1
|
Tavano R, Morillas-Becerril L, Geffner-Smith A, Ronzani G, Gervasutti R, Arrigoni G, Battisti I, Morbidelli M, Polverino de Laureto P, Palazzi L, Natale A, Schiavon E, Coin P, Benetti EM, Romio M, Corzana F, Jiménez-Moreno E, Sturlese M, Bolcato G, Moro S, Moghimi SM, Mancin F, Papini E. Species differences in opsonization and phagocyte recognition of preclinical poly-2-alkyl-2-oxazoline-coated nanoparticles. Nat Commun 2025; 16:2642. [PMID: 40102395 PMCID: PMC11920416 DOI: 10.1038/s41467-025-57648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Poly(ethylene glycol) (PEG) is widely used in nanomedicine design, but emerging PEG immunogenicity in the general population is of therapeutic concern. As alternative, polyoxazolines are gaining popularity, since "polyoxazolinated" nanoparticles show long-circulating properties comparable to PEGylated nanoparticles in mice. Here, we show species differences in opsonization and differential uptake by monocytes and macrophages of nanoparticles coated with either poly-2-methyl-2-oxazoline or poly-2-ethyl-2-oxazoline. These nanoparticles evade murine opsonization process and phagocytic uptake but porcine ficolin 2 (FCN2), through its S2 binding site, recognizes polyoxazolines, and mediates nanoparticle uptake exclusively by porcine monocytes. In human sera, FCN opsonization is isoform-dependent showing inter-individual variability but both FCN2 and complement opsonization promote nanoparticle uptake by human monocytes. However, nanoparticle uptake by human and porcine macrophages is complement-dependent. These findings advance mechanistic understanding of species differences in innate immune recognition of nanomaterials' molecular patterns, and applicable to the selection and chemical design of polymers for engineering of the next generation of stealth nanoparticles.
Collapse
Affiliation(s)
- R Tavano
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - A Geffner-Smith
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - G Ronzani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - R Gervasutti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - G Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - I Battisti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Morbidelli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - P Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A Natale
- Istituto Zooprofilattico Sperimentale delle Venezie - IZSVe - Italian health authority and research organisation for animal health and food safety, Padova, Italy
| | - E Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie - IZSVe - Italian health authority and research organisation for animal health and food safety, Padova, Italy
| | - P Coin
- Istituto Zooprofilattico Sperimentale delle Venezie - IZSVe - Italian health authority and research organisation for animal health and food safety, Padova, Italy
- Dipartimento veterinario e sicurezza alimenti di origine animale ATS, Brescia, Italy
| | - E M Benetti
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - M Romio
- Swiss Federal Institute of Materials Science and Technology (EMPA), St. Gallen, Switzerland
| | - F Corzana
- Department of Chemistry, Complejo Científico-Tecnológico, Universidad de La Rioja, La Rioja, Spain
| | - E Jiménez-Moreno
- Department of Chemistry, Complejo Científico-Tecnológico, Universidad de La Rioja, La Rioja, Spain
| | - M Sturlese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - G Bolcato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - S Moro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - S M Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - F Mancin
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| | - E Papini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Bayarsaikhan B, Zsidó BZ, Börzsei R, Hetényi C. Efficient Refinement of Complex Structures of Flexible Histone Peptides Using Post-Docking Molecular Dynamics Protocols. Int J Mol Sci 2024; 25:5945. [PMID: 38892133 PMCID: PMC11172440 DOI: 10.3390/ijms25115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.
Collapse
Affiliation(s)
- Bayartsetseg Bayarsaikhan
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Rita Börzsei
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Khan FA, Irshad R, Tanveer N, Yaqoob S, Razaullah, Ali R, Ali N, Saifullah J, Ali Hasan K, Naz S, Qadir A, Jabeen A, Wang Y. Unleashing the potential of vanillic acid: A new twist on nature's recipe to fight inflammation and circumvent azole-resistant fungal infections. Bioorg Chem 2024; 145:107254. [PMID: 38432152 DOI: 10.1016/j.bioorg.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Rimsha Irshad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nimra Tanveer
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Razaullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Raza Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nida Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jafar Saifullah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Shahida Naz
- Molecular and Structural Biochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Qadir
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
5
|
Oleinikov PD, Fedulova AS, Armeev GA, Motorin NA, Singh-Palchevskaia L, Sivkina AL, Feskin PG, Glukhov GS, Afonin DA, Komarova GA, Kirpichnikov MP, Studitsky VM, Feofanov AV, Shaytan AK. Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study. Int J Mol Sci 2023; 24:15194. [PMID: 37894874 PMCID: PMC10606924 DOI: 10.3390/ijms242015194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide-nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability.
Collapse
Affiliation(s)
- Pavel D. Oleinikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A. Motorin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Anastasiia L. Sivkina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Pavel G. Feskin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Grigory S. Glukhov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Dmitry A. Afonin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina A. Komarova
- Department of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey V. Feofanov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
6
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Hetényi C. Construction of Histone-Protein Complex Structures by Peptide Growing. Int J Mol Sci 2023; 24:13831. [PMID: 37762134 PMCID: PMC10530865 DOI: 10.3390/ijms241813831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structures of histone complexes are master keys to epigenetics. Linear histone peptide tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket, producing atomic-resolution structures of histone-reader complexes. PepGrow is able to handle the flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked peptide fragments. The new protocol combines the advantages of popular program packages and allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable strategy for the production of complex structures of histone peptides at atomic resolution.
Collapse
Affiliation(s)
| | | | | | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Út 12, 7624 Pécs, Hungary; (B.Z.Z.); (B.B.); (R.B.)
| |
Collapse
|
7
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Börzsei R, Bayarsaikhan B, Zsidó BZ, Lontay B, Hetényi C. The Structural Effects of Phosphorylation of Protein Arginine Methyltransferase 5 on Its Binding to Histone H4. Int J Mol Sci 2022; 23:ijms231911316. [PMID: 36232624 PMCID: PMC9569665 DOI: 10.3390/ijms231911316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) enzyme is responsible for arginine methylation on various proteins, including histone H4. PRMT5 is a promising drug target, playing a role in the pathomechanism of several diseases, especially in the progression of certain types of cancer. It was recently proved that the phosphorylation of PRMT5 on T80 residue increases its methyltransferase activity; furthermore, elevated levels of the enzyme were measured in the case of human hepatocellular carcinoma and other types of tumours. In this study, we constructed the complexes of the unmodified human PRMT5-methylosome protein 50 (MEP50) structure and its T80-phosphorylated variant in complex with the full-length histone H4 peptide. The full-length histone H4 was built in situ into the human PRMT5-MEP50 enzyme using experimental H4 fragments. Extensive molecular dynamic simulations and structure and energy analyses were performed for the complexed and apo protein partners, as well. Our results provided an atomic level explanation for two important experimental findings: (1) the increased methyltransferase activity of the phosphorylated PRMT5 when compared to the unmodified type; (2) the PRMT5 methylates only the free form of histone H4 not bound in the nucleosome. The atomic level complex structure H4-PRMT5-MEP50 will help the design of new inhibitors and in uncovering further structure–function relationships of PRMT enzymes.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
9
|
Fu I, Geacintov NE, Broyde S. Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing. DNA Repair (Amst) 2021; 107:103201. [PMID: 34399316 PMCID: PMC8526387 DOI: 10.1016/j.dnarep.2021.103201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
The first order of DNA packaging is the nucleosome with the DNA wrapped around the histone octamer. This leaves the nucleosomal DNA with access restrictions, which impose a significant barrier to repair of damaged DNA. The efficiency of DNA repair has been related to nucleosome structure and chromatin status, which is modulated in part by post-translational modifications (PTMs) of histones. Numerous studies have suggested a role for acetylation of lysine at position 56 of the H3 histone (H3K56ac) in various DNA transactions, including the response to DNA damage and its association with human cancer. Biophysical studies have revealed that H3K56ac increases DNA accessibility by facilitating spontaneous and transient unwrapping motions of the DNA ends. However, how this acetylation mark modulates nucleosome structure and dynamics to promote accessibility to the damaged DNA for repair factors and other proteins is still poorly understood. Here, we utilize approximately 5-6 microseconds of atomistic molecular dynamics simulations to delineate the impact of H3K56 acetylation on the nucleosome structure and dynamics, and to elucidate how these nucleosome properties are further impacted when a bulky benzo[a]pyrene-derived DNA lesion is placed near the acetylation site. Our findings reveal that H3K56ac alone induces considerable disturbance to the histone-DNA/histone-histone interactions, and amplifies the distortions imposed by the presence of the lesion. Our work highlights the important role of H3K56 acetylation in response to DNA damage and depicts how access to DNA lesions by the repair machinery can be facilitated within the nucleosome via a key acetylation event.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| |
Collapse
|
10
|
Zsidó BZ, Börzsei R, Pintér E, Hetényi C. Prerequisite Binding Modes Determine the Dynamics of Action of Covalent Agonists of Ion Channel TRPA1. Pharmaceuticals (Basel) 2021; 14:988. [PMID: 34681212 PMCID: PMC8540651 DOI: 10.3390/ph14100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane protein channeling the influx of calcium ions. As a polymodal nocisensor, TRPA1 can be activated by thermal, mechanical stimuli and a wide range of chemically damaging molecules including small volatile environmental toxicants and endogenous algogenic lipids. After activation by such compounds, the ion channel opens up, its central pore widens allowing calcium influx into the cytosol inducing signal transduction pathways. Afterwards, the calcium influx desensitizes irritant evoked responses and results in an inactive state of the ion channel. Recent experimental determination of structures of apo and holo forms of TRPA1 opened the way towards the design of new agonists, which can activate the ion channel. The present study is aimed at the elucidation of binding dynamics of agonists using experimental structures of TRPA1-agonist complexes at the atomic level applying molecular docking and dynamics methods accounting for covalent and non-covalent interactions. Following a test of docking methods focused on the final, holo structures, prerequisite binding modes were detected involving the apo forms. It was shown how reversible interactions with prerequisite binding sites contribute to structural changes of TRPA1 leading to covalent bonding of agonists. The proposed dynamics of action allowed a mechanism-based forecast of new, druggable binding sites of potent agonists.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| |
Collapse
|
11
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
12
|
The role of water in ligand binding. Curr Opin Struct Biol 2020; 67:1-8. [PMID: 32942197 DOI: 10.1016/j.sbi.2020.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
|