1
|
Escudero-Cernuda S, Eiro N, Fraile M, Vizoso FJ, Fernández-Colomer B, Fernández-Sánchez ML. Limitations and challenges in the characterization of extracellular vesicles from stem cells and serum. Mikrochim Acta 2025; 192:311. [PMID: 40259021 PMCID: PMC12011935 DOI: 10.1007/s00604-025-07147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Exosomes are a subpopulation of nanosized extracellular vesicles (EVs), formed by a lipid bilayer and naturally secreted by cells. They transport RNA, microRNAs, bioactive proteins, and lipids and play an important role in intercellular communication. Exosomes are a promising alternative cell-free therapy in regenerative medicine, immunotherapy, and drug delivery. The implementation of new exosomes treatments requires knowledge of its concentration, purity, and full characterization. However, comparing different studies is highly challenging due to the lack of validated methodologies for isolation and determination, as well as a lack of well-characterized exosomes reference standards. In this work, human uterine cervical mesenchymal stem cell (hUCESC) EVs have been isolated by ultracentrifugation and characterized, discussing the current limitations of characterization methods. First, total protein assays are heavily influenced by free-protein and lipid contaminations which confirm the need of employing several methods for vesicular protein determination. This purity variation seems heavily influenced by the vesicles origin as more complex mediums originate more matrix interferences. Size exclusion high performance liquid chromatography has been demonstrated as a new methodology for purity assessment of hUCESC-EVs and commercial EVs (adipose stem cells and human serum). The results found low purity in the commercial exosomes highlighting that protein and lipid purity must be included in the commercial EVs. Finally, the combination of this chromatography method with total protein assays proved that particle concentration could be estimated using vesicular protein concentration.
Collapse
Affiliation(s)
- Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Noemi Eiro
- Research Unit, Jove Hospital Foundation, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain.
| | - María Fraile
- Research Unit, Jove Hospital Foundation, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Research Unit, Jove Hospital Foundation, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain.
| | - Belén Fernández-Colomer
- Service of Neonatology, Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Lei Z, Chen X, Chen K, Liu P, Ao M, Gan L, Yu L. Exosome-like vesicles encapsulated with specific microRNAs accelerate burn wound healing and ameliorate scarring. J Nanobiotechnology 2025; 23:264. [PMID: 40176075 PMCID: PMC11963272 DOI: 10.1186/s12951-025-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/16/2025] [Indexed: 04/04/2025] Open
Abstract
Burn injuries are prevalent, yet effective treatments remain elusive. Exosomes derived from mesenchymal stem cells (MSC-Ex) possess remarkable pro-regenerative properties for wound healing. Despite their potential, the challenge of mass production limits their clinical application. To address this, preparing exosome-like vesicles has become an international trend. In this study, 28 key microRNAs (miRNAs) with significant pro-proliferation, anti-inflammation, and anti-fibrosis functions were screened from MSC-Ex. These miRNAs were encapsulated into liposomes and then hybridized with extracellular vesicles derived from watermelon to create synthetic exosome-like vesicles. The fabricated vesicles exhibited similar particle size and zeta potential to MSC-Ex, demonstrating high serum stability and effectively resisting the degradation of miRNA by RNase. They were efficiently internalized by cells and enabled a high rate of lysosomal escape for miRNAs post cellular uptake, thereby effectively exerting their pro-proliferative, anti-inflammatory, and anti-fibrotic functions. Further experiments demonstrated that these vesicles efficiently accelerated burn wound healing and reduced scarring, with effects comparable to those of natural MSC-Ex. Based on these findings, the exosome-like vesicles fabricated in this study present a promising alternative to MSC-Ex in burn wound treatment.
Collapse
Affiliation(s)
- Zhiyong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Xiaojuan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kezhuo Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
3
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Anoop G, Kamaraj M, Nithya TG, Babu PR, Babu SS. Lyophilization of dehydrated human amniotic membrane: a proactive approach to preserve growth factors for enhanced wound healing. Cell Tissue Bank 2025; 26:18. [PMID: 40156630 DOI: 10.1007/s10561-025-10167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The preservation of key growth factors in the human amniotic membrane (hAM) that are involved in tissue regeneration and wound healing is the primary focus of this research work. Here, we quantified the total protein content and the major growth factors present in different sample preparations of hAM. The membrane is initially processed, dehydrated, and gamma-irradiated and subsequently subjected to histological staining, cytotoxicity assays, and total protein estimation. The ELISA method was used to quantify TGF b1, bFGF, PDGF-BB, VEGF-A, and EGF in three distinct preservation samples: tissue homogenate (AC-H), ball milled powder (AC-P), and lyophilized powder (AC-L). An in-vitro scratch assay was performed to analyse cell migration and wound healing. Higher TGF-b1 and FGF-b concentrations indicate the potential impact of HAM on re-epithelialization and granular tissue formation. For major growth factors, the quantification shows no significant differences between the samples. On treating the wound area with concentrations of 0.4 mg/ml and 0.6 mg/ml, the remaining wound area for AC-H, AC-L, and AC-P are 39.71%, 40.31%, 55.99% and 25.48%, 62.8%, and 29.65%, respectively. This indicates the presence of growth factors in the membrane promotes wound healing and facilitates cell migration and proliferation. This study provides insights into the quantity of key growth factors within the human amniotic membrane, thereby presenting the approach as a viable option for treating chronic wounds. Additionally, as lyophilization preserves more growth factors and offers greater stability and shelf life than other preservation techniques, it may be an appropriate substitute for ball milling.
Collapse
Affiliation(s)
- Gayathri Anoop
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - T G Nithya
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Pothireddy Raghu Babu
- Acadicell Innovations International Pvt Ltd, Seethakathi Estate, Grand Southern Trunk Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Seetha S Babu
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
5
|
Zhang HJ, Ming JJ, Zhang HX, Fang SYIH, Liu QW, Zhang HY. A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair. Stem Cells Int 2025; 2025:6683745. [PMID: 40151391 PMCID: PMC11949610 DOI: 10.1155/sci/6683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing-Jie Ming
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Xiao Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shao-YI-Han Fang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Shestakova VA, Smirnova EI, Atiakshin DA, Kisel AA, Koryakin SN, Litun EV, Saburov VO, Demyashkin GA, Lagoda TS, Yakimova AO, Kabakov AE, Ignatyuk MA, Yatsenko EM, Kudlay DA, Ivanov SA, Shegay PV, Kaprin AD, Baranovskii DS, Komarova LN, Klabukov ID. Impact of Minimally Manipulated Cell Therapy on Immune Responses in Radiation-Induced Skin Wound Healing. Int J Mol Sci 2025; 26:1994. [PMID: 40076619 PMCID: PMC11900442 DOI: 10.3390/ijms26051994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The current treatment of radiation-induced skin wounds utilizes mainly conventional therapies, including topical steroids, creams, ointments, and hydrogel dressings, which do not take into account the immunologic changes that occur in the skin after radiation exposure. Therefore, it is relevant to consider alternative therapies and their impact on changes in the immune landscape of the skin. The aim of this study was to investigate the effect of allogeneic minimally manipulated keratinocytes and fibroblasts on rat skin repair and the development of immune responses. We found that the use of cell therapy compared to treatment with syntazone ointment and no treatment resulted in faster healing and a reduction in the size of radiation-induced skin wounds, area of inflammation, and edema. Additionally, in the group receiving the cell therapy application, there was an observed increase in the number of mast cells (MCs), activation of MC interaction with M2 macrophages, a reduction in the direct contact of MCs with the vascular bed, an increase in the content of collagen fibers due to the intensification of collagen fibrillogenesis, and a restoration of their histotopographic organization. Thus, the positive effect of cell therapy based on allogeneic minimally manipulated keratinocytes and fibroblasts on skin regeneration indicated that it can be used in clinical practice to improve the effectiveness of rehabilitation after radiation therapy.
Collapse
Affiliation(s)
- Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Ekaterina I. Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastas A. Kisel
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Sergey N. Koryakin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Evgeniy V. Litun
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Vyacheslav O. Saburov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Grigory A. Demyashkin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Tatyana S. Lagoda
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Anna O. Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena M. Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Dmitry A. Kudlay
- Immunology Department, Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey A. Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis S. Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- University Hospital Basel, Basel University, 4001 Basel, Switzerland
- Research and Educational Resource Center for Cellular Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Lyudmila N. Komarova
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Ilya D. Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| |
Collapse
|
7
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
8
|
Hodgson-Garms M, Moore MJ, Martino MM, Kelly K, Frith JE. Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing. NPJ Regen Med 2025; 10:7. [PMID: 39905050 PMCID: PMC11794695 DOI: 10.1038/s41536-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Much of the therapeutic potential of mesenchymal stromal cells (MSCs) is underpinned by their secretome which varies significantly with source, donor and microenvironmental cues. Understanding these differences is essential to define the mechanisms of MSC-based tissue repair and optimise cell therapies. This study analysed the secretomes of bone-marrow (BM.MSCs), umbilical-cord (UC.MSCs), adipose-tissue (AT.MSCs) and clinical/commercial-grade induced pluripotent stem cell-derived MSCs (iMSCs), under resting and inflammatory licenced conditions. iMSCs recapitulated the inflammatory licensing process, validating their comparability to tissue-derived MSCs. Overall, resting secretomes were defined by extracellular matrix (ECM) and pro-regenerative proteins, while licensed secretomes were enriched in chemotactic and immunomodulatory proteins. iMSC and UC.MSC secretomes contained proteins indicating proliferative potential and telomere maintenance, whereas adult tissue-derived secretomes contained fibrotic and ECM-related proteins. The data and findings from this study will inform the optimum MSC source for particular applications and underpin further development of MSC therapies.
Collapse
Affiliation(s)
- Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Cynata Therapeutics, Melbourne, VIC, Australia.
| | - Matthew J Moore
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | | | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Kim Y, Jeon S, Kim B, Jeong YJ, Kim TH, Jeong S, Kim I, Oh J, Jung Y, Lee K, Choy YB, Kim SW, Chung JJ. Sticky Polyelectrolyte Shield for Enhancing Biological Half-Life of Growth Factors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:445-466. [PMID: 39694662 DOI: 10.1021/acsami.4c16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Delivery of secretomes, which includes growth factors, cytokines, and mRNA, is critical in regenerative medicine for cell-to-cell communication. However, the harsh in vivo environment presents significant challenges for secretome delivery. Proteolytic enzymes shorten secretomes' half-lives, and secretomes tend to rapidly diffuse at defect sites. Therefore, a delivery system that ensures prolonged retention and enhanced therapeutic efficacy of secretomes is required. In this study, a Coating Optimized Drug Delivery Enhancement (COD2E) system, a coacervate composed of dopamine functionalized fucoidan and poly-l-lysine, was fabricated for secretome delivery. The dopamine modification significantly enhanced adhesive strength (>7-fold) compared to that of the neat coacervates, which enabled rapid (5 min) and uniform coating ability on collagen sponges. The COD2E system was able to encapsulate fibroblast growth factor (FGF2) and prolong the half-life of FGF2. Notably, its efficacy, demonstrated through a single application of FGF2 encapsulated COD2E on collagen sponge, in a wound model demonstrated a successful tissue repair. The COD2E system is an effective growth factor delivery vehicle since it can protect growth factors, has an antioxidant ability, adheres on various material surfaces, and is hemocompatible.
Collapse
Affiliation(s)
- Young Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungmi Jeon
- Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byulhana Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Jin Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Hee Kim
- Department of Fusion Research and Collaboration, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Subin Jeong
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - Joomin Oh
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Electrical and Electronic Engineering, YU-KIST, Yonsei University, Seoul 03722, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Bin Choy
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Justin J Chung
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Dewi TIT, Noviana D, Priosoeryanto BP, Gunanti G, Subangkit M. Tissue integrity and healing response in hypoestrogenic animal model treated by mesh implantation with addition of mesenchymal stem cell secretome. Open Vet J 2025; 15:162-170. [PMID: 40092191 PMCID: PMC11910305 DOI: 10.5455/ovj.2025.v15.i1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/07/2024] [Indexed: 04/11/2025] Open
Abstract
Background Pelvic organ prolapse increases in prevalence and incidence in older women and hypoestrogenic conditions. Treatment with native tissue surgery has a fairly high recurrence rate. Mesh-augmented surgery is one of the most promising treatments for pelvic organ prolapse, with high effectiveness and low recurrence. Mesh-augmented surgery has a side effect of tissue erosion. The addition of secretome is expected to improve tissue integrity and reduce tissue erosion. Aim This study aimed to investigate the effect of adding the umbilical cord mesenchymal stem cell (UC-MSC) secretome on preventing tissue inflammatory responses, improving tissue integrity, and accelerating wound healing. Methods A total of 32 female New Zealand white rabbit hypoestrogenic models were divided into two groups: the control group with normal mesh and the secretome group with artificial mesh. Hypoestrogenic models were created using the bilateral ovariectomy method. Mesh implantation was performed using a surgical method on hypoestrogenic rabbits. The animals were euthanized on days 7, 14, 28, and 90 after mesh implantation. Histopathology parameters included angiogenesis formation, fibroblast number, and collagen deposition area. Result The results of this study showed that the number of angiogenesis, fibroblast, and collagen deposition data in the secretome group showed higher significantly (p < 0.05) than those in the control group on days 7, 14, 28, and 90 post mesh implantation. The formation of new blood vessels (angiogenesis) in the secretome group demonstrated a mean value of 9.81 ± 2.2 compared to 0.37 ± 0.03 in the control. The number of fibroblasts in the secretome group averaged 151.00 ± 8.14, in contrast to 34.00 ± 13.37 in the control group. Collagen formation in the secretome group was also higher, with a mean value of 80.02 ± 6.71 compared to 59.49 ± 4.61 in the control group over 90 days of observation. Conclusion The administration of secretomes from UC-MSC improved tissue integrity and accelerated wound healing.
Collapse
Affiliation(s)
- Tri Isyani Tungga Dewi
- Graduate Program in Animal Biomedical Sciences, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | | | - Gunanti Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Mawar Subangkit
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
11
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
12
|
Dewi TIT, Noviana D, Priosoeryanto BP, Gunanti G, Subangkit M. Tissue integrity and healing response in hypoestrogenic animal model treated by mesh implantation with addition of mesenchymal stem cell secretome. Open Vet J 2025; 15:162-170. [PMID: 40092191 PMCID: PMC11910305 DOI: 10.5455/ovj.2024.v15.i1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/07/2024] [Indexed: 03/19/2025] Open
Abstract
Background Pelvic organ prolapse increases in prevalence and incidence in older women and hypoestrogenic conditions. Treatment with native tissue surgery has a fairly high recurrence rate. Mesh-augmented surgery is one of the most promising treatments for pelvic organ prolapse, with high effectiveness and low recurrence. Mesh-augmented surgery has a side effect of tissue erosion. The addition of secretome is expected to improve tissue integrity and reduce tissue erosion. Aim This study aimed to investigate the effect of adding the umbilical cord mesenchymal stem cell (UC-MSC) secretome on preventing tissue inflammatory responses, improving tissue integrity, and accelerating wound healing. Methods A total of 32 female New Zealand white rabbit hypoestrogenic models were divided into two groups: the control group with normal mesh and the secretome group with artificial mesh. Hypoestrogenic models were created using the bilateral ovariectomy method. Mesh implantation was performed using a surgical method on hypoestrogenic rabbits. The animals were euthanized on days 7, 14, 28, and 90 after mesh implantation. Histopathology parameters included angiogenesis formation, fibroblast number, and collagen deposition area. Result The results of this study showed that the number of angiogenesis, fibroblast, and collagen deposition data in the secretome group showed higher significantly (p < 0.05) than those in the control group on days 7, 14, 28, and 90 post mesh implantation. The formation of new blood vessels (angiogenesis) in the secretome group demonstrated a mean value of 9.81 ± 2.2 compared to 0.37 ± 0.03 in the control. The number of fibroblasts in the secretome group averaged 151.00 ± 8.14, in contrast to 34.00 ± 13.37 in the control group. Collagen formation in the secretome group was also higher, with a mean value of 80.02 ± 6.71 compared to 59.49 ± 4.61 in the control group over 90 days of observation. Conclusion The administration of secretomes from UC-MSC improved tissue integrity and accelerated wound healing.
Collapse
Affiliation(s)
- Tri Isyani Tungga Dewi
- Graduate Program in Animal Biomedical Sciences, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | | | - Gunanti Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Mawar Subangkit
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
13
|
Rasouli M, Alavi M, D'Angelo A, Sobhani N, Roudi R, Safari F. Exploring the dichotomy of the mesenchymal stem cell secretome: Implications for tumor modulation via cell-signaling pathways. Int Immunopharmacol 2024; 143:113265. [PMID: 39353385 DOI: 10.1016/j.intimp.2024.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Current cancer therapeutic strategies for the treatment of cancer are often unsuccessful due to unwanted side effects and drug resistance. Therefore, the design and development of potent, new anticancer platforms, such as stem-cell treatments, have attracted much attention. Distinctive biological properties of stem cells include their capacity to secrete bioactive factors, their limited immunogenicity, and their capacity for renewing themselves. Mesenchymal stem cells (MSCs) are one of several kinds of stem cells that are conveniently extracted and are able to be cultivated in vitro utilizing various sources. The secretome of stem cells contains many trophic factors, including cytokines, chemokines, growth factors, and microRNA molecules that can either promote or inhibit the formation of tumors, based on the cell environment. In the current review, we focused on the secretome of mesenchymal stem cells. These stem cells act as a double-edged sword in the regulation of cell signal transduction pathways in that they can either suppress or promote tumors.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alberto D'Angelo
- Oncology Department, Royal United Hospital, Bath BA1 3NG, United Kingdom
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
14
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
15
|
Raghav PK, Mann Z. Nano-Delivery Revolution: Harnessing Mesenchymal Stem Cell-Derived Exosomes' Potential for Wound Healing. Biomedicines 2024; 12:2791. [PMID: 39767697 PMCID: PMC11673788 DOI: 10.3390/biomedicines12122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell transplantation has proven effective in treating acute and chronic wounds, but its limitations, such as low cellular viability and the need for specialized transportation, highlight the necessity for alternative approaches. This review explores the potential of engineered exosomes, containing identified miRNAs/peptides, as a more stable and efficient cell-free therapy for regenerative medicine, particularly in wound healing. The discussion emphasizes the benefits of exosomes, including their stability, reduced damage, and consistent biological activity, paving the way for innovative applications like lyophilized exosomes, mist spray delivery, and exosome-based scaffolds. The exploration of cell-free therapy in this review holds promising implications for advancing wound-healing strategies.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94118, USA
| | | |
Collapse
|
16
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
17
|
Rajesh A, Ju EDE, Oxford KA, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome promotes tissue regeneration and increases macrophage infiltration in acute and methicillin-resistant Staphylococcus aureus-infected skin wounds in vivo. Cytotherapy 2024; 26:1400-1410. [PMID: 38944795 DOI: 10.1016/j.jcyt.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AIMS The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Esther Da Eun Ju
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kelly A Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
18
|
Lumban Gaol LM, Purba A, Diposarosa R, Pratiwi YS. Role of Hypoxic Secretome from Mesenchymal Stem Cells in Enhancing Tissue Repair: Regulatory Effects on HIF-1α, VEGF, and Fibroblast in a Sphincterotomy Rat Model. J Inflamm Res 2024; 17:7463-7484. [PMID: 39464333 PMCID: PMC11505569 DOI: 10.2147/jir.s480061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Fecal incontinence (FI) is the inability to control bowel movements, resulting in fecal leakage. If left untreated, FI can seriously impact the long-term well-being of individuals affected. Recently, using secretome has become a promising new treatment method. The secretome combines growth factors released outside cells during stem cell development, such as mesenchymal stem cells. It consists of soluble proteins, nucleic acids, fats, and extracellular vesicles, which contribute to different cell processes. The primary aim is to assess the impact of hypoxic secretome administration on accelerating wound healing through the HIF-1α pathway in a post-sphincterotomy rat model. Methods The study was conducted with two distinct groups of 10 rats each, the control and treatment groups, which were injected with hypoxic secretome at 0.3 mL. The inclusion criteria for the rats were as follows: male gender, belonging to the Sprague-Dawley strain, aged between 12 to 16 weeks, with an average body weight ranging from 240 to 250 grams. Results There was an increase in HIF-1α gene expression in both groups. The treatment group 37 was significantly higher on day 42 (p = 0.001). VEGF increased significantly in the treatment 38 group on day 42 (p = 0.015). The neovascularization score increased significantly in the treatment 39 group during the first 24 hours (p = 0.004). The fibroblast score increased significantly in the 40 treatment group in the first 24 hours (p = 0.000) and 42 days (p = 0.035). After being given secretome, there was a higher increase in % collagen area and collagen area (µm2) in the treatment group compared to the control group (27,77 vs 11.01) and (419.027,66 vs 186.694,16). Conclusion The use of hypoxic secretome has a significant effect as a choice for the treatment of anal sphincter injury after sphincterotomy through the HIF-1α-VEGF-Fibroblast pathway.
Collapse
Affiliation(s)
- Leecarlo Millano Lumban Gaol
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Faculty of Medicine Krida Wacana Christian University, Jakarta, Indonesia
| | - Ambrosius Purba
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
| | - Rizki Diposarosa
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | |
Collapse
|
19
|
Setiawan E, Putra A, Nabih DI, Ovaditya SZ, Rizaldy R. Mesenchymal stem cells suppress inflammation by downregulating interleukin-6 expression in intestinal perforation animal model. Ann Med Surg (Lond) 2024; 86:5776-5783. [PMID: 39359817 PMCID: PMC11444626 DOI: 10.1097/ms9.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Intestinal perforation has significant fatality due to sepsis contamination and prolonged inflammation. Studies showed that mesenchymal stem cells (MSCs) secreted cytokines and growth factors to reduce inflammation. This study aims to reveal the role of MSCs in controlling inflammation in intestinal perforation wound healing by measuring interleukin-6 (IL-6) and leukocytes in injured tissue. Materials and methods A total of 48 rat models with a 10-mm longitudinal incision at the small intestine were divided into four groups: sham, control, Treatment group 1 (T1) injected with MSC doses of 1.5×106 cells and Treatment group 2 (T2) with 3×106 cells. IL-6 expressions were determined using western blot analysis, whereas the leukocyte infiltrations were assessed using the histopathological examination. All variables were evaluated on day 3 and 7. Results Leukocyte infiltration is significantly lower in T1 and T2 compared to control group in day 3 and 7 (P<0.05), while there were no differences between the two treatment groups. The expression of IL-6 was found to be significantly lower in the T1 and T2 groups compared to the control group on days 3 and 7 (P<0.05), with no significant differences observed between the two treatment groups. Conclusion MSCs administration in rats with intestinal perforation reduced inflammation by controlling leukocyte infiltration and IL-6 expression.
Collapse
Affiliation(s)
- Eko Setiawan
- Department of Surgery, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR) Laboratory, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Postgraduate Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Dimas Irfan Nabih
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Rheza Rizaldy
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
20
|
Widowati W, Faried A, Gunanegara RF, Rahardja F, Zahiroh FH, Sutendi AF, Nindya FS, Azis R, Ekajaya RK. The Potential of Human Wharton's Jelly Mesenchymal Stem Cells Secretome Based Topical Gel for Therapeutic Application. Avicenna J Med Biotechnol 2024; 16:233-243. [PMID: 39606678 PMCID: PMC11589430 DOI: 10.18502/ajmb.v16i4.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background Diabetic Foot Ulcer (DFU) might be worsened by neuropathy and vascular issues. This condition can cause 14.3% fatality, stressing the need for effective wound healing therapy. Wound healing is a complex biological process, and human Wharton's Jelly Mesenchymal Stem Cells (hWJMSCs) may help manage DFU treatment issues. This research focuses on utilizing a gel carrier to deliver bioactive substances from Wharton's Jelly Mesenchymal Stem Cells secretome (hWJ-MSCs-Sec) as a possible treatment for DFU. Methods To maintain quality, hWJMSCs-Sec is thoroughly mixed with carbomer gel and freeze-dried. ELISA test is performed to determine the characterization of the gel of hWJMSCs-Sec such as Keratinocyte Growth Factor (KGF), Platelet-Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Epidermal Growth Factor (EGF), and Heparin-Binding EGF-Like Growth Factor (HB-EGF). The antioxidant activity was also measured with Hydrogen peroxide (H2O2), Nitric oxide (NO), and Ferric Reducing Antioxidant Power (FRAP) assay. Proliferation assay was utilized using WST-8 and the wound healing potential was assessed via the migration cell ability of scratched-human skin fibroblast (BJ cells). Results The freeze-dried hWJ-MSCs-Sec showed higher levels of KGF, HGF, PDGF, EGF, HB-EGF, and the antioxidant activities compared to fresh hWJ-MSCs-Sec. Additionally, the gel of freeze-dried hWJ-MSCs-Sec exhibited higher levels compared to the gel of fresh hWJMSCs-Sec. This was evidenced by faster closure of scratched wounds on BJ cells treated with hWJMSCs-Sec and freeze-dried hWJ-MSCs-Sec gel. Conclusion The freeze-dried hWJ-MSCs-Sec gel exhibits superior quality compared to the non-freeze-dried hWJ-MSCs-Sec gel. This demonstrates that the freeze-drying procedure can maintain the bioactive chemicals found in hWJMSCs-Sec, potentially enhancing the efficacy of this gel in promoting cell regeneration for wound healing.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Oncology & Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
- Dr. Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | | | - Fanny Rahardja
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia
| | - Fadhilah Haifa Zahiroh
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Annisa Firdaus Sutendi
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Faradhina Salfa Nindya
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Rizal Azis
- Biomedical Engineering Department of Electrical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
- Department of Translational Medical Science, Division of Cancer and Stem Cell, Biodiscovery Institute 3, The University of Nottingham, University Park, United Kingdom NG72RD
| | - Renandy Kristianlie Ekajaya
- Biology Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, 40154, Indonesia
| |
Collapse
|
21
|
Budhiparama NC, Putramega D, Lumban-Gaol I. Orthobiologics in knee osteoarthritis, dream or reality? Arch Orthop Trauma Surg 2024; 144:3937-3946. [PMID: 38630251 PMCID: PMC11564396 DOI: 10.1007/s00402-024-05310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/24/2024] [Indexed: 11/15/2024]
Abstract
Cartilage restoration or repair, also known as orthobiologic therapy, is indicated after the failure of conservative or supportive treatment. However, there is paucity in evidence supporting the efficacy of orthobiologic therapy. The blood-derived products, such as platelet-rich plasma (PRP), is one of the commonly used orthobiologic therapy for knee osteoarthritis. Several studies have shown that PRP is superior to other treatments, but the anatomic changes are scarce. Treatment with mesenchymal stem cells (MSCs) offers the greatest potential for curing degenerative disease due to their self-renewal ability, ability to migrate towards injured tissues (homing/trafficking), and ability to promote repair and regeneration of osteochondral defects. However, ethical concerns and high costs remain major challenges associated with MSC therapy. Gene therapy, another promising orthobiologic therapy, is currently in phase II clinical trial and has shown promising results. The key factors for successful orthobiologic therapy include patient selection, appropriate dosing, treatment of underlying mechanical problems, age, severity, and cost-effectiveness.
Collapse
Affiliation(s)
- Nicolaas Cyrillus Budhiparama
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjend. Prof. Dr. Moestopo 6-8, Surabaya, 60286, Indonesia.
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia.
| | - Dananjaya Putramega
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia
- Academic Hospital Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Imelda Lumban-Gaol
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia
| |
Collapse
|
22
|
Wicaksono S, Nur'aeny N, Susanto H, Nugraha AP, Ernawati DS. Dampened inflammatory response in oral ulcer after topical therapy of adipose mesenchymal stem cell secretome. J Taibah Univ Med Sci 2024; 19:847-855. [PMID: 39247448 PMCID: PMC11378901 DOI: 10.1016/j.jtumed.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives Research has demonstrated that modulating inflammation can significantly accelerate the healing of oral ulcers. Our study focused on the adipose mesenchymal stem cell secretome (AdMSCS), which is rich in immunoregulatory molecules capable of dampening the immune response and interfering with inflammatory pathways. We assessed both inflammatory pathway expression and macrophage phenotypes at the sites of oral ulcers. Methods We induced oral ulcers in the inferior fornix mucosa of 20 healthy male Wistar rats (Rattus norvegicus). These subjects were treated topically with adipose MSC metabolite (AdMSCM) oral gel three times daily, for durations of 3 and 7 days. We performed immunohistochemical analyses to evaluate the expression of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65 at the ulcer sites. Additionally, we assessed macrophage polarization by examining the ratio of M2/M1 macrophages, identified through CD68+Φ (M1) and CD163+Φ (M2) cells. Data were analyzed using one-way analysis of variance, followed by post-hoc Tukey's Honestly Significantly Difference test. Results Application of AdMSCM oral gel significantly reduced the expression of TLR4 and NF-κB p65. This treatment also enhanced macrophage polarization towards the anti-inflammatory M2 phenotype at the ulcer sites (p < 0.05). Conclusion The topical application of AdMSCM oral gel effectively modulates the inflammatory response, enhancing healing processes in the oral ulcer rat model. This suggests its potential utility as a therapeutic agent in managing oral ulcers.
Collapse
Affiliation(s)
- Satutya Wicaksono
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nanan Nur'aeny
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hendri Susanto
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alexander P Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah S Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
23
|
Sohi GK, Farooqui N, Mohan A, Rajagopalan KS, Xing L, Zhu XY, Jordan K, Krier JD, Saadiq IM, Tang H, Hickson LJ, Eirin A, Lerman LO, Herrmann SM. The impact of hypoxia preconditioning on mesenchymal stem cells performance in hypertensive kidney disease. Stem Cell Res Ther 2024; 15:162. [PMID: 38853239 PMCID: PMC11163800 DOI: 10.1186/s13287-024-03778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Autologous mesenchymal stem cells (MSCs) have emerged as a therapeutic option for many diseases. Hypertensive kidney disease (HKD) might impair MSCs' reparative ability by altering the biomolecular properties, but the characteristics of this impairment are unclear. In our previous pre-clinical studies, we found hypoxic preconditioning (HPC) enhanced angiogenesis and suppressed senescence gene expression. Thus, we hypothesize that HPC would improve human MSCs by enhancing their functionality and angiogenesis, creating an anti-inflammatory and anti-senescence environment. METHODS MSC samples (n = 12 each) were collected from the abdominal fat of healthy kidney donors (HC), hypertensive patients (HTN), and patients with hypertensive kidney disease (HKD). MSCs were harvested and cultured in Normoxic (20% O2) or Hypoxic (1% O2) conditions. MSC functionality was measured by proliferation assays and cytokine released in conditioned media. Senescence was evaluated by senescence-associated beta-galactosidase (SA-beta-gal) activity. Additionally, transcriptome analysis using RNA-sequencing and quantitative PCR (qPCR) were performed. RESULTS At baseline, normoxic HTN-MSCs had higher proliferation capacity compared to HC. However, HPC augmented proliferation in HC. HPC did not affect the release of pro-angiogenic protein VEGF, but increased EGF in HC-MSC, and decreased HGF in HC and HKD MSCs. Under HPC, SA-β-gal activity tended to decrease, particularly in HC group. HPC upregulated mostly the pro-angiogenic and inflammatory genes in HC and HKD and a few senescence genes in HKD. CONCLUSIONS HPC has a more favorable functional effect on HC- than on HKD-MSC, reflected in increased proliferation and EGF release, and modest decrease in senescence, whereas it has little effect on HTN or HKD MSCs.
Collapse
Affiliation(s)
- Gurparneet Kaur Sohi
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Arjunmohan Mohan
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | | | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu province, China
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, 200, First Street SW, Rochester, 55902, MN, USA.
| |
Collapse
|
24
|
Fadilah NIM, Fauzi MB, Maarof M. Effect of Multiple-Cycle Collections of Conditioned Media from Different Cell Sources towards Fibroblasts in In Vitro Wound Healing Model. Pharmaceutics 2024; 16:767. [PMID: 38931888 PMCID: PMC11207063 DOI: 10.3390/pharmaceutics16060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Conditioned media refers to a collection of the used cell culture media. The goal of this study was to evaluate the possible impacts of different conditioned media collected across a number of cycles on the fibroblast proliferation, migration, and profiles of protein release. Human dermal fibroblast (HDF) cells and Wharton jelly mesenchymal stem cells (WJMSC) were cultured and incubated for 3 days prior to being harvested as cycle-1 using the serum-free media F12:DMEM and DMEM, respectively. The procedures were repeatedly carried out until the fifth cycle of conditioned media collection. An in-vitro scratch assay was conducted to measure the effectiveness of wound healing. Collagen hydrogel was combined separately with both the Wharton jelly-conditioned medium (WJCM) and the dermal fibroblast-conditioned medium (DFCM) in order to evaluate the protein release profile. The conditioned medium from many cycles had a lower level of fibroblast attachment than the control (complete medium); however, the growth rate increased from 100 to 250 h-1, when supplemented with a conditioned medium collected from multiple cycles. The wound scratch assay showed that fibroblast cell migration was significantly increased by repeating cycles up to cycle-5 of DFCM, reaching 98.73 ± 1.11%. This was faster than the rate of migration observed in the cycle-5 of the WJCM group, which was 27.45 ± 5.55%. Collagen hydrogel from multiple cycles of DFCM and WJCM had a similar protein release profile. These findings demonstrate the potential for employing repeated cycles of DFCM- and WJCM-released proteins with collagen hydrogel for applications in wound healing.
Collapse
Affiliation(s)
| | | | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (M.B.F.)
| |
Collapse
|
25
|
Palumbo FS, Calligaris M, Calzà L, Fiorica C, Baldassarro VA, Carreca AP, Lorenzini L, Giuliani A, Carcione C, Cuscino N, Pitarresi G, Scilabra SD, Conaldi PG, Chinnici CM. Topical application of a hyaluronic acid-based hydrogel integrated with secretome of human mesenchymal stromal cells for diabetic ulcer repair. Regen Ther 2024; 26:520-532. [PMID: 39156755 PMCID: PMC11327949 DOI: 10.1016/j.reth.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
This preclinical proof-of-concept study aimed to evaluate the effectiveness of secretome therapy in diabetic mice with pressure ulcers. We utilized a custom-made hyaluronic acid (HA)-based porous sponge, which was rehydrated either with normal culture medium or secretome derived from human mesenchymal stromal cells (MSCs) to achieve a hydrogel consistency. Following application onto skin ulcers, both the hydrogel-only and the hydrogel + secretome combination accelerated wound closure compared to the vehicle group. Notably, the presence of secretome significantly enhanced the healing effect of the hydrogel, as evidenced by a thicker epidermis and increased revascularization of the healed area compared to the vehicle group. Notably, molecular analysis of healed skin revealed significant downregulation of genes involved in delayed wound healing and abnormal inflammatory response in ulcers treated with the hydrogel + secretome combination, compared to those treated with the hydrogel only. Additionally, we found no significant differences in therapeutic outcomes when comparing the use of secretome from fetal dermal MSCs to that from umbilical cord MSCs. This observation is supported by the proteomic profile of the two secretomes, which suggests a shared molecular signature responsible of the observed therapeutic effects.
Collapse
Affiliation(s)
- Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Matteo Calligaris
- Proteomic Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Laura Calzà
- Fondazione IRET, Tecnopolo di Bologna, Via Tolara di Sopra, 41e, 40064, Ozzano dell’Emilia (BO), Italy
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università degli Studi di Bologna, Via S. Donato, 15, 40127, Bologna, Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Vito Antonio Baldassarro
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Anna Paola Carreca
- Regenerative Medicine and Immmunotherapy Unit, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Luca Lorenzini
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Alessandro Giuliani
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università degli Studi di Bologna, Bologna, Italy
| | - Claudia Carcione
- Cell Therapy Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi, 5 90127, Palermo, Italy
| | - Nicola Cuscino
- Department of Research, IRCCS ISMETT, Via E. Tricomi 5, 90127, Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Simone Dario Scilabra
- Proteomic Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT, Via E. Tricomi 5, 90127, Palermo, Italy
| | - Cinzia Maria Chinnici
- Cell Therapy Group, Ri.MED Foundation c/o IRCCS ISMETT, via E. Tricomi, 5 90127, Palermo, Italy
| |
Collapse
|
26
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
28
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
29
|
Khodkar I, Saki J, Arjmand R, Saki G, Khorsandi L. Adipose-Derived Stem Cells' Secretome Attenuates Lesion Size and Parasite Loading in Leishmaniasis Caused by Leishmania Major in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:121-129. [PMID: 38356483 PMCID: PMC10862109 DOI: 10.30476/ijms.2023.96413.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 12/25/2022] [Indexed: 02/16/2024]
Abstract
Background Stem cell-derived secretome (SE) released into the extracellular space contributes to tissue repair. The present study aimed to investigate the impact of isolated secretome (SE) from adipose-derived mesenchymal stem cells (ASCs) on Leishmania major (L. major) lesions in BALB/c mice. Methods This experimental study was conducted at Ahvaz University of Medical Sciences (Ahvaz, Iran) in 2021. Forty female BALB/c mice were infected with stationary phase promastigotes through intradermal injection in the bottom of their tail and randomly divided into four groups (n=10 per group). The mice were given SE (20 mg/mL), either alone or in combination with Glucantime (GC, 20 mg/mL/Kg), meglumine antimoniate (20 mg/mL/Kg) for the GC group, and phosphate-buffered saline (PBS) for the control group. After eight weeks, the lesion size, histopathology, the levels of Interleukin 10 (IL-10), and Interleukin 12 (IL-12) were assessed. For the comparison of values between groups, the parametric one-way ANOVA was used to assess statistical significance. Results At the end of the experiment, the mice that received SE had smaller lesions (4.56±0.83 mm versus 3.62±0.59 mm, P=0.092), lower levels of IL-10 (66.5±9.7 pg/mL versus 285.4±25.2 pg/mL, P<0.001), and higher levels of IL-12 (152.2±14.2 pg/mL versus 24.2±4.4 pg/mL, P<0.001) than the control. Histopathology findings revealed that mice treated with SE had a lower parasite burden in lesions and spleen than the control group. Conclusion The current study demonstrated that ADSC-derived SE could protect mice infected with L. major against leishmaniasis.
Collapse
Affiliation(s)
- Iman Khodkar
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jasem Saki
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arjmand
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Wicaksono S, Nugraha AP, Rahmahani J, Rantam FA, Kuncorojakti S, Susilowati H, Riawan W, Arundina I, Lestari P, Masya RN, Surboyo MDC, Ernawati DS. Adipose Mesenchymal Stem Cell Metabolites Oral Gel Enhance Pro-Angiogenic Factors Expression, Angiogenesis, and Clinical Outcome of Oral Ulcer Rat Model. Eur J Dent 2024; 18:117-123. [PMID: 36963426 PMCID: PMC10959621 DOI: 10.1055/s-0043-1761192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Enhancing wound healing capacity is one of the main principles in oral ulcer management. Efficient oral ulcer management will accelerate clinical symptom amelioration and prevent complications. Adipose mesenchymal stem cell metabolites (AdMSCM), a novel biological product, contains a plethora of bioactive mediators that can induce a series of processes in wound healing. This study will analyze the clinical outcome, angiogenesis, and expression of FGF-2 and VEGFA in the oral ulcer rat model after AdMSCM oral gel application. MATERIALS AND METHODS Twenty healthy male Wistar rats (Rattus novergicus) were used to create oral ulcer animal models. AdMSCM oral gel treatment was performed three times daily for 3 and 7 days. Clinical outcome was assessed by measuring the major diameter of the ulcer; the angiogenesis was evaluated through histological assessment; the expression of VEGFA and FGF-2 was assessed using the immunohistochemistry method. STATISTICAL ANALYSIS This study uses parametric comparative analysis using one-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test RESULTS: The application of AdMSCM oral gel in an oral ulcer rat model significantly enhanced the clinical outcome (p < 0.05). In addition, similar results were shown in the histologic assessment of angiogenesis and supported by the significant increase of VEGFA and FGF-2 expression. CONCLUSIONS AdMSCM oral gel accelerates oral ulcer healing processes, proven by the enhancement of angiogenesis, pro-angiogenic factors expression, and clinical outcomes.
Collapse
Affiliation(s)
- Satutya Wicaksono
- Master Program in Immunology, Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Jola Rahmahani
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Universitas Brawijaya, Malang, Indonesia
| | - Ira Arundina
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Resgita Nadila Masya
- Graduate Program in Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Zomer HD, de Souza Lima VJ, Bion MC, Brito KNL, Rode M, Stimamiglio MA, Jeremias TDS, Trentin AG. Evaluation of secretomes derived from human dermal and adipose tissue mesenchymal stem/stromal cells for skin wound healing: not as effective as cells. Stem Cell Res Ther 2024; 15:15. [PMID: 38229157 PMCID: PMC10792854 DOI: 10.1186/s13287-023-03630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Although the paracrine effects of mesenchymal stem/stromal cells (MSCs) have been recognized as crucial mediators of their regenerative effects on tissue repair, the potential of MSC secretomes as effective substitutes for cellular therapies remains underexplored. METHODS In this study, we compared MSCs from the human dermis (DSCs) and adipose tissue (ASCs) with their secretomes regarding their efficacy for skin wound healing using a translationally relevant murine model. RESULTS Proteomic analysis revealed that while there was a substantial overlap in protein composition between DSC and ASC secretomes, specific proteins associated with wound healing and angiogenesis were differentially expressed. Despite a similar angiogenic potential in vivo, DSC and ASC secretomes were found to be less effective than cells in accelerating wound closure and promoting tissue remodeling. CONCLUSIONS Overall, secretome-treated groups showed intermediary results between cells- and control-treated (empty scaffold) groups. These findings highlight that although secretomes possess therapeutic potential, their efficacy might be limited compared to cellular therapies. This study contributes to the growing understanding of MSC secretomes, emphasizes the need for further protocol optimization, and offers insights into their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, USA.
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Victor Juan de Souza Lima
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Monique Coelho Bion
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Translational Neuroscience, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karynne Nazare Lins Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michele Rode
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marco Augusto Stimamiglio
- Laboratory for Stem Cells Basic Biology, Carlos Chagas Institute, FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Xiong Y, Mahmood A, Chopp M. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration. Neural Regen Res 2024; 19:49-54. [PMID: 37488843 PMCID: PMC10479856 DOI: 10.4103/1673-5374.374143] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide. Despite significant advancements in the field of medicine, effective treatments for traumatic brain injury remain limited. Recently, extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury. Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells, including those in the brain, and can be engineered to contain therapeutic cargo, such as anti-inflammatory molecules, growth factors, and microRNAs. When administered intravenously, extracellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury, where they can be taken up by recipient cells and modulate the inflammatory response, promote neuroregeneration, and improve functional outcomes. In preclinical studies, extracellular vesicle-based therapies have shown promising results in promoting recovery after traumatic brain injury, including reducing neuronal damage, improving cognitive function, and enhancing motor recovery. While further research is needed to establish the safety and efficacy of extracellular vesicle-based therapies in humans, extracellular vesicles represent a promising novel approach for the treatment of traumatic brain injury. In this review, we summarize mesenchymal stem/stromal cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brain-derived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
33
|
Najeeb S, Manekia FA, Sadiq MSK, Adanir N, Khurshid Z, Zafar MS, Heboyan A. The effect of fibroblast growth factor-2 on the outcomes of tooth replantation: A systematic review of animal studies. Sci Prog 2024; 107:368504241228964. [PMID: 38489928 PMCID: PMC10943733 DOI: 10.1177/00368504241228964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background/Aim: The ideal treatment of tooth avulsion is replantation. However, replanting teeth may lead to root resorption. Fibroblast growth factor-2 (FGF-2) is a cytokine that plays an important role in wound repair and tissue regeneration. Recently, FGF-2 has been studied a potential regenerative agent to prevent root resorption and ankylosis. The aim of this review is to analyze and summarize the currently available literature focusing on using FGF-2 based regenerative modalities to improve the outcomes of tooth replantation. Materials and Methods: An electronic search was conducted via PubMed/Medline, Google Scholar and ISI Web of Knowledge, using the Medical Subject Headings (MeSH) terms "Basic fibroblast growth factor," "Fibroblast growth factor-2," "tooth replantation," and "replantation" for studies published between January 2001 and June 2021. Data was extracted and quality assessment was carried using the ARRIVE guidelines. Results: Nine animal studies were included in this review. In six studies, FGF-2 had a favorable effect on the tissue regeneration around roots of replanted teeth when compared to other treatment groups. However, quality assessment of the studies revealed many sources of bias and deficiencies in the studies. Conclusions: Within the limitations of this study, it may be concluded that FGF-2 may improve the outcomes of delayed replantation of avulsed teeth. However, more long-term animal studies, with improved experimental designs, and clinical trials are required to determine the clinical potential of the growth factor in improving the outcomes of delayed tooth replantation.
Collapse
Affiliation(s)
- Shariq Najeeb
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Evidentia Dental Outcomes Research, Calgary, AB, Canada
| | | | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Ciences, Karachi, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Kingdom of Saudi Arabia
- Current affiliation: Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
- Current affiliation: Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, Armenia
| |
Collapse
|
34
|
Bachnas MA, Dekker GA, Mudigdo A, Purwanto B, Sulistyowati S, Dachlan EG, Akbar MIA, Chouw A, Sartika CR, Widjiati W. Mesenchymal stem cell secretome ameliorates over-expression of soluble fms-like tyrosine kinase-1 (sFlt-1) and fetal growth restriction (FGR) in animal SLE model. J Matern Fetal Neonatal Med 2023; 36:2279931. [PMID: 37953255 DOI: 10.1080/14767058.2023.2279931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the near future, stem cell research may lead to several major therapeutic innovations in medical practice. Secretome, a "by-product" of stem cell line cultures, has many advantages. Its easiness of storage, usage, and fast direct effect are some of those to consider. Fetal growth restriction (FGR) remains one of the significant challenges in maternal-fetal and neonatal medicine. Placentation failure is one of the most profound causal and is often related to increasing sFlt-1 in early pregnancy. This study aimed to investigate hUC-MSC secretome in ameliorating sFlt-1 and how to improve outcomes in preventing FGR in an animal model. MATERIALS AND METHODS Pristane-induced systemic lupus erythematosus (SLE) in a mouse model was used to represent placentation failure and its consequences. Twenty-one mice were randomized into three groups: (I) normal pregnancy, (II) SLE, and (III) SLE with secretome treatment. Pristane was administered in all Groups four weeks prior mating period. Secretome was derived from human umbilical cord mesenchymal stem cells (hUC-MSC) conditioned medium on the 3rd and 4th passage, around day-21 until day-28 from the start of culturing process. Mesenchymal stem cell was characterized using flow cytometry for CD105+, CD90+, and CD73+ surface antigen markers. Immunohistochemistry anlysis by using Remmele's Immunoreactive Score (IRS) was used to quantify the placental sFlt-1 expression in each group. Birth weight and length were analyzed as the secondary outcome. The number of fetuses obtained was also calculated for pregnancy loss comparison between Groups. RESULTS The administration of secretome of hUC-MSC was found to lower the expression of the placental sFlt-1 significantly in the pristane SLE animal model (10.30 ± 1.40 vs. 4.98 ± 2.57; p < 0.001) to a level seen in normal mouse pregnancies in Group I (3.88 ± 0.49; p = 0.159). Secretome also had a significant effect on preventing fetal growth restriction in the pristane SLE mouse model (birth weight: 354.29 ± 80.76 mg vs. 550 ± 64.03 mg; p < 0.001 and birth length: 14.43 ± 1.27 mm vs. 19.00 ± 1.41 mm), comparable to the birth weight and length of the normal pregnancy in Group I (540.29 ± 75.47 mg and 18.14 ± 1.34 mm, p = 0.808 and = 0.719). Secretome administration also showed a potential action to prevent high number of pregnancy loss as the number of fetuses obtained could be similar to those of mice in the normal pregnant Group (7.71 ± 1.11 vs. 7.86 ± 1.06; p = 0.794). CONCLUSIONS Administration of secretome lowers sFlt-1 expression in placenta, improves fetal growth, and prevents pregnancy loss in a mouse SLE model.
Collapse
Affiliation(s)
- Muhammad Adrianes Bachnas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Gustaaf Albert Dekker
- Obstetrics and Gynaecology Department, Lyell-McEwin Hospital, The University of Adelaide, Adelaide, Australia
| | - Ambar Mudigdo
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Bambang Purwanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Sri Sulistyowati
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Muhammad Ilham Aldika Akbar
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Airlangga/Airlangga University Hospital, Surabaya, Indonesia
| | - Angliana Chouw
- ProSTEM, Prodia StemCell Indonesia Laboratory, Jakarta, Indonesia
| | | | - Widjiati Widjiati
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
35
|
Suhandi C, Mohammed AFA, Wilar G, El-Rayyes A, Wathoni N. Effectiveness of Mesenchymal Stem Cell Secretome on Wound Healing: A Systematic Review and Meta-analysis. Tissue Eng Regen Med 2023; 20:1053-1062. [PMID: 37682505 PMCID: PMC10645742 DOI: 10.1007/s13770-023-00570-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Secretome provides promising potential in replacing cell-based therapies in wound repair therapy. This study aimed to systematically review and conduct a meta-analysis on the effectiveness of secretome in promoting wound healing. METHODS To ensure the rigor and transparency of our study, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, as registered in PROSPERO with ID: CRD42023412671. We conducted a comprehensive search on four electronic databases to identify studies evaluating the effect of secretome on various clinical parameters of wound repair. In addition, we evaluated the risk of bias for each study using the Jadad and Newcastle-Ottawa scale. To synthesize the data, we employed a fixed-effects model and calculated the mean difference or odds ratio (OR) with a 95% confidence interval (CI). RESULTS Based on six included articles, secretome is known to affect several clinical parameters in wound healing included the size and depth of ulcers during healing; the E´chelle d'évaluation clinique des cicatrices d'acne (ECCA) score, epidermal thickness, collagen fibers, abnormal elastic tissues, volume of atrophic acne scars, skin pore volume, and erythema during acne scar healing; and microcrust areas, erythema index, transepidermal water loss, volume of atrophic acne scars, erythema, and relative gene expression of procollagen type I, procollagen type III, and elastin were evaluated in wound healing after laser treatment. Meta-analysis studies showed that secretome reduced ulcer size (mean difference: 0.87, 95% CI of 0.37-1.38, p = 0.0007), decreased ulcer depth (mean difference: 0.18, 95% CI of 0.11-0.25, p < 0.00001), and provided patient satisfaction (odds ratio: 9.71, 95% CI of 3.47-21.17, p < 0.0001). However, secretome failed to reach significance in clinical improvement (OR 0.38, 95% CI 0.10, 1.53, p = 0.06). CONCLUSION The secretome provides good effectiveness in accelerating wound healing through a mechanism that correlates with several clinical parameters of wound repair.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Ali El-Rayyes
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
| |
Collapse
|
36
|
He Y, Yang S, Liu P, Li K, Jin K, Becker R, Zhang J, Lin C, Xia J, Ma Z, Ma Z, Zhong R, Lee LP, Huang TJ. Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs. Nat Commun 2023; 14:7639. [PMID: 37993431 PMCID: PMC10665559 DOI: 10.1038/s41467-023-43239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.
Collapse
Affiliation(s)
- Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Chuanchuan Lin
- Department of Blood Transfusion, Irradiation Biology Laboratory, Xinqiao Hospital, Chongqing, 400037, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Luke P Lee
- Harvard Medical School, Harvard University, Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
37
|
Psaraki A, Zagoura D, Ntari L, Makridakis M, Nikokiraki C, Trohatou O, Georgila K, Karakostas C, Angelioudaki I, Kriebardis AG, Gramignioli R, Sakellariou S, Xilouri M, Eliopoulos AG, Vlahou A, Roubelakis MG. MFGE-8 identified in fetal mesenchymal-stromal-cell-derived exosomes ameliorates acute hepatic failure pathology. iScience 2023; 26:108100. [PMID: 37915594 PMCID: PMC10616317 DOI: 10.1016/j.isci.2023.108100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.
Collapse
Affiliation(s)
- Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lydia Ntari
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christina Nikokiraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantina Georgila
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Christos Karakostas
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ioanna Angelioudaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str, 12243 Egaleo, Greece
| | - Roberto Gramignioli
- Clinical Pathology and Cancer Diagnosis Unit, Karolinska Institute, 141 57 Huddinge, Sweden
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Stratigoula Sakellariou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Aristides G. Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
38
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
39
|
Hodge JG, Robinson JL, Mellott AJ. Mesenchymal Stem Cell Extracellular Vesicles from Tissue-Mimetic System Enhance Epidermal Regeneration via Formation of Migratory Cell Sheets. Tissue Eng Regen Med 2023; 20:993-1013. [PMID: 37515738 PMCID: PMC10519905 DOI: 10.1007/s13770-023-00565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g., growth factors, exosomes, reactive oxygen species) may be driving epithelialization. METHODS A novel tissue-mimetic 3D hydrogel system was utilized to enhance the retainment of a more regenerative ASC phenotype and highlight the functional secretome differences between 2D and 3D. Subsequently, the ASC-secretome was stratified by molecular weight and the presence/absence of extracellular vesicles (EVs). The ASC-secretome fractions were then evaluated to assess for the capacity to augment specific keratinocyte activities. RESULTS Culture of ASCs within the tissue-mimetic system enhanced protein secretion ~ 50%, exclusively coming from the > 100 kDa fraction. The ASC-secretome ability to modulate epithelialization functions, including migration, proliferation, differentiation, and morphology, resided within the "> 100 kDa" fraction, with the 3D ASC-secretome providing the greatest improvement. 3D ASC EV secretion was enhanced two-fold and exhibited dose-dependent effects on epidermal regeneration. Notably, ASC-EVs induced morphological changes in keratinocytes reminiscent of native regeneration, including formation of stratified cell sheets. However, only 3D-EVs promoted collective cell sheet migration and an epithelial-to-mesenchymal-like transition in keratinocytes, whereas 2D-EVs contained an anti-migratory stimulus. CONCLUSION This study demonstrates how critical the culture environment is on influencing ASC-secretome regenerative capabilities. Additionally, the critical role of EVs in modulating epidermal regeneration is revealed and their translatability for future clinical therapies is discussed.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA
| | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA.
- Ronawk Inc., Olathe, KS, USA.
| |
Collapse
|
40
|
Lin Q, Lin X. Cyclic mechanical stretch pre-stimulated bone marrow mesenchymal stem cells promote the healing of infected bone defect in a mouse model. Biotechnol J 2023; 18:e2300070. [PMID: 37365639 DOI: 10.1002/biot.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cyclic mechanical stretch (CMS) is an effective method to accelerate mesenchymal stem cells (MSCs) differentiation. Here, CMS pre-stimulated bone marrow MSCs (CMS-BMSCs) was investigated, characterized and evaluated the therapeutic potential of CMS-BMSCs on the treatment of infected bone defect in mouse model. BMSCs were obtained from C57BL/6J mice and then subjected to CMS. The osteogenic differentiation capacity of BMSCs was evaluated by alkaline phosphatase (ALP) assay, Alizarin Red staining, qRT-PCR, and Western blot. The pre-stimulated BMSCs were transplanted into infected bone defect mice, osteogenesis, antibacterial effects, and inflammatory responses were examined. CMS significantly increased ALP activity and the expression of osteoblastic genes (col1a1, runx2, and bmp7) and enhanced osteogenic differentiation and nrf2 expression of BMSCs. Transplantation of CMS pre-stimulated BMSCs promoted the healing of infected bone defect in mice, enhanced antibacterial effects, and reduced inflammatory responses in the mid-sagittal section of the fracture callus. CMS pre-stimulated BMSCs enhance the healing of infected bone defects in a mouse model, suggesting a potential therapeutic strategy for treating infected bone defects.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Balko S, Kerr E, Buchel E, Logsetty S, Raouf A. Paracrine signalling between keratinocytes and SVF cells results in a new secreted cytokine profile during wound closure. Stem Cell Res Ther 2023; 14:258. [PMID: 37726799 PMCID: PMC10510163 DOI: 10.1186/s13287-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Stromal vascular fraction (SVF) cells, and the adipose-derived mesenchymal stem cells they contain, have shown enhanced wound healing in vitro and in vivo, yet their clinical application has been limited. In this regard, understanding the mechanisms that govern SVF-enhanced wound healing would improve their application in the clinic. Here, we show that the SVF cells and keratinocytes engage in a paracrine crosstalk during wound closure, which results in a new cytokine profile that is distinct from the cytokines regularly secreted by either cell type on their own. We identify 11 cytokines, 5 of which are not regularly secreted by the SVF cells, whose expressions are significantly increased during wound closure by the keratinocytes. This new cytokine profile could be used to accelerate wound closure and initiate re-epithelialization without the need to obtain the SVF cells from the patient.
Collapse
Affiliation(s)
- Stefan Balko
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Evan Kerr
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ed Buchel
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarvesh Logsetty
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Afshin Raouf
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
42
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
43
|
Wahyuningsih KA, Pangkahila WI, Weta IWW, Widiana IGR, Wahyuniari IAI. Potential Utilisation of Secretome from Ascorbic Acid-Supplemented Stem Cells in Combating Skin Aging: Systematic Review of A Novel Idea. CELL JOURNAL 2023; 25:591-602. [PMID: 37718762 PMCID: PMC10520989 DOI: 10.22074/cellj.2023.1995999.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 09/19/2023]
Abstract
The secretome of stem cells consists of a spectrum of bioactive factors secreted by stem cells grown in culture mediacytokines, chemokines, and growth factors in addition to extracellular vesicles (exosomes and microvesicles). Ease of handling and storage of secretomes along with their bioactivity towards processes in skin aging and customizability makes them an appealing prospective therapy for skin aging. This systematic review aims to investigate the potential usage of ascorbic acid (AA)-supplemented stem cell secretomes (SCS) in managing skin aging. We extracted articles from three databases: PubMed, Scopus, and Cochrane. This review includes in vitro, in vivo, and clinical studies published in English that discuss the correlation of AA-supplemented-SCS with skin aging. We identified 1111 articles from database and non-database sources from which nine studies met the inclusion criteria. However, the study results were less specific due to the limited amount of available research that specifically assessed the effects of AAsupplemented SCS in skin aging. Although further studies are necessary, the AA modification of SCS is a promising potential for improving skin health.
Collapse
Affiliation(s)
- Komang Ardi Wahyuningsih
- Doctoral Program, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia.
- Histology Department, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Wimpie I Pangkahila
- Doctoral Program, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - I Wayan Weta Weta
- Doctoral Program, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - I Gde Raka Widiana
- Doctoral Program, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | | |
Collapse
|
44
|
Alinda MD, Christopher PM, Listiawan MY, Endaryanto A, Suroto H, Rantam FA, Hendradi E, Notobroto HB, Prakoeswa CRS. The efficacy of topical adipose mesenchymal stem cell-conditioned medium versus framycetin gauze dressing in chronic plantar ulcer of leprosy: A randomized controlled trial. Indian J Dermatol Venereol Leprol 2023; 89:656-664. [PMID: 36688887 DOI: 10.25259/ijdvl_784_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 07/01/2022] [Indexed: 12/13/2022]
Abstract
Background Wound healing shows a unique interaction of several cells, growth factors and cytokines. The healing of chronic plantar ulcer of leprosy is influenced by various factors, one of which is the concentration of growth factors and cytokines related to the pathogenesis of impaired wound healing. Growth factors and cytokines can be found in the secretome of adipose mesenchymal stem cells. Aim To compare the effectiveness of topical adipose mesenchymal stem cell-conditioned medium and framycetin gauze dressing only on the healing of chronic plantar ulcer of leprosy. Methods In this randomised controlled trial, 32 patients with chronic plantar ulcer of leprosy were recruited. After detailed clinical and initial debridement, patients were randomised to two groups to receive either topical adipose mesenchymal stem cell-conditioned medium (n = 16) or framycetin gauze dressing only (n = 16) applied every three days for up to eight weeks, following which the ulcer size, adverse reactions and complications if any were monitored weekly. Results Healing percentage increased each week in all groups. Statistical differences between groups (P < 0.05) were observed from week 2 onwards for ulcer mean size reduction and from week 3 onwards for ulcer mean depth reduction. There were no adverse reactions or complications. Limitations Off-loading on subjects were not performed. Conclusion Adipose mesenchymal stem cell-conditioned medium is a potential therapeutic agent in the management of chronic plantar ulcer of leprosy.
Collapse
Affiliation(s)
- Medhi Denisa Alinda
- Post Graduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | | | | | | | - Heri Suroto
- Department of Cell and Tissue Bank, Faculty of Medicine Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya, Jawa Timur, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | - Esti Hendradi
- Faculty of Pharmacy Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | | | | |
Collapse
|
45
|
Hani R, Khayat L, Rahman AA, Alaaeddine N. Effect of stem cell secretome in skin rejuvenation: a narrative review. Mol Biol Rep 2023; 50:7745-7758. [PMID: 37452901 DOI: 10.1007/s11033-023-08622-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Cutaneous aging is an inevitable biological process that develops over time due to cumulative cellular and molecular changes caused by exposure to intrinsic (chronological aging) and extrinsic (photo-aging) factors on the skin. Skin aging is characterized by a decline in the body's capability to sustain senescence, dermal cell apoptosis, and homeostasis. Stem cell secretions (secretome) are defined as the total set of dynamically overlapping paracrine soluble growth factors, cytokines, chemokines, angiogenic factors, extracellular matrix proteins, and antimicrobial peptides known to be responsible for tissue rejuvenation, regeneration, homeostasis, and immunomodulation. METHODS In this review, we summarized the molecular and regulatory mechanism of the secretome in preventing the skin aging process, as well as its capacity in inducing skin rejuvenation. Furthermore, we illustrated secretome efficiency as an anti-aging therapeutic strategy based on in vitro and in vivo published studies. RESULTS In all reviewed publications, the secretome has been proven to be the most effective treatment for aged skin, capable of reversing the aging process through the action of cytokines, growth factors, and collagen, which are its primary components. The reported mechanism of action involves modulating the signaling pathways of aging and replenishing the skin with collagen, fibronectin, and elastin, ultimately resulting in skin renewal and rejuvenation. CONCLUSION In conclusion, compared to available treatments, the secretome shows great promise as an anti-aging therapy.
Collapse
Affiliation(s)
- Rita Hani
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | | | | | | |
Collapse
|
46
|
Mills SJ, Kirby GT, Hofma BR, Smith LE, Statham P, Vaes B, Ting AE, Short R, Cowin AJ. Delivery of multipotent adult progenitor cells via a functionalized plasma polymerized surface accelerates healing of murine diabetic wounds. Front Bioeng Biotechnol 2023; 11:1213021. [PMID: 37675407 PMCID: PMC10477914 DOI: 10.3389/fbioe.2023.1213021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Stem cell therapies have been investigated as potential treatment modalities for chronic wounds however there has been limited success to date. Multipotent Adult Progenitor Cells (MAPCs©) have been identified as having potential as an allogenic stem cell product due to their high population doubling number and their characteristic dampening of T-cell proliferation. This helps to prevent autoimmunity and graft/cell rejection. Methods: We have developed a dressing, consisting of medical grade silicone coated with a heptylamine plasma polymer, which supports the growth and transfer of MAPCs to skin. To determine if the dressing can deliver functional stem cells into diabetic wounds, they were loaded with MAPCs and then placed over excisional wounds in both normal and diabetic mice. Results and discussion: Accelerated healing was observed in both the normal and diabetic wounds with wound gape being significantly smaller at day 3 when compared to controls. Wound analysis showed that treatment with the MAPC dressings dampened the inflammatory response with reduced numbers of neutrophils and macrophages observed. Additionally, an increase in pro-angiogenic VEGF and CD31 positive endothelial cells was observed indicating improved new blood vessel formation. The MAPC dressings had no effect on fibrosis with collagen I and III being equally affected in both control and treated wounds. Overall, the functionalized MAPC dressings improve healing responses particularly in diabetic mice with impaired healing responses and therefore, show potential for development as an advanced therapeutic approach for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- S. J. Mills
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| | - G. T. Kirby
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| | - B. R. Hofma
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| | - L. E. Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| | - P. Statham
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| | - B. Vaes
- ReGenesys BV, Bio-Incubator Leuven, Leuven, Belgium
| | - A. E. Ting
- Athersys Inc., Cleveland, OH, United States
| | - R. Short
- Material Science Institute, Lancaster University, Lancaster, United Kingdom
| | - A. J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA, Australia
| |
Collapse
|
47
|
Marconi GD, Diomede F, Pizzicannella J, Trubiani O. Emerging Role of Oral Mesenchymal Stem/Stromal Cells and Their Derivates. Int J Mol Sci 2023; 24:12003. [PMID: 37569380 PMCID: PMC10418405 DOI: 10.3390/ijms241512003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have fewer ethical, moral, and safety problems in comparison with embryonic stem cells [...].
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| |
Collapse
|
48
|
Thai VL, Candelas DO, Leach JK. Tuning the Microenvironment to Create Functionally Distinct Mesenchymal Stromal Cell Spheroids. Ann Biomed Eng 2023; 51:1558-1573. [PMID: 36809393 PMCID: PMC10264490 DOI: 10.1007/s10439-023-03162-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Mesenchymal stromal cells (MSCs) are under investigation for wound healing and tissue regeneration due to their potent secretome. Compared to monodisperse cells, MSC spheroids exhibit increased cell survival and enhanced secretion of endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2), two key factors in wound repair. We previously upregulated the proangiogenic potential of homotypic MSC spheroids by manipulating microenvironmental culture conditions. However, this approach depends on the responsiveness of host endothelial cells (ECs)-a limitation when attempting to restore large tissue deficits and for patients with chronic wounds in which ECs are dysfunctional and unresponsive. To address this challenge, we used a Design of Experiments (DOE) approach to engineer functionally distinct MSC spheroids that maximize VEGF production (VEGFMAX) or PGE2 production (PGE2,MAX) while incorporating ECs that could serve as the basic building blocks for vessel formation. VEGFMAX produced 22.7-fold more VEGF with enhanced endothelial cell migration compared to PGE2,MAX, while PGE2,MAX produced 16.7-fold more PGE2 with accelerated keratinocyte migration compared to VEGFMAX. When encapsulated together in engineered protease-degradable hydrogels as a model of cell delivery, VEGFMAX and PGE2,MAX spheroids exhibited robust spreading into the biomaterial and enhanced metabolic activity. The distinct bioactivities of these MSC spheroids demonstrate the highly tunable nature of spheroids and provide a new approach to leverage the therapeutic potential of cell-based therapies.
Collapse
Affiliation(s)
- Victoria L Thai
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA, 95817, USA
| | - Diego O Candelas
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA, 95817, USA.
| |
Collapse
|
49
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
50
|
Tan ST, Aisyah PB, Firmansyah Y, Nathasia N, Budi E, Hendrawan S. Effectiveness of Secretome from Human Umbilical Cord Mesenchymal Stem Cells in Gel (10% SM-hUCMSC Gel) for Chronic Wounds (Diabetic and Trophic Ulcer) - Phase 2 Clinical Trial. J Multidiscip Healthc 2023; 16:1763-1777. [PMID: 37383529 PMCID: PMC10295509 DOI: 10.2147/jmdh.s408162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Chronic wounds carry financial burdens and increase morbidity and mortality, especially in diabetic ulcers and Hansen's Morbus. More than 50% of chronic ulcers are difficult to heal with regular treatment and require new types of therapy such as the use of secretome of human umbilical cord mesenchymal stem cells (SM-hUCMSC). Methods This experimental study was carried out to see the effectiveness of using SM-hUCMSC in diabetic ulcers and Hansen's Morbus in four medical facilities (multicentre). The level of active secretion has been measured by default in 10% SM-hUCMSC gel, used as a treatment intervention. The primary outcome is wound healing in terms of the length, width, and extent of the wound. The secondary is the side effects of treatment 2 weeks after administration. Follow-up visits will be scheduled at 1 and 2 weeks post-treatment. Results Forty-one chronic ulcers successfully followed the study until the end. In patients with chronic ulcers, the mean ulcer length, width, and area were 1.60 (0,50-13,0), 1.3 (0,5-6,0), and 2.21 (0,25-78) cm square, respectively, before interventions and 1 (0-12), 0,8 (0-6,0), and 1 (0-72) square cm after interventions at the second follow-up. The change between the beginning and end of the intervention was significant (p-value <0.05). Conclusion The use of 10% SM-hUCMSC gel topically has been proven effective in accelerating the process of wound healing, especially chronic ulcers with side effects that are not present in this study.
Collapse
Affiliation(s)
- Sukmawati Tansil Tan
- Department of Dermatology and Venereology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | | | | | | | - Erwin Budi
- Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, Jakarta, Indonesia
| |
Collapse
|