1
|
Kincaid S, Setenet G, Preveza NJ, Arndt KC, Gwin P, Lin Y, Xie H, Jarome TJ. Increasing H2B Monoubiquitination Improves the Transcriptome and Memory in the Aged Hippocampus. eNeuro 2025; 12:ENEURO.0037-25.2025. [PMID: 40194842 PMCID: PMC11998965 DOI: 10.1523/eneuro.0037-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
A decline in cognitive abilities is associated with the aging process, affecting nearly 33% of US adults over the age of 70, and is a risk factor for the development of dementia and Alzheimer's disease. Several studies have reported age-related alterations in the transcriptome in the hippocampus, a major site of memory storage that is among the first regions impacted with age, dementia, and Alzheimer's disease. However, much remains unknown about why these transcriptional changes exist in the aged hippocampus and how this impacts memory late in life. Here, we show that monoubiquitination of histone H2B (H2Bubi), an epigenetic mechanism recently reported to be major regulator of the epigenome and transcriptome during memory formation in the young adult brain, decreases with age in the hippocampus of male rats. In vivo CRISPR-dCas9-mediated upregulation of Rnf20, the only ubiquitin E3 ligase for H2B, in the hippocampus significantly improved memory retention in aged rats. Remarkably, RNA-seq analysis revealed that in addition to the 18 genes typically upregulated in the aged rat hippocampus following contextual fear conditioning, Rnf20 upregulation caused learning-related increases and decreases in 40 and 11 unique genes, respectively, suggesting that these 51 genes may be among those most critical for improving memory in advanced age. Together, these data suggest that H2B monoubiquitination is a significant regulator of age-related dysregulation of the transcriptome and impairments in memory.
Collapse
Affiliation(s)
- Shannon Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Gueladouan Setenet
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Natalie J Preveza
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kaiser C Arndt
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Phillip Gwin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Yu Lin
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hehuang Xie
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
2
|
Stoencheva B, Stoyanova K, Stoyanov D. Infantile Amnesia can be Operationalized as a Psychological Meta Norm in the Development of Memory. J Integr Neurosci 2025; 24:25889. [PMID: 40018782 DOI: 10.31083/jin25889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/01/2025] Open
Abstract
This paper offers a syncretic synthesis of the highlights of the scientific knowledge accumulated to date on the mechanisms of infantile amnesia (IA). IA can be conceptualized as a meta-norm of memory development. The review shows that the neurobiological and neuropsychological evidence for IA converges within a common metacognitive framework of inquiry. The involvement of consciousness in the conditioning of memory traces and the association between infantile knowledge and implicit memory allow IA to be analyzed as a phenomenon with complex, universal neuropsychic regulation of a higher order. This approach overcomes the paradox of understanding IA.
Collapse
Affiliation(s)
| | - Kristina Stoyanova
- Division of Translational Neuroscience, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD - MUP), Creation of a network of research higher schools, National plan for recovery and sustainability, European Union - NextGenerationEU
| | - Drozdstoy Stoyanov
- Division of Translational Neuroscience, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD - MUP), Creation of a network of research higher schools, National plan for recovery and sustainability, European Union - NextGenerationEU
- Department of Psychiatry and Medical Psychology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Antón‐Fernández A, Cauchola RP, Hernández F, Ávila J. Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice. Aging Cell 2025; 24:e14365. [PMID: 39380362 PMCID: PMC11709095 DOI: 10.1111/acel.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.
Collapse
Affiliation(s)
- Alejandro Antón‐Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Present address:
Department of Neuroscience and Biomedical SciencesCarlos III University (UC3M)MadridSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. Mitochondrial plasticity: An emergent concept in neuronal plasticity and memory. Neurobiol Dis 2024; 203:106740. [PMID: 39557174 DOI: 10.1016/j.nbd.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Mitochondria are classically viewed as 'on demand' energy suppliers to neurons in support of their activity. In order to adapt to a wide range of demands, mitochondria need to be highly dynamic and capable of adjusting their metabolic activity, shape, and localization. Although these plastic properties give them a central support role in basal neuronal physiology, recent lines of evidence point toward a role for mitochondria in the regulation of high-order cognitive functions such as memory formation. In this review, we discuss the interplay between mitochondrial function and neural plasticity in sustaining memory formation at the molecular and cellular levels. First, we explore the global significance of mitochondria in memory formation. Then, we will detail the memory-relevant cellular and molecular mechanisms of mitochondrial plasticity. Finally, we focus on those mitochondrial functions, including but not limited to ATP production, that give mitochondria their pivotal role in memory formation. Altogether, this review highlights the central role of mitochondrial structural and functional plasticity in supporting and regulating neuronal plasticity and memory.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
5
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
6
|
Singh AK, Rai A, Joshi I, Reddy DN, Guha R, Alka K, Shukla S, Rath SK, Nazir A, Clement JP, Kundu TK. Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury. ACS Chem Neurosci 2024; 15:2741-2755. [PMID: 38795032 DOI: 10.1021/acschemneuro.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
Collapse
Affiliation(s)
- Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amrish Rai
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ila Joshi
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Tremblay-Franco M, Canlet C, Carriere A, Nakhle J, Galinier A, Portais JC, Yart A, Dray C, Lu WH, Bertrand Michel J, Guyonnet S, Rolland Y, Vellas B, Delrieu J, Barreto PDS, Pénicaud L, Casteilla L, Ader I. Integrative Multimodal Metabolomics to Early Predict Cognitive Decline Among Amyloid Positive Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae077. [PMID: 38452244 PMCID: PMC11000317 DOI: 10.1093/gerona/glae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.
Collapse
Affiliation(s)
- Marie Tremblay-Franco
- Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Audrey Carriere
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean Nakhle
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
- Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse Biotechnology Institute, INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 792,Toulouse, France
| | - Armelle Yart
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Cédric Dray
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Wan-Hsuan Lu
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Justine Bertrand Michel
- Lipidomic, MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France (Biological Sciences Section)
| | - Sophie Guyonnet
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Yves Rolland
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Bruno Vellas
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Julien Delrieu
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Philippe de Souto Barreto
- Gérontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Luc Pénicaud
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
8
|
Abstract
The recent emergence of reprogramming technologies to convert brain cell types or epigenetically alter neurons and neural progenitors in vivo and in situ hold significant promises in brain repair and neuronal aging reversal. However, given the significant epigenetic and transcriptomic changes to components of the existing neuronal cells and network, we question if these reprogramming technology might inadvertently alter or erase memory engrams, conceivably resulting in changes in narrative identity or personality. We suggest that the nature of these alterations might be less predictable compared to memory and personality changes known to be associated with diseases, drugs or brain stimulation therapies. While research in applying reprogramming technologies to neurological ailments and aging should continue, more targeted analyses should be put in place in animal experiments to gauge the severity and degree of memory alterations, and appropriate risk and benefit analyses should be conducted before these technologies move into human trials.
Collapse
|
9
|
Xiao L, Sun R, Han Y, Xia L, Lin K, Fu W, Zhong K, Ye Y. NAMPT‑NAD + is involved in the senescence‑delaying effects of saffron in aging mice. Exp Ther Med 2024; 27:123. [PMID: 38410190 PMCID: PMC10895469 DOI: 10.3892/etm.2024.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Runxuan Sun
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Yubin Han
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Linhan Xia
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Kexin Lin
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Wanyan Fu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| |
Collapse
|
10
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
11
|
Navabpour S, Farrell K, Kincaid SE, Omar N, Musaus M, Lin Y, Xie H, Jarome TJ. Monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation. Learn Mem 2024; 31:a053912. [PMID: 38580378 PMCID: PMC11000578 DOI: 10.1101/lm.053912.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Posttranslational modification of histone proteins is critical for memory formation. Recently, we showed that monoubiquitination of histone H2B at lysine 120 (H2Bub) is critical for memory formation in the hippocampus. However, the transcriptome controlled by H2Bub remains unknown. Here, we found that fear conditioning in male rats increased or decreased the expression of 86 genes in the hippocampus but, surprisingly, siRNA-mediated knockdown of the H2Bub ligase, Rnf20, abolished changes in all but one of these genes. These findings suggest that monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kayla Farrell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Shannon E Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Yu Lin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, USA
| | - Hehuang Xie
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, USA
- Fralin Life Science Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
12
|
Vitorakis N, Piperi C. Insights into the Role of Histone Methylation in Brain Aging and Potential Therapeutic Interventions. Int J Mol Sci 2023; 24:17339. [PMID: 38139167 PMCID: PMC10744334 DOI: 10.3390/ijms242417339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetic mechanisms play a primary role in the cellular damage associated with brain aging. Histone posttranslational modifications represent intrinsic molecular alterations essential for proper physiological functioning, while divergent expression and activity have been detected in several aspects of brain aging. Aberrant histone methylation has been involved in neural stem cell (NSC) quiescence, microglial deficits, inflammatory processes, memory impairment, cognitive decline, neurodegenerative diseases, and schizophrenia. Herein, we provide an overview of recent studies on epigenetic regulation of brain tissue aging, mainly focusing on the role of histone methylation in different cellular and functional aspects of the aging process. Emerging targeting strategies of histone methylation are further explored, including neuroprotective drugs, natural compounds, and lifestyle modifications with therapeutic potential towards the aging process of the brain.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| |
Collapse
|
13
|
Açar Y, Ağagündüz D, De Cicco P, Capasso R. Flavonoids: Their putative neurologic roles, epigenetic changes, and gut microbiota alterations in Parkinson's disease. Biomed Pharmacother 2023; 168:115788. [PMID: 37913731 DOI: 10.1016/j.biopha.2023.115788] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterized by the degeneration of progressive dopaminergic (DA) neurons in the substantia nigra region of the human midbrain. Although just what causes PD remains a mystery, it is known that oxidative stress (OS) as well as mitochondrial dysfunction, neuro-inflammation, and insufficient neurotrophic support play a role in the disease's pathophysiology. Phytochemicals are a diverse small molecule group derived from plants that can be classified into numerous classes on the basis of their biological activities and chemical structure. Of these groups of phytochemicals, the most abundant, which has well-established anti-Parkinson's effects, are polyphenols. Flavonoids, including naringin and naringenin, genistein, kaempferol, anthocyanins, epigallocatechin-3-gallate, and baicalein are plant-based biologically active polyphenols, which have been shown to exhibit therapeutic potential when used as treatment for a variety of pathological illnesses, such as neurodegenerative diseases (NDs) and PD. Recently, it was reported that flavonoids have beneficial effects on PD, such as the protection of DA neurons, improvement of motor and cognitive abilities, regulation of signaling pathways, and modulation of OS and neuro-inflammation. In addition, by changing the composition of bacteria in gut microbiota, flavonoids reduce pathogenic strains and promote the growth of beneficial strains. In this context, the current paper will provide a literature review on the neurological roles that flavonoids play, as one of the most abundant phytochemical families, in PD.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
14
|
Luz DA, Pinheiro AM, Fontes-Júnior EA, Maia CSF. Neuroprotective, neurogenic, and anticholinergic evidence of Ganoderma lucidum cognitive effects: Crucial knowledge is still lacking. Med Res Rev 2023; 43:1504-1536. [PMID: 37052237 DOI: 10.1002/med.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Ganoderma lucidum is a mushroom that has been widely used for centuries in Asian countries for its antiaging properties. It is popularly known as "Ling Zhi," "Reishi," and "Youngzhi," and because of its benefits, it is known as the "immortality mushroom." Pharmacological assays have revealed that G. lucidum ameliorates cognitive impairments through inhibition of β-amyloid and neurofibrillary tangle formation, antioxidant effect, reduction of inflammatory cytokine release and apoptosis, genic expression modulation, among other activities. Chemical investigations on G. lucidum have revealed the presence of metabolites such as triterpenes, which are the most explored in this field, as well as flavonoids, steroids, benzofurans, and alkaloids; in the literature, these have also been reported to have mnemonic activity. These properties of the mushroom make it a potential source of new drugs to prevent or reverse memory disorders, as actual medications are able to only alleviate some symptoms but are unable to stop the progress of cognitive impairments, with no impact on social, familiar, and personal relevance. In this review, we discuss the cognitive findings of G. lucidum reported in the literature, converging the proposed mechanisms through the several pathways that underlie memory and cognition processes. In addition, we highlight the gaps that deserve particular attention to support future studies.
Collapse
Affiliation(s)
- Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Alana M Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
15
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
16
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
17
|
Zha C, Sossin WS. The molecular diversity of plasticity mechanisms underlying memory: An evolutionary perspective. J Neurochem 2022; 163:444-460. [PMID: 36326567 DOI: 10.1111/jnc.15717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 2022; 18:1243-1248. [PMID: 36453400 PMCID: PMC9838156 DOI: 10.4103/1673-5374.358615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy,Correspondence to: Francesca Luisa Conforti, .
| |
Collapse
|
19
|
Duan S, Li C, Gao Y, Meng P, Ji S, Xu Y, Mao Y, Wang H, Tian J. The tyrosine kinase inhibitor LPM4870108 impairs learning and memory and induces transcriptomic and gene‑specific DNA methylation changes in rats. Arch Toxicol 2022; 96:845-857. [PMID: 35098321 DOI: 10.1007/s00204-022-03226-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Tyrosine kinase inhibitors (TKIs), which have been developed and approved for cancer treatment in the last few years, are involved in synaptic plasticity of learning and memory. Epigenetic modifications also play crucial roles in the process of learning and memory, but its relationship with TKI-induced learning and memory impairment has not been investigated. We hypothesized that LPM4870108, an effective anti-cancer Trk inhibitor, might affect the learning and memory via epigenetic modifications. In this study, rats were orally administered with LPM4870108 (0, 1.25, 2.5, or 5.0 mg/kg) twice daily for 28 days, after which animals were subjected to a Morris water maze test. LPM4870108 exposure caused learning and memory impairments in this test in a dose-dependent manner and reduced the spine densities. Whole-genome transcriptomic analysis revealed significant differences in the patterns of hippocampal gene expression in LPM4870108-treated rats. These transcriptomic data were combined with next-generation bisulfite sequencing analysis, after which RT-PCR and pyrosequencing were conducted, revealing epigenetic alterations associated with genes (Snx8, Fgfr1, Dusp4, Vav2, and Satb2) known to regulate learning and memory. Increased mRNA and protein expression levels of hippocampal Dnmt1 and Dnmt3a were also observed in these rats. Overall, these data suggest that gene-specific alterations in patterns of DNA methylation can potentially contribute to the incidence of learning and memory deficits associated with exposure to LPM4870108.
Collapse
Affiliation(s)
- Sijin Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yonglin Gao
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China
- School of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yangyang Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yutong Mao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China.
| |
Collapse
|
20
|
Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson’s Disease Pathogenesis: A Narrative Review. Brain Sci 2022; 12:brainsci12020175. [PMID: 35203939 PMCID: PMC8870303 DOI: 10.3390/brainsci12020175] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder with an unclear etiology and no disease-modifying treatment to date. PD is considered a multifactorial disease, since both genetic and environmental factors contribute to its pathogenesis, although the molecular mechanisms linking these two key disease modifiers remain obscure. In this context, epigenetic mechanisms that alter gene expression without affecting the DNA sequence through DNA methylation, histone post-transcriptional modifications, and non-coding RNAs may represent the key mediators of the genetic–environmental interactions underlying PD pathogenesis. Environmental exposures may cause chemical alterations in several cellular functions, including gene expression. Emerging evidence has highlighted that smoking, coffee consumption, pesticide exposure, and heavy metals (manganese, arsenic, lead, etc.) may potentially affect the risk of PD development at least partially via epigenetic modifications. Herein, we discuss recent accumulating pre-clinical and clinical evidence of the impact of lifestyle and environmental factors on the epigenetic mechanisms underlying PD development, aiming to shed more light on the pathogenesis and stimulate future research.
Collapse
|
21
|
Epigenome-Wide DNA Methylation Profiling in Colorectal Cancer and Normal Adjacent Colon Using Infinium Human Methylation 450K. Diagnostics (Basel) 2022; 12:diagnostics12010198. [PMID: 35054365 PMCID: PMC8775085 DOI: 10.3390/diagnostics12010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023] Open
Abstract
The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT signalling pathway. Among the identified differentially methylated probes, we found evidence of four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore, we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports several potential important methylated genes in CRC and, therefore, merit further validation as novel candidate biomarker genes in CRC.
Collapse
|
22
|
Coppede F. Targeting the epigenome to treat neurodegenerative diseases or delay their onset: a perspective. Neural Regen Res 2022; 17:1745-1747. [PMID: 35017429 PMCID: PMC8820689 DOI: 10.4103/1673-5374.332145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fabio Coppede
- Department of Translational Research and of New Surgical and Medical Technologies, Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222212280. [PMID: 34830163 PMCID: PMC8618067 DOI: 10.3390/ijms222212280] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.
Collapse
|
24
|
Jarome TJ, Kwapis JL. Special Issue "Molecular Mechanisms of Memory Formation and Modification". Int J Mol Sci 2021; 22:ijms22084113. [PMID: 33923416 PMCID: PMC8072671 DOI: 10.3390/ijms22084113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Memory is vital to human functioning and controls future behavioral responses [...].
Collapse
Affiliation(s)
- Timothy J. Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: (T.J.J.); (J.L.K.); Tel.: +1-540-231-3520 (T.J.J.); +1-814-863-0859 (J.L.K.)
| | - Janine L. Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, University Park, PA 16802, USA
- Correspondence: (T.J.J.); (J.L.K.); Tel.: +1-540-231-3520 (T.J.J.); +1-814-863-0859 (J.L.K.)
| |
Collapse
|
25
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
26
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|