Osteoporosis and bone metabolic cells". Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain. METHODS The Web of Science (WOS) Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles. RESULTS Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. Nature medicine has the highest journal impact factor of 82.9, highlighting its prominence. The journal of bone and mineral research ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact. CONCLUSION This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingshan Ye
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| | - Xinxin Ding
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Cheng N, Josse AR. Dairy and Exercise for Bone Health: Evidence from Randomized Controlled Trials and Recommendations for Future Research. Curr Osteoporos Rep 2024; 22:502-514. [PMID: 39269594 DOI: 10.1007/s11914-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW To examine evidence from randomized controlled trials (RCTs) on how modifiable factors such as exercise and nutrition, with a focus on dairy products, play a role in improving bone health across the lifespan. RECENT FINDINGS Meta-analyses of RCTs demonstrate the advantages of consuming dairy products to improve bone mineral density/content (BMD/BMC) and markers of bone metabolism and turnover (BTMs). Eighteen RCTs were conducted investigating the combined effects of dairy and exercise, with most indicating a benefit in youth and adult populations. Results were less conclusive in older adults, perhaps due to altered requirements for dairy/nutrients and exercise with increased age. RCTs demonstrate that dairy product consumption alone benefits bone health and can enhance the effects of exercise on bone. This may help improve skeletal growth and development in adolescence and prevent osteoporosis with increased age. Future RCTs should account for habitual nutrient intakes, and dairy dosage, timing, and matrix effects.
Collapse
Affiliation(s)
- Nicholas Cheng
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada
| | - Andrea R Josse
- School of Kinesiology and Health Science, Muscle Health Research Centre, Faculty of Health, York University, 4700 Keele Street, ON, M3J 1P3, Toronto, Canada.
| |
Collapse
|
10
|
Rummler M, Schemenz V, McCluskey S, Davydok A, Rauch F, Glorieux FH, Harrington MJ, Wagermaier W, Willie BM, Zimmermann EA. Bone matrix properties in adults with osteogenesis imperfecta are not adversely affected by setrusumab-a sclerostin neutralizing antibody. J Bone Miner Res 2024; 39:1229-1239. [PMID: 38982734 DOI: 10.1093/jbmr/zjae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by low bone mass and frequent fractures. Children with OI are commonly treated with bisphosphonates to reduce fracture rate, but treatment options for adults are limited. In the Phase 2b ASTEROID trial, setrusumab (a sclerostin neutralizing antibody, SclAb) improved bone density and strength in adults with type I, III, and IV OI. Here, we investigate bone matrix material properties in tetracycline-labeled trans iliac biopsies from 3 groups: (1) control: individuals with no metabolic bone disease, (2) OI: individuals with OI, (3) SclAb-OI: individuals with OI after 6 mo of setrusumab treatment (as part of the ASTEROID trial). In addition to bone histomorphometry, bone mineral and matrix properties were evaluated with nanoindentation, Raman spectroscopy, second harmonic generation imaging, quantitative backscatter electron imaging, and small-angle X-ray scattering. Spatial locations of fluorochrome labels were identified to differentiate inter-label bone of the same tissue age and intra-cortical bone. No difference in collagen orientation was found between the groups. The bone mineral density distribution and analysis of Raman spectra indicate that OI groups have greater mean mineralization, greater relative mineral content, and lower crystallinity than the control group, which was not altered by SclAb treatment. Finally, a lower modulus and hardness were measured in the inter-label bone of the OI-SclAb group compared to the OI group. Previous studies suggest that even though bone from OI has a higher mineral content, the extracellular matrix (ECM) has comparable mechanical properties. Therefore, fragility in OI may stem from contributions from other yet unexplored aspects of bone organization at higher length scales. We conclude that SclAb treatment leads to increased bone mass while not adversely affecting bone matrix properties in individuals with OI.
Collapse
Affiliation(s)
- Maximilian Rummler
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Victoria Schemenz
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Department for Operative, Preventive and Pediatric Dentistry, Centrum für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin, Berlin 14197, Germany
| | - Samantha McCluskey
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Anton Davydok
- Institute of Material Physics, Helmholtz Zentrum Hereon, Hamburg 22607, Germany
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Department of Pediatrics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Francis H Glorieux
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Department of Pediatrics, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 0G4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
11
|
Warensjö Lemming E, Byberg L, Höijer J, Baron JA, Wolk A, Michaëlsson K. Meat consumption and the risk of hip fracture in women and men: two prospective Swedish cohort studies. Eur J Nutr 2024; 63:1819-1833. [PMID: 38632144 PMCID: PMC11329405 DOI: 10.1007/s00394-024-03385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To study the association between meat intake (predominantly red and processed meats) and the risk of hip fracture, as well as the association between meat intake and biomarkers of inflammation, oxidative stress, bone turnover, body composition, and bone mineral density (BMD). METHODS Data from the Swedish Mammography Cohort and the Cohort of Swedish men (n = 83,603, 54% men) with repeated investigations and their respective clinical sub-cohorts was utilised. Incident hip fractures were ascertained through individual linkage to registers. Associations were investigated using multivariable Cox and linear regression analyses. RESULTS During up to 23 years of follow-up (mean 18.2 years) and 1,538,627 person-years at risk, 7345 participants (2840 men) experienced a hip fracture. Each daily serving of meat intake conferred a hazard ratio (HR) of 1.03 (95% confidence interval [CI] 1.00; 1.06) for hip fracture. In quintile 5, compared to quintile 2, the HR was 1.11 (95% CI 1.01; 1.21) among all participants. In the sub-cohorts, meat intake was directly associated with circulating levels of interleukin-6, C-reactive protein, leptin, ferritin, parathyroid hormone, and calcium. CONCLUSION A modest linear association was found between a higher meat intake and the risk of hip fractures. Our results from the sub-cohorts further suggest that possible mechanisms linking meat intake and hip fracture risk may be related to the regulation of bone turnover, subclinical inflammation, and oxidative stress. Although estimates are modest, limiting red and processed meat intake in a healthy diet is advisable to prevent hip fractures.
Collapse
Affiliation(s)
- Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden.
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden.
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| |
Collapse
|
12
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Bolat E, Polat S, Tunç M, Çoban M, Göker P. Investigation of Skull Cortical Thickness Changes in Healthy Population and Patients With Schizophrenia on Computed Tomography Images. J Craniofac Surg 2024; 35:1284-1288. [PMID: 38727232 DOI: 10.1097/scs.0000000000010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
Cortical bone thickness is essential for the mechanical function of bone. Some factors including aging, sex, body size, hormone levels, behavior, and genetics lead to changes in cranial cortical robusticity. Moreover, the skull is one of the hardest and most durable structures in the human body. Schizophrenia is defined as a psychiatric disease characterized by delusions and hallucinations, and these patients have reduced brain volume; however, there is no study including cortical bone structure. For this reason, the aim of this study was to determine whether there is a difference in the skull cortical thickness of patients with schizophrenia and, compare it with healthy subjects. The cranial length, cranial width, anterior cortical thickness, right and left anterior cortical thickness, right and left lateral cortical thickness, right and left posterior lateral thickness, and posterior cortical thickness were measured with axial computed tomography images of 30 patients with schizophrenia and 132 healthy individuals aged between 18 and 69years. A statistically significant difference was found between the two groups in the measurements of right and left posterior lateral thickness, and posterior cortical thickness ( P = 0.006, P = 0.001, and P = 0.047, respectively). The sexes were compared, and it was found that the cranial width, anterior thickness, left anterior thickness, and right and left posterior thickness measurements of patients with schizophrenia showed a statistically significant difference compared with the control group ( P < 0.001, P = 0.003, P = 0.001, P < 0.001 and P < 0.001, respectively). The authors observed that skull cortical thickness may be different in schizophrenia. The results obtained from this study may be beneficial for evaluating these structures for clinical and pathological processes. Furthermore, knowledge about the skull cortical thickness in planning surgical procedures will increase the reliability and effectiveness of the surgical method, and this will minimize the risk of complications.
Collapse
Affiliation(s)
- Esra Bolat
- Department of Anatomy, Çukurova University Faculty of Medicine
| | - Sema Polat
- Department of Anatomy, Çukurova University Faculty of Medicine
| | - Mahmut Tunç
- Department of Therapy and Rehabilitation, Vocational School of Health Services, Baskent University
| | - Muhammet Çoban
- Department of Radiology, Kozan State Hospital, Adana, Turkey
| | - Pinar Göker
- Department of Anatomy, Çukurova University Faculty of Medicine
| |
Collapse
|
14
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Tavakoli F, Faramarzi M, Salimnezhad S, Jafari B, Eslami H, MohammadPourTabrizi B. Comparing the activity level of salivary matrix metalloproteinase-8 in patients with diabetes and moderate to severe chronic generalized periodontitis. Clin Exp Dent Res 2024; 10:e865. [PMID: 38433295 PMCID: PMC10909802 DOI: 10.1002/cre2.865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES The response of the host to plaque can be affected by systemic diseases like diabetes, hormonal changes, or immunological deficits, which can hasten the progression and severity of periodontitis. This study aimed to compare the activity of salivary matrix metalloproteinase-8 (MMP-8) in patients with moderate to severe generalized chronic generalized periodontitis between healthy individuals and those with type 2 diabetes who were referred to the Tabriz School of Dentistry. MATERIALS AND METHODS For this cross-sectional study, 90 patients were randomly divided into three groups based on inclusion and exclusion criteria: patients with chronic generalized periodontitis with diabetes, patients with generalized chronic periodontal disease with normal blood glucose, and a control group of 30 healthy individuals. Participants were instructed not to brush their teeth for 12 h and not to eat or drink for 90 min before saliva sampling. Saliva samples were immediately stored at -80°C and analyzed using an ELISA test. RESULTS The results showed that there was a significant difference in salivary MMP-8 levels among the three groups. Patients with periodontitis and diabetes had the highest levels of salivary MMP-8, while the control group had the lowest levels. This indicates that chronic generalized periodontitis is strongly associated with the activity level of salivary MMP-8, and elevated levels of MMP-8 in diabetic patients demonstrate the impact of diabetes on periodontal disease. CONCLUSION This study highlights the importance of monitoring salivary MMP-8 levels in patients with periodontitis, especially those with diabetes. It also emphasizes the need for proper management of systemic diseases to prevent or slow down the progression of periodontal disease.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Oral and Maxillofacial Medicine Department, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Masoumeh Faramarzi
- Department of Periodontology, Faculty of DentistryTabriz University of Medical SciencesTabrizIran
| | | | - Bahare Jafari
- School of DentistryShiraz University of Medical SciencesShirazIran
| | - Hosein Eslami
- Oral and Maxillofacial Medicine Department, School of DentistryTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
17
|
Wilson BJ, Owston HE, Iqbal N, Giannoudis PV, McGonagle D, Pandit H, Philipose Pampadykandathil L, Jones E, Ganguly P. In Vitro Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells. Bioengineering (Basel) 2024; 11:143. [PMID: 38391629 PMCID: PMC10886325 DOI: 10.3390/bioengineering11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
Collapse
Affiliation(s)
- Bridget Jeyatha Wilson
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Heather Elizabeth Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Lizymol Philipose Pampadykandathil
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| |
Collapse
|
18
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
21
|
Imerb N, Thonusin C, Pratchayasakul W, Chanpaisaeng K, Aeimlapa R, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy exerts anti-osteoporotic effects in obese and lean D-galactose-induced aged rats. FASEB J 2023; 37:e23262. [PMID: 37855727 DOI: 10.1096/fj.202301197rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.
Collapse
Affiliation(s)
- Napatsorn Imerb
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krittikan Chanpaisaeng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchaneevan Aeimlapa
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
23
|
Cabral WA, Stephan C, Terajima M, Thaivalappil AA, Blanchard O, Tavarez UL, Narisu N, Yan T, Wincovitch S, Taga Y, Yamauchi M, Kozloff KM, Erdos MR, Collins FS. Bone dysplasia in Hutchinson-Gilford progeria syndrome is associated with dysregulated differentiation and function of bone cell populations. Aging Cell 2023; 22:e13903. [PMID: 37365004 PMCID: PMC10497813 DOI: 10.1111/acel.13903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Chris Stephan
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Abhirami A. Thaivalappil
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Owen Blanchard
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Urraca L. Tavarez
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Narisu Narisu
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Tingfen Yan
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Stephen M. Wincovitch
- Cytogenetics and Microscopy CoreNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Yuki Taga
- Nippi Research Institute of BiomatrixIbarakiJapan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of DentistryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kenneth M. Kozloff
- Departments of Orthopedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Michael R. Erdos
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Francis S. Collins
- Molecular Genetics Section, Center for Precision Health ResearchNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
24
|
Choi RY, Kim IW, Ji M, Paik MJ, Ban EJ, Lee JH, Hwang JS, Kweon H, Seo M. Protaetia brevitarsis seulensis larvae ethanol extract inhibits RANKL-stimulated osteoclastogenesis and ameliorates bone loss in ovariectomized mice. Biomed Pharmacother 2023; 165:115112. [PMID: 37413903 DOI: 10.1016/j.biopha.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Modulation of osteoclast formation could be a therapeutic target for inhibiting pathological bone destruction. The receptor activator of nuclear factor (NF)-κB ligand (RANKL) is known to be an essential factor in osteoclast differentiation and activation inducers. However, whether Protaetia brevitarsis seulensis (P. brevitarsis) larvae-a traditional animal-derived medicine used in many Asian countries-can inhibit RANKL-induced osteoclast formation and prevent ovariectomy (OVX)-induced bone loss has not been evaluated. Here, we aimed to investigate the anti-osteoporotic effects of P. brevitarsis larvae ethanol extract (PBE) in RANKL-stimulated RAW264.7 cells and OVX mice. In vitro, PBE (0.1, 0.5, 1, and 2 mg/mL) decreased RANKL‑induced tartrate-resistant acid phosphatase (TRAP) activity and expression of osteoclastogenesis-associated genes and proteins. Furthermore, PBE (0.1, 0.5, 1, and 2 mg/mL) significantly inhibited the phosphorylation of p38 and NF-κB. Female C3H/HeN mice were divided into five groups (n = 5 per group), namely, sham-operated, OVX, OVX+PBEL (100 mg/kg, oral gavage), OVX+PBEH (200 mg/kg, oral gavage), and OVX+estradiol (0.03 μg/day, subcutaneous injection). High doses of PBE significantly increased femoral bone mineral density (BMD) and bone volume/tissue volume (BV/TV), whereas femoral bone surface/bone volume (BS/BV) and osteoclastogenesis-associated protein expression decreased compared to those in the OVX group. Moreover, PBE (200 mg/kg) significantly increased estradiol and procollagen type I N-terminal propeptide and decreased N-terminal telopeptide of type I collagen and C-terminal telopeptide of type I collagen compared to those in the OVX group. Our results suggest that PBE can be an effective therapeutic candidate for preventing or treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, the Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, the Republic of Korea
| | - Eu-Jin Ban
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - HaeYong Kweon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, the Republic of Korea.
| |
Collapse
|
25
|
Capp JP, Bataille R. The Ins and Outs of Endosteal Niche Disruption in the Bone Marrow: Relevance for Myeloma Oncogenesis. BIOLOGY 2023; 12:990. [PMID: 37508420 PMCID: PMC10376322 DOI: 10.3390/biology12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Multiple Myeloma (MM) and its preexisting stage, termed Monoclonal Gammopathy of Undetermined Significance (MGUS), have long been considered mainly as genomic diseases. However, the bone changes observed in both conditions have led to a reassessment of the role of the bone microenvironment, mainly the endosteal niche in their genesis. Here, we consider the disruption of the endosteal niche in the bone marrow, that is, the shift of the endosteal niche from an osteoblastic to an osteoclastic profile produced by bone senescence and inflammaging, as the key element. Thus, this disrupted endosteal niche is proposed to represent the permissive microenvironment necessary not only for the emergence of MM from MGUS but also for the emergence and maintenance of MGUS. Moreover, the excess of osteoclasts would favor the presentation of antigens (Ag) into the endosteal niche because osteoclasts are Ag-presenting cells. As such, they could significantly stimulate the presentation of some specific Ag and the clonal expansion of the stimulated cells as well as favor the expansion of such selected clones because osteoclasts are immunosuppressive. We also discuss this scenario in the Gaucher disease, in which the high incidence of MGUS and MM makes it a good model both at the bone level and the immunological level. Finally, we envisage that this endosteal niche disruption would increase the stochasticity (epigenetic and genetic instability) in the selected clones, according to our Tissue Disruption-induced cell Stochasticity (TiDiS) theory.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, 31077 Toulouse, France
| | - Régis Bataille
- School of Medicine, University of Angers, 49045 Angers, France
| |
Collapse
|
26
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
27
|
Ekici M, Koçkaya M, Baş-Ekici H. The influence of sex and age on bone turnover markers in the adult to geriatric Kangal shepherd dogs. Vet Clin Pathol 2023; 52:353-359. [PMID: 36740233 DOI: 10.1111/vcp.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of this research was to learn more about bone metabolism in intact female and male Kangal shepherd dogs during the aging process following skeletal maturity. It also evaluated the potential application of biochemical bone indicators in veterinary clinical practice. METHODS Bone markers were determined as bone alkaline phosphatase (BALP), osteocalcin (OC), C-terminal telopeptide of type I collagen (CTX), and cross-linked C-telopeptide of type I collagen (ICTP) in this study. Kangal shepherd dogs of different age (adult, senior, and geriatric) and sex (male and female) groups were split into six groups of equal numbers (n = 8/group). RESULTS In this study, the effect of age was observed on serum BALP, OC, CTX, and ICTP concentrations. Specifically, BALP was highest in geriatric female Kangal shepherd dogs, while serum OC, CTX, and ICTP concentrations were highest in geriatric male Kangal shepherd dogs. However, no effects of sex and age-sex interactions were identified. Moreover, the effects of age, sex, and age-sex interactions had no significant effect on serum creatinine, CK, LDH, Mg, and P concentrations or ALT activities. However, only sex was found to affect serum AST activities and gradually decreased with age in females. The effect of age and age-sex interactions on serum Ca concentrations was significant (the lowest serum Ca concentrations were in geriatric females), but the effect of sex was not. CONCLUSIONS These results show the effect of age and sex on bone turnover in Kangal shepherd dogs and provide information about bone biomarkers.
Collapse
Affiliation(s)
- Mehmet Ekici
- Faculty of Veterinary Medicine, Department of Veterinary Physiology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Koçkaya
- Faculty of Veterinary Medicine, Department of Veterinary Physiology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hacer Baş-Ekici
- Department of Veterinary Anatomy, Selçuk University, Health Sciences Institute, Konya, Turkey
| |
Collapse
|
28
|
Li R, Qu H, Xu J, Yang H, Chen J, Zhang L, Yan J. Association between dietary intake of α-tocopherol and cadmium related osteoporosis in population ≥ 50 years. J Bone Miner Metab 2023:10.1007/s00774-023-01418-x. [PMID: 37036532 DOI: 10.1007/s00774-023-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023]
Abstract
INTRODUCTION To analyze the association between α-tocopherol intake and cadmium (Cd) exposure and osteoporosis in population ≥ 50 years. MATERIALS AND METHODS Sociodemographic data, physical examination, and laboratory indicators including serum Cd level and dietary α-tocopherol intake of 8459 participants were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. The associations between α-tocopherol intake, serum Cd levels and osteoporosis were evaluated using univariate and multivariate logistic regression analyses, with the estimated value (β), odds ratios (ORs) and 95% confidence intervals (CIs). We further explored the impact of α-tocopherol intake on Cd exposure and the bone mineral density (BMD) in total femur and femur neck. RESULTS A total of 543 old adults suffered from osteoporosis. The serum Cd level (0.52 μg/L vs. 0.37 μg/L) and α-tocopherol intake (5.28 mg vs. 6.50 mg) were statistical different in osteoporosis group and non-osteoporosis group, respectively. High level of Cd exposure was related to the increased risk of osteoporosis [OR = 1.60, 95% CI (1.15-2.21)]. In the total femur, α-tocopherol intake may improve the loss of BMD that associated with Cd exposure [β = - 0.047, P = 0.037]. Moreover, high α-tocopherol intake combined with low Cd exposure [OR = 0.54, 95% CI (0.36-0.81)] was linked to the decreased risk of osteoporosis comparing with low α-tocopherol intake combined with high Cd exposure. CONCLUSION High α-tocopherol intake may improve the Cd-related osteoporosis and loss of BMD that could provide some dietary reference for prevention of osteoporosis in population ≥ 50 years old.
Collapse
Affiliation(s)
- Renjia Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Clinical Nutrition, Yan'an Hospital of Kunming City, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, People's Republic of China.
| | - Hai Qu
- Department of Intensive Care Unit, Yan'an Hospital of Kunming City, Kunming, 650051, Yunnan, People's Republic of China
| | - Jinwei Xu
- Department of Police Sports and Actual Combat Teaching, Yunnan Police Officer Academy, Kunming, 650223, Yunnan, People's Republic of China
| | - Huiqin Yang
- Department of Orthopedic, Yan'an Hospital of Kunming City, Kunming, 650051, Yunnan, People's Republic of China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jiuming Yan
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
30
|
Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li J, Wang H, Zhang J. Inflammation produced by senescent osteocytes mediates age-related bone loss. Front Immunol 2023; 14:1114006. [PMID: 36814916 PMCID: PMC9940315 DOI: 10.3389/fimmu.2023.1114006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose The molecular mechanisms of age-related bone loss are unclear and without valid drugs yet. The aims of this study were to explore the molecular changes that occur in bone tissue during age-related bone loss, to further clarify the changes in function, and to predict potential therapeutic drugs. Methods We collected bone tissues from children, middle-aged individuals, and elderly people for protein sequencing and compared the three groups of proteins pairwise, and the differentially expressed proteins (DEPs) in each group were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). K-means cluster analysis was then used to screen out proteins that continuously increased/decreased with age. Canonical signaling pathways that were activated or inhibited in bone tissue along with increasing age were identified by Ingenuity Pathway Analysis (IPA). Prediction of potential drugs was performed using the Connectivity Map (CMap). Finally, DEPs from sequencing were verified by Western blot, and the drug treatment effect was verified by quantitative real-time PCR. Results The GO and KEGG analyses show that the DEPs were associated with inflammation and bone formation with aging, and the IPA analysis shows that pathways such as IL-8 signaling and acute-phase response signaling were activated, while glycolysis I and EIF2 signaling were inhibited. A total of nine potential drugs were predicted, with rapamycin ranking the highest. In cellular experiments, rapamycin reduced the senescence phenotype produced by the H2O2-stimulated osteocyte-like cell MLO-Y4. Conclusion With age, inflammatory pathways are activated in bone tissue, and signals that promote bone formation are inhibited. This study contributes to the understanding of the molecular changes that occur in bone tissue during age-related bone loss and provides evidence that rapamycin is a drug of potential clinical value for this disease. The therapeutic effects of the drug are to be further studied in animals.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianxing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| |
Collapse
|
31
|
Goto S, Kataoka K, Isa M, Nakamori K, Yoshida M, Murayama S, Arasaki A, Ishida H, Kimura R. Factors associated with bone thickness: Comparison of the cranium and humerus. PLoS One 2023; 18:e0283636. [PMID: 36989318 PMCID: PMC10057751 DOI: 10.1371/journal.pone.0283636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cortical bone thickness is important for the mechanical function of bone. Ontogeny, aging, sex, body size, hormone levels, diet, behavior, and genetics potentially cause variations in postcranial cortical robusticity. However, the factors associated with cranial cortical robusticity remain poorly understood. Few studies have examined cortical robusticity in both cranial and postcranial bones jointly. In the present study, we used computed tomography (CT) images to measure cortical bone thicknesses in the cranial vault and humeral diaphysis. This study clearly showed that females have a greater cranial vault thickness and greater age-related increase in cranial vault thickness than males. We found an age-related increase in the full thickness of the temporal cranial vault and the width of the humeral diaphysis, as well as an age-related decrease in the cortical thickness of the frontal cranial vault and the cortical thickness of the humeral diaphysis, suggesting that the mechanisms of bone modeling in cranial and long bones are similar. A positive correlation between cortical indices in the cranial vault and humeral diaphysis also suggested that common factors affect cortical robusticity. We also examined the association of polymorphisms in the WNT16 and TNFSF11 genes with bone thickness. However, no significant associations were observed. The present study provides fundamental knowledge about similarities and differences in the mechanisms of bone modeling between cranial and postcranial bones.
Collapse
Affiliation(s)
- Shimpei Goto
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
| | - Keiichi Kataoka
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
| | - Mutsumi Isa
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Kenji Nakamori
- Department of Oral and Maxillofacial Surgery, Regional Independent Administrative Corporation Naha City Hospital, Naha, Okinawa, Japan
| | - Makoto Yoshida
- Department of Dentistry and Oral Surgery, Doujin Hospital, Urasoe, Okinawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Surgery, University of the Ryukyus Hospital, Nishihara, Nakagami, Okinawa, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Nakagami, Okinawa, Japan
| |
Collapse
|
32
|
Molecular age estimation based on posttranslational protein modifications in bone: why the type of bone matters. Int J Legal Med 2023; 137:437-443. [PMID: 36648544 PMCID: PMC9902325 DOI: 10.1007/s00414-023-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Age-at-death estimation is of great relevance for the identification of unknown deceased individuals. In skeletonised corpses, teeth and bones are theoretically available for age estimation, but in many cases, only single bones or even only bone fragments are available for examination. In these cases, conventional morphological methods may not be applicable, and the application of molecular methods may be considered. Protein-based molecular methods based on the D-aspartic acid (D-Asp) or pentosidine (Pen) content have already been successfully applied to bone samples. However, the impact of the analysed type of bone has not yet been systematically investigated, and it is still unclear whether data from samples of one skeletal region (e.g. skull) can also be used for age estimation for samples of other regions (e.g. femur). To address this question, D-Asp and Pen were analysed in bone samples from three skeletal regions (skull, clavicle, and rib), each from the same individual. Differences between the bone types were tested by t-test, and correlation coefficients (ρ) were calculated according to Spearman. In all types of bone, an age-dependent accumulation of D-Asp and Pen was observed. However, both parameters (D-Asp and Pen) exhibited significant differences between bone samples from different anatomical regions. These differences can be explained by differences in structure and metabolism in the examined bone types and have to be addressed in age estimation based on D-Asp and Pen. In future studies, bone type-specific training and test data have to be collected, and bone type-specific models have to be established.
Collapse
|
33
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
34
|
Wang H, Gao X, Wang B, Wang M, Liu Y, Zan T, Gao P, Liu C. Evaluation of temperature distribution for bone drilling considering aging factor. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
35
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
36
|
Iolascon G, Paoletta M, Liguori S, Gimigliano F, Moretti A. Bone fragility: conceptual framework, therapeutic implications, and COVID-19-related issues. Ther Adv Musculoskelet Dis 2022; 14:1759720X221133429. [PMID: 36317067 PMCID: PMC9614590 DOI: 10.1177/1759720x221133429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bone fragility is the susceptibility to fracture even for common loads because of structural, architectural, or material alterations of bone tissue that result in poor bone strength. In osteoporosis, quantitative and qualitative changes in density, geometry, and micro-architecture modify the internal stress state predisposing to fragility fractures. Bone fragility substantially depends on the structural behavior related to the size and shape of the bone characterized by different responses in the load-deformation curve and on the material behavior that reflects the intrinsic material properties of the bone itself, such as yield and fatigue. From a clinical perspective, the measurement of bone density by DXA remains the gold standard for defining the risk of fragility fracture in all population groups. However, non-quantitative parameters, such as macro-architecture, geometry, tissue material properties, and microcracks accumulation can modify the bone's mechanical strength. This review provides an overview of the role of different contributors to bone fragility and how these factors might be influenced by the use of anti-osteoporotic drugs and by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
37
|
Fernandes-Breitenbach F, Peres-Ueno MJ, Santos LFG, Brito VGB, Castoldi RC, Louzada MJQ, Chaves-Neto AH, Oliveira SHP, Dornelles RCM. Analysis of the femoral neck from rats in the periestropause treated with oxytocin and submitted to strength training. Bone 2022; 162:116452. [PMID: 35654351 DOI: 10.1016/j.bone.2022.116452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Among the interventions used to prevent osteoporosis in female organisms, strength training (ST) and oxytocin (OT) stand out, as a promising hormone with anabolic action on bone. This study aimed to verify whether the combined action of OT and ST, compared to isolated interventions, potentiates the bone remodeling process of the femoral neck of Wistar rats during periestropause. Forty Wistar rats (18 months) with irregular estrous cycle were randomly distributed into groups: 1-Vehicle (Veh; NaCl 0.15 mol/L ip); 2-Oxytocin (Ot; 134 μg/kg/ip); 3-Strength training (St); 4-Ot + St. The animals of the 1, 2 and 4 groups received two intraperitoneal injections with an interval of 12 h every 30 days, totaling 8 injections at the end of the experimental period (18 to 21 months). The animals in the St and Ot + St groups performed ST on a ladder 3 times a week, maximal voluntary carrying capacity (MVCC) test monthly. After 120 days, the animals were euthanized; the femur was collected for analysis of biomechanical testing, densitometry, bone microtomography, Raman spectroscopy, tissue PCR, and blood for analysis of bone biomarkers, liver damage, and oxidative stress. The main effects in the Ot group were observed in the maximum load and energy in the compression testing (femoral head), and stiffness and energy in the three-points bending testing (femur diaphysis). In addition, the main effects occurred on the bone mineral density (BMD), cortical thickness (Ct.Th), number of pores (Po.N), polar moment of inertia (J), trabecular thickness (Tb.Th), and connectivity density (Conn.Dn), Bone alkaline phosphatase (Alp), Tumor necrosis factor receptor superfamily member 11b (Opg), Tumor necrosis factor ligand superfamily member 11 (Rankl) and Cathepsin K (Ctsk) expression. There was an effect in the tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP). In the St group, the main effect was observed on the energy (compression and the three-points bending), stiffness, aBMD, BMD, cortical bone area (Ct.Ar), Po.N, trabecular bone volume (BV/TV), Tb.Th and in the mineralization ratio (ѵ1PO4/proline), Runt-related transcription factor 2 (Runx2), Bone morphogenetic protein 2 (Bmp2), Alp, Osteopontin/secreted phosphoprotein 1 (Opn/Spp1), Opg, Tumor necrosis factor receptor superfamily member 11ª (Rank), Rankl, Ctsk expression. There was an effect in the TRAP and ALP. The interaction in the combination of therapies in the Ot + St group was verified in energy to maximum load (compression and three-points bending testing), stiffness, BMD, Ct.Th, J, Tb.Th and ѵ1PO4/proline. In the gene analysis there was interaction in the Runx2, Osterix/Sp7 transcription factor (Osx/Sp7), Bmp2, Alp, Osteocalcin/Bone gamma-carboxyglutamate protein (Ocn/Bglap), Opg, Rankl and Acid phosphatase 5, tartrate resistant (Trap/Acp5) expression. In addition, the combination of OT and ST resulted in a higher maximum load compared to the Veh group, with higher BV/TV than the Ot group, higher Rankl and Ctsk expression than Veh and Ot groups, and lower Po.N and lower activity of TRAP than the other groups. In oxidative stress, total antioxidant capacity (TAC) was lower. These results showed that the combination of interventions is a promising anabolic strategy for the prevention of osteoporosis in the period of periestropause, standing out from the effects of isolated interventions.
Collapse
Affiliation(s)
- Fernanda Fernandes-Breitenbach
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Luís Fernando Gadioli Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Postgraduate Program in Movement Sciences, Federal University of Mato Grosso do Sul - UFMS
| | - Mário Jeferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
38
|
Osteoporosis and Fragility Fractures: currently available pharmacological options and future directions. Best Pract Res Clin Rheumatol 2022; 36:101780. [PMID: 36163230 DOI: 10.1016/j.berh.2022.101780] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. The average lifetime risk of a 50-year-old woman to suffer a fracture of the spine, hip, proximal humerus, or distal forearm has been estimated at close to 50%. In general, pharmacological treatment is recommended in patients who suffered a fragility fracture because their risk of suffering a subsequent fracture is increased dramatically. Therefore, many guidelines recommend pharmacological treatment in patients without a prevalent fracture if their fracture probability is comparable to or higher than that of a person of the same age with a prevalent fracture. The present review aims to highlight currently available pharmacological treatment options and their antifracture efficacy including safety aspects. Drug classes discussed comprise bisphosphonates, selective estrogen receptor modulators, parathyroid hormone peptides and derivatives, humanized monoclonal antibodies, and estrogens and gestagens and their combinations. Furthermore, a brief glimpse is provided into a potentially promising treatment option that involves mesenchymal stem cells.
Collapse
|
39
|
Liu Y, Wu K, Cui X, Mao Y. Compressive force regulates GSK-3β in osteoclasts contributing to alveolar bone resorption during orthodontic tooth movement in vivo. Heliyon 2022; 8:e10379. [PMID: 36061014 PMCID: PMC9433691 DOI: 10.1016/j.heliyon.2022.e10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 08/15/2022] [Indexed: 10/27/2022] Open
|
40
|
O'Bryan SJ, Giuliano C, Woessner MN, Vogrin S, Smith C, Duque G, Levinger I. Progressive Resistance Training for Concomitant Increases in Muscle Strength and Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1939-1960. [PMID: 35608815 PMCID: PMC9325860 DOI: 10.1007/s40279-022-01675-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Older adults experience considerable muscle and bone loss that are closely interconnected. The efficacy of progressive resistance training programs to concurrently reverse/slow the age-related decline in muscle strength and bone mineral density (BMD) in older adults remains unclear. OBJECTIVES We aimed to quantify concomitant changes in lower-body muscle strength and BMD in older adults following a progressive resistance training program and to determine how these changes are influenced by mode (resistance only vs. combined resistance and weight-bearing exercises), frequency, volume, load, and program length. METHODS MEDLINE/PubMed and Embase databases were searched for articles published in English before 1 June, 2021. Randomized controlled trials reporting changes in leg press or knee extension one repetition maximum and femur/hip or lumbar spine BMD following progressive resistance training in men and/or women ≥ 65 years of age were included. A random-effects meta-analysis and meta-regression determined the effects of resistance training and the individual training characteristics on the percent change (∆%) in muscle strength (standardized mean difference) and BMD (mean difference). The quality of the evidence was assessed using the Cochrane risk-of-bias tool (version 2.0) and Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. RESULTS Seven hundred and eighty studies were identified and 14 were included. Progressive resistance training increased muscle strength (∆ standardized mean difference = 1.1%; 95% confidence interval 0.73, 1.47; p ≤ 0.001) and femur/hip BMD (∆ mean difference = 2.77%; 95% confidence interval 0.44, 5.10; p = 0.02), but not BMD of the lumbar spine (∆ mean difference = 1.60%; 95% confidence interval - 1.44, 4.63; p = 0.30). The certainty for improvement was greater for muscle strength compared with BMD, evidenced by less heterogeneity (I2 = 78.1% vs 98.6%) and a higher overall quality of evidence. No training characteristic significantly affected both outcomes (p > 0.05), although concomitant increases in strength and BMD were favored by higher training frequencies, increases in strength were favored by resistance only and higher volumes, and increases in BMD were favored by combined resistance plus weight-bearing exercises, lower volumes, and higher loads. CONCLUSIONS Progressive resistance training programs concomitantly increase lower-limb muscle strength and femur/hip bone mineral density in older adults, with greater certainty for strength improvement. Thus, to maximize the efficacy of progressive resistance training programs to concurrently prevent muscle and bone loss in older adults, it is recommended to incorporate training characteristics more likely to improve BMD.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia.
| | - Catherine Giuliano
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Mary N Woessner
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra Smith
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Salvadori L, Belladonna ML, Castiglioni B, Paiella M, Panfili E, Manenti T, Ercolani C, Cornioli L, Chiappalupi S, Gentili G, Leigheb M, Sorci G, Bosetti M, Filigheddu N, Riuzzi F. KYMASIN UP Natural Product Inhibits Osteoclastogenesis and Improves Osteoblast Activity by Modulating Src and p38 MAPK. Nutrients 2022; 14:3053. [PMID: 35893905 PMCID: PMC9370798 DOI: 10.3390/nu14153053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.
Collapse
Affiliation(s)
- Laura Salvadori
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
| | - Maria Laura Belladonna
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Beatrice Castiglioni
- Department Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (B.C.); (M.B.)
| | - Martina Paiella
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
| | - Eleonora Panfili
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Tommaso Manenti
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Catia Ercolani
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Luca Cornioli
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Giulia Gentili
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Massimiliano Leigheb
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Michela Bosetti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (B.C.); (M.B.)
| | - Nicoletta Filigheddu
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| |
Collapse
|
42
|
Nihashi Y, Miyoshi M, Umezawa K, Shimosato T, Takaya T. Identification of a Novel Osteogenetic Oligodeoxynucleotide (osteoDN) That Promotes Osteoblast Differentiation in a TLR9-Independent Manner. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1680. [PMID: 35630904 PMCID: PMC9145662 DOI: 10.3390/nano12101680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Dysfunction of bone-forming cells, osteoblasts, is one of the causes of osteoporosis. Accumulating evidence has indicated that oligodeoxynucleotides (ODNs) designed from genome sequences have the potential to regulate osteogenic cell fate. Such osteogenetic ODNs (osteoDNs) targeting and activating osteoblasts can be the candidates of nucleic acid drugs for osteoporosis. In this study, the ODN library derived from the Lacticaseibacillus rhamnosus GG genome was screened to determine its osteogenetic effect on murine osteoblast cell line MC3T3-E1. An 18-base ODN, iSN40, was identified to enhance alkaline phosphatase activity of osteoblasts within 48 h. iSN40 also induced the expression of osteogenic genes such as Msx2, osterix, collagen type 1α, osteopontin, and osteocalcin. Eventually, iSN40 facilitated calcium deposition on osteoblasts at the late stage of differentiation. Intriguingly, the CpG motif within iSN40 was not required for its osteogenetic activity, indicating that iSN40 functions in a TLR9-independent manner. These data demonstrate that iSN40 serves as a novel osteogenetic ODN (osteoDN) that promotes osteoblast differentiation. iSN40 provides a potential seed of the nucleic acid drug that activating osteoblasts for osteoporosis therapy.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
| | - Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
43
|
MicroRNA-1270 Inhibits Cell Proliferation, Migration, and Invasion via Targeting IRF8 in Osteoblast-like Cell Lines. Curr Issues Mol Biol 2022; 44:1182-1190. [PMID: 35723300 PMCID: PMC8947117 DOI: 10.3390/cimb44030077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is the most common bone disease affecting elderly individuals. The diagnosis of this pathology is most commonly made on the basis of bone fractures. Several microRNAs (miRNAs/miRs) have been identified as possible biomarkers for the diagnosis and treatment of OP. miRNAs can regulate gene expression, and determining their functions can provide potential pharmacological targets for treating OP. A previous study showed that miR-1270 was upregulated in monocytes derived from postmenopausal women with OP. Therefore, the present study aimed to uncover the role of miR-1270 in regulating bone metabolism. To reveal the mechanism underlying the regulatory effect of miR-1270 on interferon regulatory factor 8 (IRF8) expression, luciferase assay, reverse transcription-quantitative PCR, and Western blot analysis were performed. The results suggest that miR-1270 could regulate the mRNA and protein expression levels of IRF8 by directly binding to its 3′-untranslated region. The effects of miR-1270 overexpression and IRF8 silencing on cell proliferation, migration, and invasion were also evaluated. To the best of our knowledge, the current study was the first to support the crucial role of miR-1270 in bone metabolism via modulation of IRF8 expression. In addition, miR-1270 overexpression could attenuate human osteoblast-like cells’ proliferation and migration ability.
Collapse
|
44
|
Alfredo Sierra-Ramírez J, Saucedo-Bueno L, Lilia García-Hernández A, Martínez-Dávalos A, Rodríguez-López C, Elisa Drago-Serrano M, Godínez-Victoria M. Moderate aerobic exercise on bone quality changes associated with aging and oxidative stress in balb/c mice. J Biomech 2022; 135:111035. [DOI: 10.1016/j.jbiomech.2022.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
|
45
|
Usategui-Martín R, Pérez-Castrillón JL, Mansego ML, Lara-Hernández F, Manzano I, Briongos L, Abadía-Otero J, Martín-Vallejo J, García-García AB, Martín-Escudero JC, Chaves FJ. Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene 2022; 809:146036. [PMID: 34688818 DOI: 10.1016/j.gene.2021.146036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The most widely accepted etiopathogenesis hypothesis of the origin of osteoporosis and its complications is that they are a consequence of bone aging and other environmental factors, together with a genetic predisposition. Evidence suggests that oxidative stress is crucial in bone pathologies associated with aging. The aim of this study was to determine whether genetic variants in oxidative stress-related genes modified the risk of osteoporotic fracture. We analysed 221 patients and 354 controls from the HORTEGA sample after 12-14 years of follow up. We studied the genotypic and allelic distribution of 53 SNPs in 24 genes involved in oxidative stress. The results showed that being a carrier of the variant allele of the SNP rs4077561 within TXNRD1 was the principal genetic risk factor associated with osteoporotic fracture and that variant allele of the rs1805754 M6PR, rs4964779 TXNRD1, rs406113 GPX6, rs2281082 TXN2 and rs974334 GPX6 polymorphisms are important genetic risk factors for fracture. This study provides information on the genetic factors associated with oxidative stress which are involved in the risk of osteoporotic fracture and reinforces the hypothesis that genetic factors are crucial in the etiopathogenesis of osteoporosis and its complications.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- IOBA, University of Valladolid, Valladolid. Spain; Cooperative Health Network for Research (RETICS), Oftared, National Institute of Health Carlos III, ISCIII, Madrid. Spain.
| | - José Luis Pérez-Castrillón
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain.
| | - María L Mansego
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Bioinformatics. Making Genetics S.L. Pamplona. Spain
| | | | - Iris Manzano
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Laisa Briongos
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Jesica Abadía-Otero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics. University of Salamanca. Salamanca Biomedical Research Institute (IBSAL), Salamanca. Spain
| | - Ana B García-García
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| | - Juan Carlos Martín-Escudero
- Department of Internal Medicine, Rio Hortega Universitary Hospital, Valladolid, Spain; Department of Medicine. Faculty of Medicine. University of Valladolid, Valladolid, Spain
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA Biomedical Research Institute, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid. Spain
| |
Collapse
|
46
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
47
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
48
|
Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and Musculoskeletal Mechano-Transduction. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:782848. [PMID: 36004321 PMCID: PMC9396756 DOI: 10.3389/fresc.2021.782848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The decline in the mass and function of bone and muscle is an inevitable consequence of healthy aging with early onset and accelerated decline in those with chronic disease. Termed osteo-sarcopenia, this condition predisposes the decreased activity, falls, low-energy fractures, and increased risk of co-morbid disease that leads to musculoskeletal frailty. The biology of osteo-sarcopenia is most understood in the context of systemic neuro-endocrine and immune/inflammatory alterations that drive inflammation, oxidative stress, reduced autophagy, and cellular senescence in the bone and muscle. Here we integrate these concepts to our growing understanding of how bone and muscle senses, responds and adapts to mechanical load. We propose that age-related alterations in cytoskeletal mechanics alter load-sensing and mechano-transduction in bone osteocytes and muscle fibers which underscores osteo-sarcopenia. Lastly, we examine the evidence for exercise as an effective countermeasure to osteo-sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Wang X, Honda Y, Zhao J, Morikuni H, Nishiura A, Hashimoto Y, Matsumoto N. Enhancement of Bone-Forming Ability on Beta-Tricalcium Phosphate by Modulating Cellular Senescence Mechanisms Using Senolytics. Int J Mol Sci 2021; 22:ijms222212415. [PMID: 34830292 PMCID: PMC8624901 DOI: 10.3390/ijms222212415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Various stresses latently induce cellular senescence that occasionally deteriorates the functioning of surrounding tissues. Nevertheless, little is known about the appearance and function of senescent cells, caused by the implantation of beta-tricalcium phosphate (β-TCP)—used widely in dentistry and orthopedics for treating bone diseases. In this study, two varying sizes of β-TCP granules (<300 μm and 300–500 μm) were implanted, and using histological and immunofluorescent staining, appearances of senescent-like cells in critical-sized bone defects in the calvaria of Sprague Dawley rats were evaluated. Parallelly, bone formation in defects was investigated with or without the oral administration of senolytics (a cocktail of dasatinib and quercetin). A week after the implantation, the number of senescence-associated beta-galactosidase, p21-, p19-, and tartrate-resistant acid phosphatase-positive cells increased and then decreased upon administrating senolytics. This administration of senolytics also attenuated 4-hydroxy-2-nonenal staining, representing reactive oxygen species. Combining senolytic administration with β-TCP implantation significantly enhanced the bone formation in defects as revealed by micro-computed tomography analysis and hematoxylin-eosin staining. This study demonstrates that β-TCP granules latently induce senescent-like cells, and senolytic administration may improve the bone-forming ability of β-TCP by inhibiting senescence-associated mechanisms.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (X.W.); (J.Z.); (H.M.); (A.N.); (N.M.)
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
- Correspondence: ; Tel.: +81-72-864-3130
| | - Jianxin Zhao
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (X.W.); (J.Z.); (H.M.); (A.N.); (N.M.)
| | - Hidetoshi Morikuni
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (X.W.); (J.Z.); (H.M.); (A.N.); (N.M.)
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (X.W.); (J.Z.); (H.M.); (A.N.); (N.M.)
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (X.W.); (J.Z.); (H.M.); (A.N.); (N.M.)
| |
Collapse
|
50
|
Carvalho MS, Alves L, Bogalho I, Cabral JMS, da Silva CL. Impact of Donor Age on the Osteogenic Supportive Capacity of Mesenchymal Stromal Cell-Derived Extracellular Matrix. Front Cell Dev Biol 2021; 9:747521. [PMID: 34676216 PMCID: PMC8523799 DOI: 10.3389/fcell.2021.747521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been proposed as an emerging cell-based therapeutic option for regenerative medicine applications as these cells can promote tissue and organ repair. In particular, MSC have been applied for the treatment of bone fractures. However, the healing capacity of these fractures is often compromised by patient's age. Therefore, considering the use of autologous MSC, we evaluated the impact of donor age on the osteogenic potential of bone marrow (BM)-derived MSC. MSC from older patients (60 and 80 years old) demonstrated impaired proliferative and osteogenic capacities compared to MSC isolated from younger patients (30 and 45 years old), suggesting that aging potentially changes the quantity and quality of MSC. Moreover, in this study, we investigated the capacity of the microenvironment [i.e., extracellular matrix (ECM)] to rescue the impaired proliferative and osteogenic potential of aged MSC. In this context, we aimed to understand if BM MSC features could be modulated by exposure to an ECM derived from cells obtained from young or old donors. When aged MSC were cultured on decellularized ECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced, which did not happen when cultured on old ECM. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the quality (assessed in terms of osteogenic differentiation capacity) and quantity of MSC. Specifically, the aging of ECM is determinant of osteogenic differentiation of MSC. In fact, old MSC maintained on a young ECM produced higher amounts of extracellularly deposited calcium (9.10 ± 0.22 vs. 4.69 ± 1.41 μg.μl-1.10-7 cells for young ECM and old ECM, respectively) and up-regulated the expression of osteogenic gene markers such as Runx2 and OPN. Cell rejuvenation by exposure to a functional ECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study provides new insights on the osteogenic potential of MSC during aging and opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Alves
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Bogalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|