1
|
Chueaphromsri P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. Enhancement hispolon production from Phellinus linteus via epigenetic-modified culture to inhibit human breast cancer cells. Biotechnol Lett 2025; 47:29. [PMID: 40011236 DOI: 10.1007/s10529-025-03561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 02/28/2025]
Abstract
Phellinus linteus (PL) is a medicinal fungus known for producing hispolon, a bioactive compound with antioxidant, anti-inflammatory, and anticancer properties. However, the natural scarcity of PL and the unsuccessful cultivation of its fruiting bodies have led to the exploration of alternative methods for enhancing its bioactive compound production. In this study, static fermentation was employed, and Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was added to the culture medium to induce epigenetic modifications and enhance hispolon production. After 30 days of fermentation, the hispolon concentration was analyzed using high-performance liquid chromatography (HPLC), mycelial dry weight was measured, and the expression of hispolon synthesis-related enzymes was quantified using quantitative PCR (qPCR). Additionally, the anticancer potential of the fermented media was assessed in human breast adenocarcinoma HTB-26 cells using assays for cytotoxicity, reactive oxygen species (ROS) formation, apoptosis, antioxidant activity, and autophagy markers. The results revealed that the addition of 400 µM VPA increased hispolon production by 120% and mycelial dry weight by 41%, likely due to enhanced transcriptional accessibility. Furthermore, the PL fermentation media significantly inhibited HTB-26 cell growth through the induction of ROS formation, autophagy, and apoptosis. These findings suggest that VPA-enhanced static fermentation of PL offers a promising strategy for optimizing hispolon production and developing effective anticancer therapeutics.
Collapse
Affiliation(s)
- Phongsakorn Chueaphromsri
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Reynolds EH. Antiepileptic drugs, folate one-carbon metabolism, genetics, and epigenetics: Congenital, developmental, and neuropsychological risks and antiepileptic action. Epilepsia 2024; 65:3469-3473. [PMID: 39373638 DOI: 10.1111/epi.18120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Edward H Reynolds
- Department of Clinical Neurosciences, Kings College London, London, UK
| |
Collapse
|
3
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
4
|
Helgudóttir SS, Johnsen KB, Routhe LG, Rasmussen CLM, Thomsen MS, Moos T. Upregulation of Transferrin Receptor 1 (TfR1) but Not Glucose Transporter 1 (GLUT1) or CD98hc at the Blood-Brain Barrier in Response to Valproic Acid. Cells 2024; 13:1181. [PMID: 39056763 PMCID: PMC11275047 DOI: 10.3390/cells13141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Transferrin receptor 1 (TfR1), glucose transporter 1 (GLUT1), and CD98hc are candidates for targeted therapy at the blood-brain barrier (BBB). Our objective was to challenge the expression of TfR1, GLUT1, and CD98hc in brain capillaries using the histone deacetylase inhibitor (HDACi) valproic acid (VPA). METHODS Primary mouse brain capillary endothelial cells (BCECs) and brain capillaries isolated from mice injected intraperitoneally with VPA were examined using RT-qPCR and ELISA. Targeting to the BBB was performed by injecting monoclonal anti-TfR1 (Ri7217)-conjugated gold nanoparticles measured using ICP-MS. RESULTS In BCECs co-cultured with glial cells, Tfrc mRNA expression was significantly higher after 6 h VPA, returning to baseline after 24 h. In vivo Glut1 mRNA expression was significantly higher in males, but not females, receiving VPA, whereas Cd98hc mRNA expression was unaffected by VPA. TfR1 increased significantly in vivo after VPA, whereas GLUT1 and CD98hc were unchanged. The uptake of anti-TfR1-conjugated nanoparticles was unaltered by VPA despite upregulated TfR expression. CONCLUSIONS VPA upregulates TfR1 in brain endothelium in vivo and in vitro. VPA does not increase GLUT1 and CD98hc proteins. The increase in TfR1 does not result in higher anti-TfR1 antibody targetability, suggesting targeting sufficiently occurs with available transferrin receptors without further contribution from accessory VPA-induced TfR1.
Collapse
Affiliation(s)
- Steinunn Sara Helgudóttir
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Kasper Bendix Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Lisa Greve Routhe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Charlotte Laurfelt Munch Rasmussen
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| |
Collapse
|
5
|
Sharma AR, Batra G, Dhir N, Jain A, Modi T, Saini L, Thakur N, Mishra A, Singh RS, Singh A, Singla R, Prakash A, Goyal M, Bhatia A, Medhi B, Modi M. "Comparative evaluation of different chemical agents induced Autism Spectrum Disorder in experimental Wistar rats". Behav Brain Res 2024; 458:114728. [PMID: 37923221 DOI: 10.1016/j.bbr.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with uncertain etiology and pathophysiology. Several studies revealed that the commonly used animal models like Valproic Acid (VPA) and Propionic Acid (PPA) do not precisely represent the disease as the human patient does. The current study was conducted on different chemically (VPA, PPA, Poly I:C, Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)) & Chlorpyrifos (CPF)) induced ASD-like animal models and validated the best suitable experimental animal model, which would closely resemble with clinical features of the ASD. This validated model might help to explore the pathophysiology of ASD. This study included rat pups prenatally exposed to VPA, PPA, Poly I:C, Dioxin & CPF within GD9 to GD15 doses. The model groups were validated through developmental and behavioral parameters, Gene Expressions, Oxidative Stress, and Pro-inflammatory and Anti-inflammatory cytokines levels. Developmental and neurobehavioral parameters showed significant changes in model groups compared to the control. In oxidative stress parameters and neuro-inflammatory cytokines levels, model groups exhibited high oxidative stress and neuro-inflammation compared to control groups. Gene expression profile of ASD-related genes showed significant downregulation in model groups compared to the control group. Moreover, the Poly I:C group showed more significant results than other model groups. The comparison of available ASD-like experimental animal models showed that the Poly I:C induced model represented the exact pathophysiology of ASD as the human patient does. Poly I:C was reported in the maternal immune system activation via the inflammatory cytokines pathway, altering embryonic development and causing ASD in neonates.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Neha Dhir
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Tanish Modi
- Clinical Trainee, Department of Neurology, PGIMER, Chandigarh, India
| | - Lokesh Saini
- All India Institute of Medical Sciences, Paediatric Neurology, Jodhpur, India
| | - Neetika Thakur
- Department of Endocrinology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Abhishek Mishra
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Rahul Solomon Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Rubal Singla
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India.
| |
Collapse
|
6
|
Jiang P, Zhou L, Zhao L, Fei X, Wang Z, Liu T, Tang Y, Li D, Gong H, Luo Y, Li S, Yang H, Liao H, Fan X. Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis. Neuropsychopharmacology 2024; 49:497-507. [PMID: 37491673 PMCID: PMC10789763 DOI: 10.1038/s41386-023-01659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.
Collapse
Affiliation(s)
- Peiyan Jiang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Zhifei Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yexi Tang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Song Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
7
|
Ornoy A, Echefu B, Becker M. Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int J Mol Sci 2023; 25:390. [PMID: 38203562 PMCID: PMC10779436 DOI: 10.3390/ijms25010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Valproic acid (VPA) is a very effective anticonvulsant and mood stabilizer with relatively few side effects. Being an epigenetic modulator, it undergoes clinical trials for the treatment of advanced prostatic and breast cancer. However, in pregnancy, it seems to be the most teratogenic antiepileptic drug. Among the proven effects are congenital malformations in about 10%. The more common congenital malformations are neural tube defects, cardiac anomalies, urogenital malformations including hypospadias, skeletal malformations and orofacial clefts. These effects are dose related; daily doses below 600 mg have a limited teratogenic potential. VPA, when added to other anti-seizure medications, increases the malformations rate. It induces malformations even when taken for indications other than epilepsy, adding to the data that epilepsy is not responsible for the teratogenic effects. VPA increases the rate of neurodevelopmental problems causing reduced cognitive abilities and language impairment. It also increases the prevalence of specific neurodevelopmental syndromes like autism (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). High doses of folic acid administered prior to and during pregnancy might alleviate some of the teratogenic effect of VPA and other AEDs. Several teratogenic mechanisms are proposed for VPA, but the most important mechanisms seem to be its effects on the metabolism of folate, SAMe and histones, thus affecting DNA methylation. VPA crosses the human placenta and was found at higher concentrations in fetal blood. Its concentrations in milk are low, therefore nursing is permitted. Animal studies generally recapitulate human data.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
8
|
Becker M, Gorobets D, Shmerkin E, Weinstein-Fudim L, Pinhasov A, Ornoy A. Prenatal SAMe Treatment Changes via Epigenetic Mechanism/s USVs in Young Mice and Hippocampal Monoamines Turnover at Adulthood in a Mouse Model of Social Hierarchy and Depression. Int J Mol Sci 2023; 24:10721. [PMID: 37445911 PMCID: PMC10361211 DOI: 10.3390/ijms241310721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs' calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2-3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.
Collapse
Affiliation(s)
- Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Denis Gorobets
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Albert Pinhasov
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
9
|
Safdar A, Ismail F. A comprehensive review on pharmacological applications and drug-induced toxicity of valproic acid. Saudi Pharm J 2023; 31:265-278. [PMID: 36942277 PMCID: PMC10023552 DOI: 10.1016/j.jsps.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid, a branching short chain fatty acid, is a popular drug to treat epilepsy and acts as a mood-stabilizing drug. The obstruction of ion channels and Gamma Amino Butyrate transamino butyrate GABA has been linked to antiepileptic effects. Valproic acid has been characterized as a Histone deacetylase inhibitor, functioning directly transcription of gene levels by blocking the deacetylation of histones and increasing the accessibility of transcription sites. Study has been extensively focused on pharmaceutical activity of valproic acid through various pharmacodynamics activity from absorption, distribution and excretion particularly in patients who are resistant to or intolerant of lithium or carbamazepine, as well as those with mixed mania or rapid cycling.
Collapse
|
10
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
11
|
Prenatal SAMe Treatment Induces Changes in Brain Monoamines and in the Expression of Genes Related to Monoamine Metabolism in a Mouse Model of Social Hierarchy and Depression, Probably via an Epigenetic Mechanism. Int J Mol Sci 2022; 23:ijms231911898. [PMID: 36233200 PMCID: PMC9569718 DOI: 10.3390/ijms231911898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reduction in the levels of monoamines, such as serotonin and dopamine in the brain, were reported in patients and animals with depression. SAMe, a universal methyl donor and an epigenetic modulator, is successfully used as an adjunct treatment of depression. We previously found that prenatal treatment with SAMe of Submissive (Sub) mice that serve as a model for depression alleviated many of the behavioral depressive symptoms. In the present study, we treated pregnant Sub mice with 20 mg/kg of SAMe on days 12–15 of gestation and studied the levels of monoamines and the expression of genes related to monoamines metabolism in their prefrontal cortex (PFC) at the age of 3 months. The data were compared to normal saline-treated Sub mice that exhibit depressive-like symptoms. SAMe increased the levels of serotonin in the PFC of female Sub mice but not in males. The levels of 5-HIAA were not changed. SAMe increased the levels of dopamine and of DOPAC in males and females but increased the levels of HVA only in females. The levels of norepinephrine and its metabolite MHPG were unchanged. SAMe treatment changed the expression of several genes involved in the metabolism of these monoamines, also in a sex-related manner. The increase in several monoamines induced by SAMe in the PFC may explain the alleviation of depressive-like symptoms. Moreover, these changes in gene expression more than 3 months after treatment probably reflect the beneficial effects of SAMe as an epigenetic modulator in the treatment of depression.
Collapse
|
12
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
13
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
14
|
Verhelst S, Van Puyvelde B, Willems S, Daled S, Cornelis S, Corveleyn L, Willems E, Deforce D, De Clerck L, Dhaenens M. A large scale mass spectrometry-based histone screening for assessing epigenetic developmental toxicity. Sci Rep 2022; 12:1256. [PMID: 35075221 PMCID: PMC8786925 DOI: 10.1038/s41598-022-05268-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Toxicoepigenetics is an emerging field that studies the toxicological impact of compounds on protein expression through heritable, non-genetic mechanisms, such as histone post-translational modifications (hPTMs). Due to substantial progress in the large-scale study of hPTMs, integration into the field of toxicology is promising and offers the opportunity to gain novel insights into toxicological phenomena. Moreover, there is a growing demand for high-throughput human-based in vitro assays for toxicity testing, especially for developmental toxicity. Consequently, we developed a mass spectrometry-based proof-of-concept to assess a histone code screening assay capable of simultaneously detecting multiple hPTM-changes in human embryonic stem cells. We first validated the untargeted workflow with valproic acid (VPA), a histone deacetylase inhibitor. These results demonstrate the capability of mapping the hPTM-dynamics, with a general increase in acetylations as an internal control. To illustrate the scalability, a dose–response study was performed on a proof-of-concept library of ten compounds (1) with a known effect on the hPTMs (BIX-01294, 3-Deazaneplanocin A, Trichostatin A, and VPA), (2) classified as highly embryotoxic by the European Centre for the Validation of Alternative Methods (ECVAM) (Methotrexate, and All-trans retinoic acid), (3) classified as non-embryotoxic by ECVAM (Penicillin G), and (4) compounds of abuse with a presumed developmental toxicity (ethanol, caffeine, and nicotine).
Collapse
Affiliation(s)
- Sigrid Verhelst
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Senne Cornelis
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura Corveleyn
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Ewoud Willems
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura De Clerck
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Li S, Qi J, Sun Y, Gao X, Ma J, Zhao S. An integrated RNA-Seq and network study reveals that valproate inhibited progesterone production in human granulosa cells. J Steroid Biochem Mol Biol 2021; 214:105991. [PMID: 34487832 DOI: 10.1016/j.jsbmb.2021.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Valproate (VPA) is an antiepileptic drug (AEDs) with an ideal effect against epilepsy as well as other neuropsychiatric diseases. There is considerable evidence that women taking VPA are prone to reproductive endocrine disorders. However, few studies have been published about VPA effects on human ovarian granulosa cells. METHODS By treating human ovarian granulosa cell line KGN with VPA, the cell viability and progesterone production function were evaluated. RNA-sequencing was applied to uncover the global gene expression upon VPA treatment. RESULTS We revealed that VPA dose-dependently repressed the viability of KGN. VPA treatment at 600 μM inhibited the progesterone production. The mRNA and protein expression of CYP11A1 and STAR, two key enzymes in the biosynthesis of progesterone, were both suppressed. Gene set enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the transcriptome revealed classical functions of VPA as a neuromodulator and regulator of histone acetylation modifications. In addition to this, VPA commonly affected many steroid metabolism related genes in follicle cells, such as promoting the expression of vitamin D receptor (VDR). CONCLUSION Our findings suggest that VPA caused steroids metabolism pathways disturbance related with ovarian function and inhibited progesterone biosynthesis by inhibiting the expression of steroidogenesis genes. Our research may provide theoretical basis for the better use of VPA and the possible ways to counteract its side effects.
Collapse
Affiliation(s)
- Shumin Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Junfeng Qi
- Department of Plastic Surgery, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, Shandong, 250012, China
| | - Yu Sun
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Xueying Gao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
16
|
Reynolds EH. Antiepileptic drugs, folate and one carbon metabolism revisited. Epilepsy Behav 2020; 112:107336. [PMID: 32871500 DOI: 10.1016/j.yebeh.2020.107336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022]
|