1
|
Krishnan A, Schneider CV, Mukherjee D, Woreta TA, Alqahtani SA. Adverse Liver and Renal Outcomes After Initiating SGLT-2i and GLP-1RA Therapy Among Patients With Diabetes and MASLD. J Diabetes 2025; 17:e70069. [PMID: 40289065 DOI: 10.1111/1753-0407.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 04/29/2025] Open
Abstract
CONTEXT The management of metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus (T2DM) presents a significant clinical challenge, with a focus on preventing progression to liver and renal complications. OBJECTIVE To evaluate the liver and renal outcomes among new users of sodium-glucose cotransporter 2 inhibitors (SGLT2i) versus glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl peptidase-4 inhibitors (DPP4i) and other anti-diabetic medications in patients with MASLD and T2DM. DESIGN Retrospective cohort study. SETTING Electronic health records. PARTICIPANTS A total number of 88 306 patients with MASLD and T2DM were included in a propensity score-matched analysis comparing the effects of anti-diabetic drugs. INTERVENTION Patients were categorized into groups based on their initiation of anti-diabetic medications. MAIN OUTCOME MEASURES The primary outcomes were the incidence of cirrhosis, hepatic decompensations, and hepatocellular carcinoma. Secondary outcomes were a progression of chronic kidney disease (CKD), severity of CKD stages, and the need for hemodialysis. RESULTS In the SGLT2i versus DPP4i, a reduced risk of cirrhosis was observed in the SGLT2i (HR: 0.97), along with fewer hepatic decompensations (HR: 0.84) and a lower incidence of HCC (HR: 0.50). CKD progression, particularly to stages 4-5, was significantly lower in the SGLT2i (HR: 0.53), as was hemodialysis (HR: 0.38). However, SGLT2i exhibited a slightly lower risk of CKD progression (HR: 0.77) and a reduced need for hemodialysis (HR: 0.71) compared to the GLP-1RA, while there was no difference in hepatic outcomes between the GLP-1RA and SGLT2i. CONCLUSIONS SGLT2 inhibitors in patients with MASLD and T2DM demonstrated reduced risks of liver complications and a favorable impact on renal outcomes. These findings support the preferential consideration of SGLT2i in managing this patient population, particularly for mitigating the progression of liver and kidney diseases.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, North Carolina, USA
| | - Carolin V Schneider
- Department of Medicine III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Diptasree Mukherjee
- Department of Medicine, Apex Institute of Medical Science, Kolkata, West Bengal, India
| | - Tinsay A Woreta
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saleh A Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Liu Z, Liu Y, Wang Z, Lu H, Zhu X, Bao Y, Cai B, Gao S, Tao X, Xu D. A Simple and Sensitive LC-MS/MS Method for Determination of Dapagliflozin and Its Major Metabolite in Human Plasma. J Chromatogr Sci 2025; 63:bmaf019. [PMID: 40256994 DOI: 10.1093/chromsci/bmaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Indexed: 04/22/2025]
Abstract
Dapagliflozin (DAPA), an inhibitor of sodium-dependent glucose cotransporter-2, has been created to treat individuals with type 2 diabetes mellitus. A method was developed and validated using high-performance liquid chromatography coupled to tandem mass spectrometry to aid in studying the connection between clinical effectiveness and concentration of DAPA and its primary metabolite dapagliflozin 3-O-glucuronide (D3OG) in human plasma. The two analytes were separated using the Waters XSELECT HSS T3 (2.1 × 100 mm, 3.5 μm; Waters Co., Milford, USA) chromatographic column, with a mobile phase flow rate of 0.3 mL/min. The elution program was performed after protein precipitation with methanol, which only required a 5-min duration. The extraction recovery was from 99.8 to 109% for DAPA and from 101 to 103% for D3OG. Validation of the method for detecting DAPA within the range of 5-50 ng/mL and D3OG within the range of 50-500 ng/mL demonstrated satisfactory inter- and intra-day precision and accuracy. The method was successfully developed and validated, and it was used to measure the levels of DAPA and D3OG in plasma samples from patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Zhijun Liu
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming, Yunnan 650500, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yanru Liu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Pudong New District, Shanghai 201399, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Pudong New District, Shanghai 201399, China
| | - Xiujing Zhu
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming, Yunnan 650500, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yuxi Bao
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, No. 279 Zhouzhu Highway, Pudong New District, Shanghai 201318, China
| | - Bingyan Cai
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, No. 279 Zhouzhu Highway, Pudong New District, Shanghai 201318, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming, Yunnan 650500, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Deduo Xu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| |
Collapse
|
3
|
Nakamura T, Masuda A, Nakano D, Amano K, Sano T, Nakano M, Kawaguchi T. Pathogenic Mechanisms of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)-Associated Hepatocellular Carcinoma. Cells 2025; 14:428. [PMID: 40136677 PMCID: PMC11941585 DOI: 10.3390/cells14060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer deaths worldwide. The etiology of HCC has now dramatically changed from viral hepatitis to metabolic dysfunction-associated steatotic liver disease (MASLD). The main pathogenesis of MASLD-related HCC is the hepatic lipid accumulation of hepatocytes, which causes chronic inflammation and the subsequent progression of hepatic fibrosis. Chronic hepatic inflammation generates oxidative stress and DNA damage in hepatocytes, which contribute to genomic instability, resulting in the development of HCC. Several metabolic and molecular pathways are also linked to chronic inflammation and HCC in MASLD. In particular, the MAPK and PI3K-Akt-mTOR pathways are upregulated in MASLD, promoting the survival and proliferation of HCC cells. In addition, MASLD has been reported to enhance the development of HCC in patients with chronic viral hepatitis infection. Although there is no approved medication for MASLD besides resmetirom in the USA, there are some preventive strategies for the onset and progression of HCC. Sodium-glucose cotransporter-2 (SGLT2) inhibitor, a class of medications, has been reported to exert anti-tumor effects on HCC by regulating metabolic reprogramming. Moreover, CD34-positive cell transplantation improves hepatic fibrosis by promoting intrahepatic angiogenesis and supplying various growth factors. Furthermore, exercise improves MASLD through an increase in energy consumption as well as changes in chemokines and myokines. In this review, we summarize the recent progress made in the pathogenic mechanisms of MASLD-associated HCC. Furthermore, we introduced new therapeutic strategies for preventing the development of HCC based on the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Toru Nakamura
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Keisuke Amano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Fukuoka Consulting and Support Center for Liver Diseases, Kurume 830-0011, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Fukuoka Consulting and Support Center for Liver Diseases, Kurume 830-0011, Japan
| | - Masahito Nakano
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume 830-0011, Japan; (T.N.); (A.M.); (D.N.); (K.A.); (T.S.); (M.N.)
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan
| |
Collapse
|
4
|
Vieira AB, Cavanaugh SM, Ciambarella BT, Machado MV. Sodium-glucose co-transporter 2 inhibitors: a pleiotropic drug in humans with promising results in cats. Front Vet Sci 2025; 12:1480977. [PMID: 40093620 PMCID: PMC11906673 DOI: 10.3389/fvets.2025.1480977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetes mellitus is a common metabolic disease in humans and cats. Cats share several features of human type-2 diabetes and can be considered an animal model for this disease. In the last decade, sodium-glucose transporter 2 inhibitors (SGLT2i) have been used successfully as a class of hypoglycemic drug that inhibits the reabsorption of glucose from the renal proximal tubules, consequently managing hyperglycemia through glycosuria. Furthermore, SGLT2i have been shown to have cardiac, renal, and other protective effects in diabetic humans acting as a pleiotropic drug. Currently, at least six SGLT2i are approved by the Food and Drug Administration (FDA) for use in humans with type-2 diabetes, and recently, two drugs were approved for use in diabetic cats. This narrative review focuses on the use of SGLT2i to treat diabetes mellitus in humans and cats. We summarize the human data that support the use of SGLT2i in controlling type-2 diabetes and protecting against cardiovascular and renal damage. We also review the available literature regarding other benefits of these drugs in humans as well as the effects of SGLT2i in cats. Adverse effects related to the use of these hypoglycemic drugs are also discussed.
Collapse
Affiliation(s)
- Aline B. Vieira
- Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sarah M. Cavanaugh
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Bianca T. Ciambarella
- Laboratory of Ultrastructure and Tissue Biology, Anatomy Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus V. Machado
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
5
|
Lin CW, Hung SY, Chen IW. Analysis of the Endocrine Responses to Anti-Diabetes Drugs: An Issue of Elevated Plasma Renin Concentration in Sodium-Glucose Co-Transporter 2 Inhibitor. Int J Gen Med 2025; 18:135-144. [PMID: 39816640 PMCID: PMC11734502 DOI: 10.2147/ijgm.s497664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Purpose Glucose metabolism is associated with several endocrine disorders. Anti-diabetes drugs are crucial in controlling diabetes and its complications; nevertheless, few studies have been carried out involving endocrine function. This study aimed to investigate the association between anti-diabetes drugs and endocrine parameters. Patients and Methods We performed a study of 180 consecutive patients with type 2 diabetes who attended a medical center. Laboratory measurements of metabolic values and endocrine parameters were assessed after a stable treatment regimen of more than 12 weeks. The differences in various endocrine parameters were compared between subjects with or without certain anti-diabetes drugs, with the administrated anti-diabetes drugs being analyzed to find independent risks associated with elevated endocrine parameters. Results After maintaining stable treatment, acceptable glycemic control was noted with an average HbA1c of 7.55% in females and 7.43% in males. Participants taking sulfonylurea (55.8 vs 26.34 ng/L, P=0.043), dipeptidyl peptidase-4 inhibitor (DPP4i) (47.14 vs 32.26 ng/L, P=0.096), or sodium-glucose co-transporter 2 inhibitor (SGLT2i) (64.58 vs 28.11 ng/L, P=0.117) had higher plasma renin concentrations compared to those without this drug but the aldosterone levels did not differ, as well as for other adrenal tests and thyroid function. Under linear regression modeling, SGLT2i was found to be independently associated with a risk of high renin level (beta coefficient: 30.186, 95% confidence interval: 1.71─58.662, P=0.038), whereas sulfonylurea only had borderline associations (B: 21.143, 95% CI: -2.729─45.014, P=0.082). Additionally, renin-angiotensin-aldosterone system (RAAS) blockade (B: 36.728, 95% CI: 12.16─61.295, P=0.004) or diuretics (B: 47.847, 95% CI: 2.039─93.655, P=0.041) was also independently associated with increased renin levels. Conclusion SGLT2i was the only class of anti-diabetes drugs independently associated with elevated renin levels, with results similar to RAAS blockade and diuretics. Although SGLT2i appears to protect reno- and cardio-function, the clinical impact of increased renin warrants further precise study for verification.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu City, Taiwan
| | - Shih-Yuan Hung
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu City, Taiwan
| | - I-Wen Chen
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
6
|
Zhou L, Niu M, Chen W, Hu Q, Chen Y, Geng X, Gu J. Effects of dapagliflozin on heart rate variability, cardiac function, and short-term prognosis in early-onset post-myocardial infarction heart failure. Front Cardiovasc Med 2025; 11:1490316. [PMID: 39834729 PMCID: PMC11743520 DOI: 10.3389/fcvm.2024.1490316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To investigate the effects of dapagliflozin, in addition to standard therapy, on heart rate variability (HRV), soluble growth stimulation expressed gene 2 protein (sST2), N-terminal pro B-type natriuretic peptide (NT-proBNP), and echocardiographic parameters in patients with early-onset post-myocardial infarction heart failure (HF). Methods A total of 98 patients with early-onset post-myocardial infarction HF were enrolled and randomly divided into a control group (n = 48, receiving standard therapy) and an observation group (n = 50, receiving standard therapy plus dapagliflozin 10 mg daily). HRV, cardiac function, and echocardiographic parameters were measured at baseline and after 24 weeks of treatment. Short-term prognosis and adverse events were also monitored. Results Compared with the control group, the observation group showed significantly greater improvements in SDNN and SDANN (P < 0.05). Significant improvements were also observed in sST2 and NT-proBNP levels in the observation group compared to the control group (P < 0.05). Additionally, echocardiographic parameters, including EF, LVESD, LVEDD, IVST, LVMI, and E/e', showed greater improvement in the observation group (P < 0.05). The incidence of major adverse cardiovascular events was lower in the observation group (P < 0.05). Multivariate logistic regression model revealed that dapagliflozin use was independently associated with a reduced risk of MACE (OR = 0.265, 95% CI: 0.097-0.724, P = 0.010). Conclusion Early administration of dapagliflozin 10 mg, in addition to standard therapy, can improve autonomic function, cardiac function, and short-term prognosis in patients with early-onset post-myocardial infarction heart failure.
Collapse
Affiliation(s)
- Le Zhou
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Mingyuan Niu
- Department of Cardiology, Shigatse People’s Hospital, Xizang, China
| | - Wei Chen
- Department of Cardiology, Zhabei Central Hospital of Jing’an District, Shanghai, China
| | - Qian Hu
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Yi Chen
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Xiaohong Geng
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| | - Jiani Gu
- Department of Cardiology, Shibei Hospital of Jing'an District, Shanghai, China
| |
Collapse
|
7
|
Kawano R, Haze T, Fujiwara A, Haruna A, Ozawa M, Kobayashi Y, Saka S, Hirawa N, Tamura K. Favorable changes in the eGFR slope after dapagliflozin treatment and its association with the initial dip. Clin Exp Nephrol 2024; 28:1282-1289. [PMID: 38970649 DOI: 10.1007/s10157-024-02532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Renoprotective effects of sodium glucose transporter 2 (SGLT2) inhibitors, including dapagliflozin, were observed in randomized controlled trials (RCTs). The suspected underlying mechanism is a correction of hyperfiltration, observed as an "initial dip". Whether SGLT2 inhibitors can attenuate the rate of decline in the estimated glomerular filtration rate (eGFR) in clinical settings, even when considering the pre-treatment decline rate, is unknown. Although several RCTs identified an association between the initial dip and long-term renal prognoses, a conclusion has not been reached. METHODS We collected the eGFR data of patients for whom dapagliflozin was initiated in our hospital and then calculated their eGFR slopes before and after the start of the treatment. We investigated the changes in the eGFR slopes (ΔeGFR slope) and the association between the ΔeGFR slope and the initial dip. Risks for rapid eGFR decliners (eGFR slope < - 3 mL/min/1.73 m2/year) were also examined. RESULTS The eGFR slope was significantly milder after dapagliflozin treatment (p < 0.01). A deeper initial dip was associated with a milder rate of eGFR decline (adjusted beta: - 0.29, p < 0.001). Dapagliflozin treatment reduced the proportion of rapid eGFR decliners from 52.9 to 14.7%, and a smaller initial dip was identified as a significant risk for post-treatment rapid eGFR decline (adjusted odds ratio: 1.73, p < 0.05). CONCLUSIONS Compared to before the administration of dapagliflozin, the rate of eGFR decline was significantly milder after its administration. The initial dip was significantly associated with long-term renoprotective effects and may be a useful predictor of treatment response.
Collapse
Affiliation(s)
- Rina Kawano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Tatsuya Haze
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Akira Fujiwara
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan.
| | - Aiko Haruna
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Moe Ozawa
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Yusuke Kobayashi
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Sanae Saka
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Nobuhito Hirawa
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
O'Hara DV, Lam CSP, McMurray JJV, Yi TW, Hocking S, Dawson J, Raichand S, Januszewski AS, Jardine MJ. Applications of SGLT2 inhibitors beyond glycaemic control. Nat Rev Nephrol 2024; 20:513-529. [PMID: 38671190 DOI: 10.1038/s41581-024-00836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors were initially developed for their glucose-lowering effects and have shown a modest glycaemic benefit in people with type 2 diabetes mellitus (T2DM). In the past decade, a series of large, robust clinical trials of these therapies have demonstrated striking beneficial effects for various care goals, transforming the chronic disease therapeutic landscape. Cardiovascular safety studies in people with T2DM demonstrated that SGLT2 inhibitors reduce cardiovascular death and hospitalization for heart failure. Subsequent trials in participants with heart failure with reduced or preserved left ventricular ejection fraction demonstrated that SGLT2 inhibitors have beneficial effects on heart failure outcomes. In dedicated kidney outcome studies, SGLT2 inhibitors reduced the incidence of kidney failure among participants with or without diabetes. Post hoc analyses have suggested a range of other benefits of these drugs in conditions as diverse as metabolic dysfunction-associated steatotic liver disease, kidney stone prevention and anaemia. SGLT2 inhibitors have a generally favourable adverse effect profile, although patient selection and medication counselling remain important. Concerted efforts are needed to better integrate these agents into routine care and support long-term medication adherence to close the gap between clinical trial outcomes and those achieved in the real world.
Collapse
Affiliation(s)
- Daniel V O'Hara
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
- Baim Institute for Clinical Research, Boston, MA, USA
| | - John J V McMurray
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Tae Won Yi
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia
| | - Samantha Hocking
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Boden Initiative, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jessica Dawson
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nutrition and Dietetics, St George Hospital, Kogarah, New South Wales, Australia
| | - Smriti Raichand
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Centre for the Health Economy (MUCHE), Macquarie University, Macquarie Park, New South Wales, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medicine (St. Vincent's Hospital), The University of Melbourne, Fitzroy, Victoria, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Meg J Jardine
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia.
| |
Collapse
|
9
|
Molaei E, Molaei A, Dashti-Khavidaki S, Nasiri-Toosi M, Abbasi MR, Jafarian A. Could the administration of SGLT2i agents serve as a viable prophylactic approach against CNI-induced toxicities? Med Hypotheses 2024; 189:111417. [DOI: 10.1016/j.mehy.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Shrestha AB, Halder A, Rajak K, Jha SK, Lamichhane R, Oishee AN, Chowdary NT, Pokharel P, Shrestha S, Adhikari L, Adhikari B, Rajak A, Haider Khan J, Mainali N. Cardioprotective effects of sodium glucose cotransporter 2 inhibitor versus dipeptidyl peptidase 4 inhibitor in type 2 diabetes: A meta-analysis of comparative safety and efficacy. SAGE Open Med 2024; 12:20503121241261204. [PMID: 39070014 PMCID: PMC11282519 DOI: 10.1177/20503121241261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/24/2024] [Indexed: 07/30/2024] Open
Abstract
Background Sodium glucose cotransporter 2 inhibitors are recommended for the treatment of heart failure due to their cardioprotective effects, despite primarily being used as antidiabetic medications. However, the comparative profile of two antidiabetic drugs, sodium glucose cotransporter 2 inhibitors with dipeptidyl peptidase 4 inhibitor remains unclear. Study hypothesis This study aims to compare the safety and efficacy profiles of sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitor drugs. Methods A comprehensive search was conducted in PubMed, Scopus, Web of Science, Google Scholar, and ClinicalTrials.gov using appropriate Medical Subject Headings terms from inception until February 23, 2023. The outcomes were pooled using a random-effects model for hazard ratio with a 95% confidence interval. A p-value of <0.05 was considered statistically significant. Results Twelve studies were included after systematic screening, with a sample size of 745,688 for sodium glucose cotransporter 2 inhibitors and 769,386 for dipeptidyl peptidase 4 inhibitor. The mean age in each group was 61.1 (8.52) and 61.28 (9.25) years, respectively. Upon pooling the included articles with sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitor, the primary outcome of all-cause death demonstrated an hazard ratio of 0.64 (0.57, 0.70), I 2: 65.54%, p < 0.001, and major adverse cardiovascular events yielded an hazard ratio of 0.76 (0.65, 0.86), I 2: 87.83%, p < 0.001. The secondary outcomes included myocardial infarction with an hazard ratio of 0.84 (0.78, 0.90), I 2: 47.64%, p < 0.001, stroke with an hazard ratio of 0.81 (0.75, 0.87), I 2: 36.78%, p < 0.001, and hospitalization with an hazard ratio of 0.62 (0.53, 0.70), I 2: 83.32%, p < 0.001. Conclusion Our findings suggest that compared to dipeptidyl peptidase 4 inhibitor, initiating treatment with sodium glucose cotransporter 2 inhibitors provides cardiovascular disease protection and may be considered in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
| | - Anupam Halder
- Department of Internal Medicine, University of Pittsburgh Medical Centre, Harrisburg, PA, USA
| | - Kripa Rajak
- Department of Internal Medicine, University of Pittsburgh Medical Centre, Harrisburg, PA, USA
| | - Saroj Kumar Jha
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Ramesh Lamichhane
- Department of Internal Medicine, Jalalabad Ragib-Rabeya Medical College, Sylhet, Bangladesh
| | - Arefin Naher Oishee
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
| | | | - Pashupati Pokharel
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Bikash Adhikari
- Kathmandu Medical College, Kathmandu University, Kathmandu, Nepal
| | - Aman Rajak
- Patan Academy of Health Sciences, Patan, Nepal
| | | | - Nischal Mainali
- Nischal Mainali, Kathmandu Medical College, Kathmandu University, Sinamangal, Kathmandu 44600, Nepal.
| |
Collapse
|
11
|
Youm EB, Shipman KE, Albalawy WN, Vandevender AM, Sipula IJ, Rbaibi Y, Marciszyn AE, Lashway JA, Brown EE, Bondi CB, Boyd-Shiwarski CR, Tan RJ, Jurczak MJ, Weisz OA. Megalin Knockout Reduces SGLT2 Expression and Sensitizes to Western Diet-induced Kidney Injury. FUNCTION 2024; 5:zqae026. [PMID: 38984983 PMCID: PMC11237895 DOI: 10.1093/function/zqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
Megalin (Lrp2) is a multiligand receptor that drives endocytic flux in the kidney proximal tubule (PT) and is necessary for the recovery of albumin and other filtered proteins that escape the glomerular filtration barrier. Studies in our lab have shown that knockout (KO) of Lrp2 in opossum PT cells leads to a dramatic reduction in sodium-glucose co-transporter 2 (SGLT2) transcript and protein levels, as well as differential expression of genes involved in mitochondrial and metabolic function. SGLT2 transcript levels are reduced more modestly in Lrp2 KO mice. Here, we investigated the effects of Lrp2 KO on kidney function and health in mice fed regular chow (RC) or a Western-style diet (WD) high in fat and refined sugar. Despite a modest reduction in SGLT2 expression, Lrp2 KO mice on either diet showed increased glucose tolerance compared to control mice. Moreover, Lrp2 KO mice were protected against WD-induced fat gain. Surprisingly, renal function in male Lrp2 KO mice on WD was compromised, and the mice exhibited significant kidney injury compared with control mice on WD. Female Lrp2 KO mice were less susceptible to WD-induced kidney injury than male Lrp2 KO. Together, our findings reveal both positive and negative contributions of megalin expression to metabolic health, and highlight a megalin-mediated sex-dependent response to injury following WD.
Collapse
Affiliation(s)
- Elynna B Youm
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Katherine E Shipman
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wafaa N Albalawy
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Amber M Vandevender
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ian J Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Youssef Rbaibi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allison E Marciszyn
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jared A Lashway
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Emma E Brown
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Corry B Bondi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Pethő ÁG, Tapolyai M, Csongrádi É, Orosz P. Management of chronic kidney disease: The current novel and forgotten therapies. J Clin Transl Endocrinol 2024; 36:100354. [PMID: 38828402 PMCID: PMC11143912 DOI: 10.1016/j.jcte.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive and incurable condition that imposes a significant burden on an aging society. Although the exact prevalence of this disease is unknown, it is estimated to affect at least 800 million people worldwide. Patients with diabetes or hypertension are at a higher risk of developing chronic kidney damage. As the kidneys play a crucial role in vital physiological processes, damage to these organs can disrupt the balance of water and electrolytes, regulation of blood pressure, elimination of toxins, and metabolism of vitamin D. Early diagnosis is paramount to prevent potential complications. Treatment options such as dietary modifications and medications can help slow disease progression. In our narrative review, we have summarized the available therapeutic options to slow the progression of chronic kidney disease. Many new drug treatments have recently become available, offering a beacon of hope and optimism in CKD management. Nonetheless, disease prevention remains the most critical step in disease management. Given the significant impact of CKD on public health, there is a pressing need for further research. With the development of new technologies and advancements in medical knowledge, we hope to find more effective diagnostic tools and treatments for CKD patients.
Collapse
Affiliation(s)
- Ákos Géza Pethő
- Faculty of Medicine, Semmelweis University, Department of Internal
Medicine and Oncology, Budapest, Hungary
| | - Mihály Tapolyai
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC,
USA
- Department of Nephrology, Szent Margit Kórhaz, Budapest,
Hungary
| | - Éva Csongrádi
- Faculty of Medicine, University of Debrecen, Debrecen,
Hungary
| | - Petronella Orosz
- Bethesda Children’s Hospital, 1146 Budapest, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen,
4032 Debrecen, Hungary
| |
Collapse
|
13
|
Armentaro G, Pelaia C, Condoleo V, Severini G, Crudo G, De Marco M, Pastura CA, Tallarico V, Pezzella R, Aiello D, Miceli S, Maio R, Savarese G, Rosano GMC, Sciacqua A. Effect of SGLT2-Inhibitors on Polygraphic Parameters in Elderly Patients Affected by Heart Failure, Type 2 Diabetes Mellitus, and Sleep Apnea. Biomedicines 2024; 12:937. [PMID: 38790899 PMCID: PMC11117816 DOI: 10.3390/biomedicines12050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Obstructive sleep apneas (OSAs) and central sleep apneas (CSAs) are the most common comorbidities in Heart Failure (HF) that are strongly associated with all-cause mortality. Several therapeutic approaches have been used to treat CSA and OSA, but none have been shown to significantly improve HF prognosis. Our study evaluated the effects of a 3-months treatment with sodium-glucose cotransporter type 2 inhibitor (SGLT2i) on polygraphic parameters in patients with sleep apnea (SA) and HF, across the spectrum of ejection fraction, not treated with continuous positive air pressure (CPAP). A group of 514 consecutive elderly outpatients with HF, type 2 diabetes mellitus (T2DM) and SA, eligible for treatment with SGLT2i, were included in the investigation before starting any CPAP therapy. The two groups were compared with the t-test and Mann-Whitney test for unpaired data when appropriate. Then, a simple logistic regression model was built using 50% reduction in AHI as the dependent variable and other variables as covariates. A multivariate stepwise logistic regression model was constructed using the variables that linked with the dependent variable to calculate the odds ratio (OR) for the independent predictors associated with the reduction of 50% in AHI. The treated group experienced significant improvements in polygraphic parameters between baseline values and follow-up with reduction in AHI (28.4 ± 12.9 e/h vs. 15.2 ± 6.5 e/h; p < 0.0001), ODI (15.4 ± 3.3 e/h vs. 11.1 ± 2.6 e/h; p < 0.0001), and TC90 (14.1 ± 4.2% vs. 8.2 ± 2.0%; p < 0.0001), while mean SpO2 improved (91. 3 ± 2.3 vs. 93.8 ± 2.5); p < 0.0001. These benefits were not seen in the untreated population. The use of SGLT2i in patients suffering from HF and mixed-type SA not on CPAP therapy significantly contributes to improving polygraphic parameters.
Collapse
Affiliation(s)
- Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Valentino Condoleo
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Giandomenico Severini
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Giulia Crudo
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Mario De Marco
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Carlo Alberto Pastura
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | | | - Rita Pezzella
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy;
| | - Domenico Aiello
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Giuseppe M. C. Rosano
- Department of Human Sciences and Promotion of Quality of Life, Chair of Pharmacology, San Raffaele University of Rome, 00166 Rome, Italy;
- Cardiology, San Raffaele Cassino Hospital, 03043 Cassino, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale Europa—Località Germaneto, 88100 Catanzaro, Italy; (G.A.); (C.P.); (V.C.); (G.S.); (G.C.); (M.D.M.); (C.A.P.); (S.M.); (R.M.)
| |
Collapse
|
14
|
Alfieri M, Bruscoli F, Di Vito L, Di Giusto F, Scalone G, Marchese P, Delfino D, Silenzi S, Martoni M, Guerra F, Grossi P. Novel Medical Treatments and Devices for the Management of Heart Failure with Reduced Ejection Fraction. J Cardiovasc Dev Dis 2024; 11:125. [PMID: 38667743 PMCID: PMC11050600 DOI: 10.3390/jcdd11040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) is a growing issue in developed countries; it is often the result of underlying processes such as ischemia, hypertension, infiltrative diseases or even genetic abnormalities. The great majority of the affected patients present a reduced ejection fraction (≤40%), thereby falling under the name of "heart failure with reduced ejection fraction" (HFrEF). This condition represents a major threat for patients: it significantly affects life quality and carries an enormous burden on the whole healthcare system due to its high management costs. In the last decade, new medical treatments and devices have been developed in order to reduce HF hospitalizations and improve prognosis while reducing the overall mortality rate. Pharmacological therapy has significantly changed our perspective of this disease thanks to its ability of restoring ventricular function and reducing symptom severity, even in some dramatic contexts with an extensively diseased myocardium. Notably, medical therapy can sometimes be ineffective, and a tailored integration with device technologies is of pivotal importance. Not by chance, in recent years, cardiac implantable devices witnessed a significant improvement, thereby providing an irreplaceable resource for the management of HF. Some devices have the ability of assessing (CardioMEMS) or treating (ultrafiltration) fluid retention, while others recognize and treat life-threatening arrhythmias, even for a limited time frame (wearable cardioverter defibrillator). The present review article gives a comprehensive overview of the most recent and important findings that need to be considered in patients affected by HFrEF. Both novel medical treatments and devices are presented and discussed.
Collapse
Affiliation(s)
- Michele Alfieri
- Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital “Umberto I-Lancisi-Salesi”, 60121 Ancona, Italy; (M.A.); (F.G.)
| | - Filippo Bruscoli
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Luca Di Vito
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Federico Di Giusto
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Giancarla Scalone
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Procolo Marchese
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Domenico Delfino
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Simona Silenzi
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| | - Milena Martoni
- Medical School, Università degli Studi “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Federico Guerra
- Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital “Umberto I-Lancisi-Salesi”, 60121 Ancona, Italy; (M.A.); (F.G.)
| | - Pierfrancesco Grossi
- Cardiology Unit, C. and G. Mazzoni Hospital, AST Ascoli Piceno, 63100 Ascoli Piceno, Italy; (F.B.); (F.D.G.); (G.S.); (P.M.); (D.D.); (S.S.); (P.G.)
| |
Collapse
|
15
|
Nayudu GSS, Benny BM, Thomas G, Khan MA, Basutkar RS. Exploring the Efficacy of Sotagliflozin on Heart and Kidney Health in Diabetic Patients: A Comprehensive Meta-Analysis. Indian J Community Med 2024; 49:269-278. [PMID: 38665437 PMCID: PMC11042128 DOI: 10.4103/ijcm.ijcm_210_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/08/2023] [Indexed: 04/28/2024] Open
Abstract
Evidence for reducing cardiovascular and renal events with sotagliflozin is uncertain among type 2 diabetes mellitus (T2DM) patients. To gather more evidence, this meta-analysis assesses the beneficial effects of sotagliflozin, a dual sodium-glucose cotransporter 1 and 2 inhibitor, in reducing the cardiovascular and renal events in diabetic patients with or without chronic kidney disease (CKD). Scopus, Google Scholar, Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were the databases used to search. The studies published from January 1, 2018, to January 30, 2022, were considered. The eligibility of studies was assessed independently. The data were collected in a modified Cochrane data extraction form. The included studies' quality was assessed with the Cochrane risk-of-bias tool. The quality of evidence for renal and cardiovascular outcomes was evaluated using GRADEpro software. The number of events of urgent visits to the hospital and requiring hospitalization was reduced (RR: 0.73; 95% CI: 0.69, 0.78; P value <0.00001). The mortality rate because of cardiovascular events was decreased with sotagliflozin (RR: 0.73; 95% CI: 0.67, 0.80; P value <0.00001). Patients taking sotagliflozin had a drastic decline in the number of deaths due to stroke and non-fatal myocardial infarction. Yet, there is no difference between the groups in terms of changes in mortality due to other causes or the glomerular filtration rate (GFR). Sotagliflozin demonstrated effectiveness in reducing the mortality rate related to heart failure and cardiovascular events when the dose was increased from 200 mg to 400 mg. Despite this, evidence is still needed to prove the renal protective action.
Collapse
Affiliation(s)
- Greeshma S. S. Nayudu
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Binit M. Benny
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Grace Thomas
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Maria A. Khan
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Roopa S. Basutkar
- Department of Pharmacy Practice, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangalore, Karnataka, India
| |
Collapse
|
16
|
Stepanova N. SGLT2 inhibitors in peritoneal dialysis: a promising frontier toward improved patient outcomes. RENAL REPLACEMENT THERAPY 2024; 10:5. [DOI: 10.1186/s41100-024-00523-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/14/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractPeritoneal dialysis (PD) stands as an important modality among kidney replacement therapies for end-stage kidney disease, offering patients remarkable flexibility and autonomy. Despite its widespread use, challenges such as glucose-related complications, peritoneal membrane fibrosis, declining renal function, and cardiovascular risks persist, necessitating innovative therapeutic approaches. Sodium–glucose cotransporter 2 (SGLT2) inhibitors, originally developed for treating type 2 diabetes mellitus, have recently shown promise as add-on therapy for patients with diabetic and non-diabetic chronic kidney disease (CKD), even in advanced stages. This review describes the potential role of SGLT2 inhibitors as a breakthrough therapeutic option in PD, emphasizing their ability to address unmet clinical needs and improve patient outcomes. The multiple effects of SGLT2 inhibitors in CKD, including metabolic modulation, antihypertensive, diuretic, anemia-reducing, antioxidant, and antiinflammatory properties, are reviewed in the context of PD challenges. Additionally, the potentially protective influence of SGLT2 inhibitors on the integrity of the peritoneal membrane and the transport of solutes and water in the peritoneum are emphasized. Despite these encouraging results, the paper highlights the potential risks associated with SGLT2 inhibitors in PD and emphasizes the need for cautious and thorough investigation of dosing, long-term safety considerations, and patient-specific factors through comprehensive clinical trials. Looking forward, the review argues for well-designed studies to evaluate the expanded safety profile of SGLT2 inhibitors in PD, with particular attention paid to peritoneal membrane integrity and overall patient outcomes.
Collapse
|
17
|
Basham HA, Keswani S, Kumar A, Rahol Rai SKA, Surkasha F, Kumari A, Malik J. Role of Sodium-Glucose Co-Transporter-2 Inhibitor During Anthracycline Use: An Updated Review. Cardiol Rev 2024:00045415-990000000-00187. [PMID: 38189378 DOI: 10.1097/crd.0000000000000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The coalescence of anthracycline-induced cardiotoxicity and the evolving role of sodium-glucose co-transporter-2 (SGLT-2) inhibitors in oncology and cardiology has prompted a comprehensive review of their mechanisms, clinical implications, and future directions. Anthracyclines, potent chemotherapeutic agents, have been integral in cancer treatment, yet their potential for cardiac harm necessitates careful monitoring and management. We explore the multifactorial nature of anthracycline-induced cardiotoxicity, encompassing diverse patient populations, cumulative doses, and interplay with other treatments. While advancements in imaging and biomarker assessments aid in early detection, the lack of standardized criteria poses challenges. The emergent role of SGLT-2 inhibitors, initially developed for diabetes management, presents a novel avenue for cardioprotection. Beyond glycemic control, these inhibitors exhibit pleiotropic effects, including enhanced diuresis, anti-inflammatory actions, and modulation of energy sources. Consequently, SGLT-2 inhibitors are being investigated for their potential to mitigate cardiotoxic effects, promising an innovative approach in cardio-oncology. Despite these advancements, limitations in data interpretation and patient-specific considerations persist. The future of anthracycline-induced cardiotoxicity research lies in predictive biomarkers, precision medicine, multidisciplinary collaboration, and tailored treatment regimens. By navigating these challenges and harnessing emerging strategies, we aim to optimize cancer treatment efficacy while safeguarding cardiovascular health, ultimately paving the way for a new era of personalized and comprehensive oncologic care.
Collapse
Affiliation(s)
- Humzala Ali Basham
- From the Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
18
|
Elkeraie AF, Al-Ghamdi S, Abu-Alfa AK, Alotaibi T, AlSaedi AJ, AlSuwaida A, Arici M, Ecder T, Ghnaimat M, Hafez MH, Hassan MH, Sqalli T. Impact of Sodium-Glucose Cotransporter-2 Inhibitors in the Management of Chronic Kidney Disease: A Middle East and Africa Perspective. Int J Nephrol Renovasc Dis 2024; 17:1-16. [PMID: 38196830 PMCID: PMC10771977 DOI: 10.2147/ijnrd.s430532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern in the Middle East and Africa (MEA) region and a leading cause of death in patients with type 2 diabetes mellitus (T2DM) and hypertension. Early initiation of sodium-glucose cotransporter - 2 inhibitors (SGLT-2i) and proper sequencing with renin-angiotensin-aldosterone system inhibitors (RAASi) in these patients may result in better clinical outcomes due to their cardioprotective properties and complementary mechanisms of action. In this review, we present guideline-based consensus recommendations by experts from the MEA region, as practical algorithms for screening, early detection, nephrology referral, and treatment pathways for CKD management in patients with hypertension and diabetes mellitus. This study will help physicians take timely and appropriate actions to provide better care to patients with CKD or those at high risk of CKD.
Collapse
Affiliation(s)
- Ahmed Fathi Elkeraie
- Department of Internal Medicine and Nephrology, Alexandria University, Alexandria, Egypt
| | - Saeed Al-Ghamdi
- Department of Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali K Abu-Alfa
- Department of Internal Medicine, Division of Nephrology and Hypertension, American University of Beirut, Beirut, Lebanon
| | - Torki Alotaibi
- Transplant Nephrology, Hamed Al-Essa Organ Transplant Center, Sabah Health Region, Kuwait City, Kuwait
| | - Ali Jasim AlSaedi
- Department of Nephrology, College of Medicine, University of Baghdad, Nephrology and Transplantation Center, Medical City Complex, Baghdad, Iraq
| | | | - Mustafa Arici
- Department of Nephrology, Faculty of Medicine, Hacettepe University, Altındağ, Ankara, Turkey
| | - Tevfik Ecder
- Department of Medicine, Istinye University; Division of Nephrology, Topkapı, Istanbul, Turkey
| | - Mohammad Ghnaimat
- Department of Nephrology, Specialty Hospital, Jaber Ibn Hayyan St. Shmeisani, Amman, Jordan
| | | | - Mohamed H Hassan
- Department of Medicine, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Tarik Sqalli
- Department of Nephrology, Moroccan Society of Nephrology, Casablanca, Morocco
| |
Collapse
|
19
|
Tarun T, Ghanta SN, Ong V, Kore R, Menon L, Kovesdy C, Mehta JL, Jain N. Updates on New Therapies for Patients with CKD. Kidney Int Rep 2024; 9:16-28. [PMID: 38312786 PMCID: PMC10831355 DOI: 10.1016/j.ekir.2023.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024] Open
Abstract
Individuals diagnosed with chronic kidney disease (CKD) continue to increase globally. This group of patients experience a disproportionately higher risk of cardiovascular (CV) events compared to the general population. Despite multiple guidelines-based medical management, patients with CKD continue to experience residual cardiorenal risk. Several potential mechanisms explain this excessive CV risk observed in individuals with CKD. Several new drugs have become available that could potentially transform CKD care, given their efficacy in this patient population. Nevertheless, use of these drugs presents certain benefits and challenges that are often underrecognized by prescribing these drugs. In this review, we aim to provide a brief discussion about CKD pathophysiology, limiting our discussion to recent published studies. We also explore benefits and limitations of newer drugs, including angiotensin receptor/neprilysin inhibitors (ARNI), sodium glucose transporter 2 inhibitors (SGLT2i), glucagon-like peptides-1 (GLP-1) agonists and finerenone in patients with CKD. Despite several articles covering this topic, our review provides an algorithm where subgroups of patients with CKD might benefit the most from such drugs based on the selection criteria of the landmark trials. Patients with CKD who have nephrotic range proteinuria beyond 5000 mg/g, or those with poorly controlled blood pressure (systolic ≥160 mm Hg or diastolic ≥100 mm Hg) remain understudied.
Collapse
Affiliation(s)
- Tushar Tarun
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sai Nikhila Ghanta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincz Ong
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rajshekhar Kore
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lakshmi Menon
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Csaba Kovesdy
- Renal section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Jawahar L. Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Cardiology Section, Central Arkansas Veterans Affairs Medical Center, Little Rock, Arkansas, USA
| | - Nishank Jain
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
20
|
Speedtsberg ES, Tepel M. Narrative review investigating the nephroprotective mechanisms of sodium glucose cotransporter type 2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1281107. [PMID: 38174341 PMCID: PMC10761498 DOI: 10.3389/fendo.2023.1281107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background and aims Outcome trials using sodium glucose cotransporter type 2 inhibitors have consistently shown their potential to preserve kidney function in diabetic and nondiabetic patients. Several mechanisms have been introduced which may explain the nephroprotective effect of sodium glucose cotransporter type 2 inhibitors beyond lowering blood glucose. This current narrative review has the objective to describe main underlying mechanisms causing a nephroprotective effect and to show similarities as well as differences between proposed mechanisms which can be observed in patients with diabetic and nondiabetic chronic kidney disease. Methods We performed a narrative review of the literature on Pubmed and Embase. The research string comprised various combinations of items including "chronic kidney disease", "sodium glucose cotransporter 2 inhibitor" and "mechanisms". We searched for original research and review articles published until march, 2022. The databases were searched independently and the agreements by two authors were jointly obtained. Results Sodium glucose cotransporter type 2 inhibitors show systemic, hemodynamic, and metabolic effects. Systemic effects include reduction of blood pressure without compensatory activation of the sympathetic nervous system. Hemodynamic effects include restoration of tubuloglomerular feedback which may improve pathologic hyperfiltration observed in most cases with chronic kidney disease. Current literature indicates that SGLT2i may not improve cortical oxygenation and may reduce medullar oxygenation. Conclusion Sodium glucose cotransporter type 2 inhibitors cause nephroprotective effects by several mechanisms. However, several mediators which are involved in the underlying pathophysiology may be different between diabetic and nondiabetic patients.
Collapse
Affiliation(s)
- Emma S Speedtsberg
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
21
|
Niknejad A, Hosseini Y, Shamsnia HS, Kashani AS, Rostamian F, Momtaz S, Abdolghaffari AH. Sodium Glucose Transporter-2 Inhibitors (SGLT2Is)-TLRs Axis Modulates Diabetes. Cell Biochem Biophys 2023; 81:599-613. [PMID: 37658280 DOI: 10.1007/s12013-023-01164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Abstract
Diabetes affects millions of people worldwide and is mainly associated with impaired insulin function. To date, various oral anti-diabetic drugs have been developed, of which, the sodium glucose transporter-2 inhibitors (SGLT2Is) are of the most recent classes that have been introduced. They differ from other classes in terms of their novel mechanism of actions and unique beneficial effects rather than just lowering glucose levels. SGLT2Is can protect body against cardiovascular events and kidney diseases even in non-diabetic individuals. SGLT2Is participate in immune cell activation, oxidative stress reduction, and inflammation mediation, thereby, moderating diabetic complications. In addition, toll like receptors (TLRs) are the intermediators of the immune system and inflammatory process, thus it's believed to play crucial roles in diabetic complications, particularly the ones that are related to inflammatory reactions. SGLT2Is are also effective against diabetic complications via their anti-inflammatory and oxidative properties. Given the anti-inflammatory properties of TLRs and SGLT2Is, this review investigates how SGLT2Is can affect the TLR pathway, and whether this could be favorable toward diabetes.
Collapse
Affiliation(s)
- Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
22
|
Jarosz-Popek J, Eyileten C, Gager GM, Nowak A, Szwed P, Wicik Z, Palatini J, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The interaction between non-coding RNAs and SGLT2: A review. Int J Cardiol 2023; 398:131419. [PMID: 39492411 DOI: 10.1016/j.ijcard.2023.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks. However, the exact molecular mechanisms responsible for those benefits have not been fully discovered. MicroRNAs (miRNA) and circularRNAs (circRNAs) are endogenous, single-stranded, non-coding RNAs (ncRNAs) that can control protein-coding genes, affecting significant molecular and cellular processes regulating homeostasis. CircRNAs particularly regulate gene expression at the transcriptional and post-transcriptional level by sponging to miRNAs and by altering interactions between proteins.
Collapse
Affiliation(s)
- Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szwed
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland
| | - Jeff Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
23
|
Lee YK, Oh TJ, Lee JI, Choi BY, Cho HC, Jang HC, Choi SH. Complementary effects of dapagliflozin and lobeglitazone on metabolism in a diet-induced obese mouse model. Eur J Pharmacol 2023; 957:175946. [PMID: 37541370 DOI: 10.1016/j.ejphar.2023.175946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Thiazolidinedione, an insulin sensitizer, has beneficial effects on glucose metabolism; however, there are concerns regarding weight gain and heart failure. Sodium-glucose co-transporter 2 (SGLT2) inhibitors can reduce body weight, increase diuresis, and play a protective role in heart failure. We examined the complementary effects of dapagliflozin, an SGLT2 inhibitor, and lobeglitazone, a thiazolidinedione, in high-fat diet (HFD)-induced obese mice. We treated HFD-induced obese mice with vehicle, dapagliflozin, lobeglitazone, and their combination for 12 weeks. Oral glucose tolerance and insulin tolerance tests were performed after 12-week treatment, and body composition was measured by dual-energy X-ray absorptiometry before and after treatment. We analyzed oxygen consumption rate (OCR) using 3T3-L1 cells after treatment of β-hydroxybutyrate and/or lobeglitazone. Treatment with a combination of dapagliflozin and lobeglitazone resulted in a significant decrease in postprandial hyperglycemia compared with dapagliflozin monotherapy, but not compared with lobeglitazone monotherapy. The addition of dapagliflozin to lobeglitazone treatment did not attenuate weight gain compared with lobeglitazone monotherapy in this study. However, this combination prevented the increase of organ weight of liver and heart, and OCR in 3T3-L1 cells was increased after treatment with a combination of β-hydroxybutyrate and lobeglitazone compared to lobeglitazone monotherapy. We confirmed the beneficial effect of lobeglitazone on glucose metabolism; however, we did not find any beneficial effect of dapagliflozin on body weight in HFD-induced obese mice. However, the protective effects of dapagliflozin and lobeglitazone combined therapy on the liver, heart, energy consumption, and β-cell senescence are worth investigating in clinical trials.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea; Lab. of Integrative Oncolomics, Department of Biomedical Science, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Tae Jung Oh
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji In Lee
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea
| | - Bo Yoon Choi
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea
| | - Hyen Chung Cho
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea
| | - Hak Chul Jang
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Hee Choi
- Lab. of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
24
|
Guarnotta V, Emanuele F, Salzillo R, Bonsangue M, Amato C, Mineo MI, Giordano C. Practical therapeutic approach in the management of diabetes mellitus secondary to Cushing's syndrome, acromegaly and neuroendocrine tumours. Front Endocrinol (Lausanne) 2023; 14:1248985. [PMID: 37842314 PMCID: PMC10569460 DOI: 10.3389/fendo.2023.1248985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Cushing's syndrome, acromegaly and neuroendocrine disorders are characterized by an excess of counterregulatory hormones, able to induce insulin resistance and glucose metabolism disorders at variable degrees and requiring immediate treatment, until patients are ready to undergo surgery. This review focuses on the management of diabetes mellitus in endocrine disorders related to an excess of counterregulatory hormones. Currently, the landscape of approved agents for treatment of diabetes is dynamic and is mainly patient-centred and not glycaemia-centred. In addition, personalized medicine is more and more required to provide a precise approach to the patient's disease. For this reason, we aimed to define a practical therapeutic algorithm for management of diabetes mellitus in patients with glucagonoma, pheochromocytoma, Cushing's syndrome and acromegaly, based on our practical experience and on the physiopathology of the specific endocrine disease taken into account. This document is addressed to all specialists who approach patients with diabetes mellitus secondary to endocrine disorders characterized by an excess of counterregulatory hormones, in order to take better care of these patients. Care and control of diabetes mellitus should be one of the primary goals in patients with an excess of counterregulatory hormones requiring immediate and aggressive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, Palermo, Italy
| |
Collapse
|
25
|
Fatima A, Rasool S, Devi S, Talha M, Waqar F, Nasir M, Khan MR, Ibne Ali Jaffari SM, Haider A, Shah SU, Sapna F, Varrassi G, Khatri M, Kumar S, Mohamad T. Exploring the Cardiovascular Benefits of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: Expanding Horizons Beyond Diabetes Management. Cureus 2023; 15:e46243. [PMID: 37908957 PMCID: PMC10613932 DOI: 10.7759/cureus.46243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 11/02/2023] Open
Abstract
Globally, cardiovascular disease (CVD) continues to be the primary cause of morbidity and mortality. The risk of cardiovascular disease is markedly increased in individuals with type 2 diabetes mellitus (T2DM), making managing cardiovascular health a top priority. Initially developed for their glucose-lowering properties, sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as a transformative class of pharmaceuticals with profound cardiovascular benefits that extend far beyond glycemic control. One of the most striking findings is the substantial reduction in major adverse cardiovascular events (MACE), including myocardial infarction, stroke, and cardiovascular mortality, observed in clinical trials evaluating SGLT2 inhibitors. These extraordinary cardioprotective effects are demonstrated by landmark trials such as EMPA-REG OUTCOME, CANVAS, and DECLARE-TIMI 58, which are discussed in detail. In addition, SGLT2 inhibitors have demonstrated positive outcomes in heart failure (HF) with reduced ejection fraction, which has led to their incorporation into HF treatment guidelines. SGLT2 inhibitors offer renoprotection by delaying the progression of diabetic kidney disease, reducing albuminuria, preserving glomerular filtration rates, and their immediate cardiovascular benefits. We investigate the potential mechanisms underlying these renal benefits, focusing on the role of hemodynamic alterations and intraglomerular pressure reduction. In addition, SGLT2 inhibitors have a distinct diuretic effect that can contribute to volume reduction and symptom alleviation in patients with heart failure (HF). This diuretic action, distinct from conventional diuretics, warrants additional research to optimize their use in T2DM and HF patients. The risk of euglycemic diabetic ketoacidosis, genital mycobacterial infections, and bone fractures are also discussed. Understanding these issues is essential for making educated clinical decisions. In conclusion, SGLT2 inhibitors have transcended their initial function as anti-diabetic agents to become essential components of cardiovascular and renal protection strategies in T2DM patients. Their diverse benefits, which include cardioprotection, renoprotection, and the potential for HF management, highlight their potential to transform cardiovascular medicine. Optimizing the use of SGLT2 inhibitors in clinical practice bears the promise of improved cardiovascular outcomes for patients with T2DM and beyond as we navigate this changing landscape.
Collapse
Affiliation(s)
- Aroob Fatima
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Sohaib Rasool
- Medicine, Bakhtawar Amin Medical and Dental College, Multan, PAK
| | - Sapna Devi
- Internal Medicine, Ziauddin University, Karachi, PAK
| | - Muhammad Talha
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | - Fahad Waqar
- Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Muhammad Nasir
- Medicine, Rural Health Center (RHC) Dhonkal, Dhonkal Morr, PAK
| | - Mohammad R Khan
- Internal Medicine, Bakhtawar Amin Trust Teaching Hospital, Multan, PAK
| | | | - Anum Haider
- Internal Medicine, International Medical Graduates Helping Hand, Karachi, PAK
| | - Syeda U Shah
- Medical College, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Sapna
- Pathology, Albert Einstein College of Medicine, Bronx, USA
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Tamam Mohamad
- Cardiovascular Medicine, Wayne State University, Detroit, USA
| |
Collapse
|
26
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
27
|
Kochanowska A, Rusztyn P, Szczerkowska K, Surma S, Gąsecka A, Jaguszewski MJ, Szarpak Ł, Filipiak KJ. Sodium-Glucose Cotransporter 2 Inhibitors to Decrease the Uric Acid Concentration-A Novel Mechanism of Action. J Cardiovasc Dev Dis 2023; 10:268. [PMID: 37504524 PMCID: PMC10380892 DOI: 10.3390/jcdd10070268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are glucose-lowering agents whose positive impact on cardiovascular risk has been described extensively. Not only do they influence lipid profile, blood pressure, atherosclerosis risk, hemoglobin level, and insulin resistance, but they also reduce cardiovascular events, all-cause mortality, and hospitalization rates. Some of these effects may be due to their impact on serum uric acid (SUA) concentration. Findings from nine meta-analyses showed that, indeed, SGLT2is significantly reduce SUA. The data on the drug- and dose-dependency of this effect were inconclusive. Several factors alternating the beneficial effects of SGLT2is on SUA, such as glycated hemoglobin concentration (HbA1c), presence of diabetes, and baseline SUA level, were described. Even though there is a consensus that the lowering of SUA by SGLT2is might be due to the increased urinary excretion rate of uric acid (UEUA) rather than its altered metabolism, the exact mechanism remains unknown. The influence of SGLT2is on SUA may not only be used in gout treatment but may also be of huge importance in explaining the observed pleiotropic effects of SGLT2is.
Collapse
Affiliation(s)
- Anna Kochanowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Przemysław Rusztyn
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Karolina Szczerkowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Miłosz J Jaguszewski
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krzysztof J Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
28
|
Nani A, Carrara F, Paulesu CME, Dalle Fratte C, Padroni M, Enisci S, Bilancio MC, Romio MS, Bertuzzi F, Pintaudi B. Association of Sodium-Glucose Cotransporter 2 Inhibitors with Osteomyelitis and Other Lower Limb Safety Outcomes in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J Clin Med 2023; 12:3958. [PMID: 37373652 DOI: 10.3390/jcm12123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Our aim was to evaluate osteomyelitis and other major lower limb safety outcomes (i.e., peripheral artery disease or PAD, ulcers, atraumatic fractures, amputations, symmetric polyneuropathy, and infections) in patients affected by type 2 diabetes mellitus (T2DM) and treated with sodium-glucose cotransporter 2 inhibitors (SGLT2-is). We thus performed a systematic review and meta-analysis of randomised controlled trials (RCTs) comparing SGLT2-is at approved doses for T2DM with a placebo or standard of care. MEDLINE, Embase, and Cochrane CENTRAL were searched through August 2022. Separate intention-to-treat analyses were implemented for each molecule to calculate Mantel-Haenszel risk ratios (RRMH) with 95% confidence intervals (CIs) through a random-effects model. We processed data from 42 RCTs for a total of 29,491 and 23,052 patients, respectively assigned to SGLT2-i and comparator groups. SGLT2-is showed a pooled neutral effect on osteomyelitis, PAD, fractures, and symmetric polyneuropathy, whereas slightly deleterious sway on ulcers (RRMH 1.39 [1.01-1.91]), amputations (RRMH 1.27 [1.04-1.55]), and infections (RRMH 1.20 [1.02-1.40]). In conclusion, SGLT2-is appear to not significantly interfere with the onset of osteomyelitis, PAD, lower limb fractures, or symmetric polyneuropathy, even though the number of these events proved consistently higher in the investigational groups; otherwise, local ulcers, amputations, and overall infections may be favoured by their employment. This study is registered with the Open Science Framework (OSF).
Collapse
Affiliation(s)
- Alessandro Nani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Federica Carrara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Hospital Pharmacy, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | | | - Chiara Dalle Fratte
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Matteo Padroni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Silvia Enisci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Maria Concetta Bilancio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Maria Silvia Romio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | | | - Basilio Pintaudi
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
| |
Collapse
|
29
|
Kawada T, Yamamoto H, Yokoi A, Nishiura A, Kakuuchi M, Yokota S, Matsushita H, Alexander J, Saku K. Acute effects of empagliflozin on open-loop baroreflex function and urine glucose excretion in Goto-Kakizaki diabetic rats. J Physiol Sci 2023; 73:7. [PMID: 37046217 PMCID: PMC10715593 DOI: 10.1186/s12576-023-00861-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Although suppression of sympathetic activity is suggested as one of the underlying mechanisms for the cardioprotective effects afforded by sodium-glucose cotransporter 2 (SGLT2) inhibitors, whether the modulation of glucose handling acutely affects sympathetic regulation of arterial pressure remains to be elucidated. In Goto-Kakizaki diabetic rats, we estimated the open-loop static characteristics of the carotid sinus baroreflex together with urine glucose excretion using repeated 11-min step input sequences. After the completion of the 2nd sequence, an SGLT2 inhibitor empagliflozin (10 mg kg-1) or vehicle solution was administered intravenously (n = 7 rats each). Empagliflozin did not significantly affect the baroreflex neural or peripheral arc, despite significantly increasing urine glucose excretion (from 0.365 ± 0.216 to 8.514 ± 0.864 mg·min-1·kg-1, P < 0.001) in the 7th and 8th sequences. The possible sympathoinhibitory effect of empagliflozin may be an indirect effect associated with chronic improvements in renal energy status and general disease conditions.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan.
| | - Hiromi Yamamoto
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Ohara HealthCare Foundation, Okayama, 710-8602, Japan
| | - Aimi Yokoi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Midori Kakuuchi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Joe Alexander
- Medical and Health Informatics, NTT Research, Inc., Sunnyvale, CA, 94085, USA
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| |
Collapse
|
30
|
Unno K, Taguchi K, Takagi Y, Hase T, Meguro S, Nakamura Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int J Mol Sci 2023; 24:ijms24076278. [PMID: 37047250 PMCID: PMC10094282 DOI: 10.3390/ijms24076278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The sodium–glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2−/− mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer’s disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.
Collapse
|
31
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
32
|
Herring RA, Parsons I, Shojaee-Moradie F, Stevenage M, Jackson N, Manders R, Umpleby AM, Fielding BA, Davies M, Russell-Jones DL. Effect of Dapagliflozin on Cardiac Function and Metabolic and Hormonal Responses to Exercise. J Clin Endocrinol Metab 2023; 108:888-896. [PMID: 36274035 DOI: 10.1210/clinem/dgac617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Indexed: 02/13/2023]
Abstract
OBJECTIVE This work aimed to investigate the effect of the SGLT2 inhibitor, dapagliflozin (DAPA), on cardiac function and the metabolic and hormonal response to moderate exercise in people with type 2 diabetes. METHODS This was a double-blind, placebo-controlled crossover study with a 4-week washout period. Nine participants were randomly assigned to receive either 4 weeks of DAPA or 4 weeks of placebo. After each treatment, they underwent an exercise protocol with 2 consecutive 10-minute stages at a constant load corresponding to 40% and 70% maximal oxygen consumption (VO2max), coupled with hormonal and metabolic analysis. A blinded transthoracic echocardiogram was performed 3 days later. RESULTS During the exercise protocol, glucose and lactate were lower (P < .0001 and P < .05, respectively) and β-hydroxybutyrate (BOBH) and growth hormone (GH) were higher (P < .0005 and P = .01) following DAPA treatment compared to placebo. There was a trend for lower insulin with DAPA. Adrenalin, noradrenalin, and glucagon were not different. Following DAPA participants demonstrated an increased mean peak diastolic mitral annular velocity (e') in comparison to placebo (P = .03). The indexed left atrial volume and right ventricular e" were reduced following DAPA compared with placebo (P = .045 and P = .042, respectively). Arterial stiffness was not different between treatments (DAPA 9.35 ± 0.60 m/s; placebo 9.07 ± 0.72 m/s). CONCLUSION During exercise, GH may be more important than catecholamines in driving the shift from glucose to fatty acid metabolism by SGLT2 inhibitors. The 4-week crossover design showed changes in cardiac function were rapid in onset and reversible.
Collapse
Affiliation(s)
- Roselle A Herring
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Iain Parsons
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Fariba Shojaee-Moradie
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Mary Stevenage
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Ralph Manders
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Barbara A Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE5 4PW, UK
| | - David L Russell-Jones
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
33
|
Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy. Int J Mol Sci 2023; 24:5089. [PMID: 36982164 PMCID: PMC10049666 DOI: 10.3390/ijms24065089] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Cardiorenal syndrome consists in the coexistence of acute or chronic dysfunction of heart and kidneys resulting in a cascade of feedback mechanisms and causing damage to both organs associated with high morbidity and mortality. In the last few years, different biomarkers have been investigated with the aim to achieve an early and accurate diagnosis of cardiorenal syndrome, to provide a prognostic role and to guide the development of targeted pharmacological and non-pharmacological therapies. In such a context, sodium-glucose cotransporter 2 (SGLT2) inhibitors, recommended as the first-line choice in the management of heart failure, might represent a promising strategy in the management of cardiorenal syndrome due to their efficacy in reducing both cardiac and renal outcomes. In this review, we will discuss the current knowledge on the pathophysiology of cardiorenal syndrome in adults, as well as the utility of biomarkers in cardiac and kidney dysfunction and potential insights into novel therapeutics.
Collapse
Affiliation(s)
| | | | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
34
|
Kwak SH, Han KA, Kim KS, Yu JM, Kim E, Won JC, Kang JG, Chung CH, Oh S, Choi SH, Won KC, Kim SG, Cho SA, Cho BY, Park KS. Efficacy and safety of enavogliflozin, a novel SGLT2 inhibitor, in Korean people with type 2 diabetes: A 24-week, multicentre, randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 2023. [PMID: 36872067 DOI: 10.1111/dom.15046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
AIMS To evaluate the efficacy and safety of a novel sodium-glucose cotransporter 2 inhibitor, enavogliflozin 0.3 mg monotherapy, in Korean people with type 2 diabetes mellitus (T2DM) inadequately controlled with diet and exercise. MATERIALS AND METHODS This study was a randomized, double-blind, placebo-controlled trial conducted in 23 hospitals. Individuals with haemoglobin A1c (HbA1c) of 7.0%-10.0% after at least 8 weeks of diet and exercise modification were randomized to receive enavogliflozin 0.3 mg (n = 83) or placebo (n = 84) for 24 weeks. The primary outcome was a change in HbA1c at week 24 from baseline. Secondary outcomes included the proportion of participants achieving HbA1c <7.0%, change in fasting glucose, body weight and lipid levels. Adverse events were investigated throughout the study. RESULTS At week 24, the placebo-adjusted mean change in HbA1c from baseline in the enavogliflozin group was -0.99% (95% confidence interval -1.24%, -0.74%). The proportions of patients achieving HbA1c <7.0% (71% vs. 24%) at week 24 was significantly higher in the enavogliflozin group (p < .0001). Placebo-adjusted mean changes in fasting plasma glucose (-40.1 mg/dl) and body weight (-2.5 kg) at week 24 were statistically significant (p < .0001). In addition, a significant decrease in blood pressure, low-density lipoprotein cholesterol, triglyceride, and homeostasis model assessment of insulin resistance were observed, along with a significant increase in high-density lipoprotein cholesterol. No significant increase in treatment-related adverse events was observed for enavogliflozin. CONCLUSIONS Monotherapy with enavogliflozin 0.3 mg improved glycaemic control in people with T2DM. Enavogliflozin therapy also exerted beneficial effects on body weight, blood pressure and lipid profile.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jae Myung Yu
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - EunSook Kim
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine University of Ulsan, Ulsan, South Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Jun Goo Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, South Korea
| | - Seungjoon Oh
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University Medical Center, Daegu, South Korea
| | - Sin Gon Kim
- Department of Internal Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Seung Ah Cho
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Bo Young Cho
- Clinical Development Center, Daewoong Pharmaceutical Co., Ltd., Seoul, Republic of Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Choday S, Ravi N, Parisapogu A, Ojinna BT, Sherpa ML. Effects of Sodium-Glucose Cotransporter Inhibitor Use in Type 2 Diabetes Mellitus Patients With Heart Failure. Cureus 2023; 15:e34687. [PMID: 36909046 PMCID: PMC9994637 DOI: 10.7759/cureus.34687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
The advances in the development of sodium-glucose cotransporter 2 inhibitors (SGLT2i) have expanded the variety of favorable approaches to treating diabetes mellitus. It is possible to have an improvement in insulin resistance and natriuresis by inhibiting the reabsorption of sodium and glucose at the proximal tubules in the kidney, and a decrease in cardiovascular mortality in patients with diabetes mellitus (DM). In addition, SGLT2i provides renoprotection by reducing intraglomerular higher blood pressure. The usage of SGLT2i also provides hemodynamic and metabolic benefits. SGLT2i demonstrates large cardiovascular benefits in patients both with and without diabetes, as well as in existing heart failure patients. These SGLT2i have direct and indirect effects on the kidney, likely contributing to stated cardiovascular benefits. Here we review the literature on the direct effects of SGLT2 inhibitors in diabetic patients with heart failure (HF). We assume that the benefit in cardiac cells modulated by SGLT2i is due to the inhibition of sodium transporters affecting intracellular sodium homeostasis. In conclusion, the sodium transporters in cardiac cells provide, at least partly, an example of the clinical benefits of SGLT2i observed in HF patients.
Collapse
Affiliation(s)
- Silpa Choday
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Niriksha Ravi
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Blessing T Ojinna
- Internal Medicine and Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,General Medicine, University of Nigeria Nsukka, College of Medicine, Enugu, NGA
| | - Mingma L Sherpa
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
36
|
Guo L, Fu B, Liu Y, Hao N, Ji Y, Yang H. Diuretic resistance in patients with kidney disease: Challenges and opportunities. Biomed Pharmacother 2023; 157:114058. [PMID: 36473405 DOI: 10.1016/j.biopha.2022.114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/10/2022] Open
Abstract
Edema caused by kidney disease is called renal edema. Edema is a common symptom of many human kidney diseases. Patients with renal edema often need to take diuretics.However, After taking diuretics, patients with kidney diseases are prone to kidney congestion, decreased renal perfusion, decreased diuretics secreted by renal tubules, neuroendocrine system abnormalities, abnormal ion transporter transport, drug interaction, electrolyte disorder, and hypoproteinemia, which lead to ineffective or weakened diuretic use and increase readmission rate and mortality. The main causes and coping strategies of diuretic resistance in patients with kidney diseases were described in detail in this report. The common causes of DR included poor diet (electrolyte disturbance and hypoproteinemia due to patients' failure to limit diet according to correct sodium, chlorine, potassium, and protein level) and poor drug compliance (the patient did not take adequate doses of diuretics. true resistance occurs only if the patient takes adequate doses of diuretics, but they are not effective), changes in pharmacokinetics and pharmacodynamics, electrolyte disorders, changes in renal adaptation, functional nephron reduction, and decreased renal blood flow. Common treatment measures include increasing in the diuretic dose and/or frequency, sequential nephron blockade,using new diuretics, ultrafiltration treatment, etc. In clinical work, measures should be taken to prevent or delay the occurrence and development of DR in patients with kidney diseases according to the actual situation of patients and the mechanism of various causes. Currently, there are many studies on DR in patients with heart diseases. Although the phenomenon of DR in patients with kidney diseases is common, there is a relatively little overview of the mechanism and treatment strategy of DR in patients with kidney diseases. Therefore, this paper hopes to show the information on DR in patients with kidney diseases to clinicians and researchers and broaden the research direction and ideas to a certain extent.
Collapse
Affiliation(s)
- Luxuan Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Baohui Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
37
|
Lu YP, Wu HW, Zhu T, Li XT, Zuo J, Hasan AA, Reichetzeder C, Delic D, Yard B, Klein T, Krämer BK, Zhang ZY, Wang XH, Yin LH, Dai Y, Zheng ZH, Hocher B. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy. Biomed Pharmacother 2022; 156:113947. [DOI: 10.1016/j.biopha.2022.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/02/2022] Open
|
38
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
39
|
Insulin Resistance and High Blood Pressure: Mechanistic Insight on the Role of the Kidney. Biomedicines 2022; 10:biomedicines10102374. [PMID: 36289636 PMCID: PMC9598512 DOI: 10.3390/biomedicines10102374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The metabolic effects of insulin predominate in skeletal muscle, fat, and liver where the hormone binds to its receptor, thereby priming a series of cell-specific and biochemically diverse intracellular mechanisms. In the presence of a good secretory reserve in the pancreatic islets, a decrease in insulin sensitivity in the metabolic target tissues leads to compensatory hyperinsulinemia. A large body of evidence obtained in clinical and experimental studies indicates that insulin resistance and the related hyperinsulinemia are causally involved in some forms of arterial hypertension. Much of this involvement can be ascribed to the impact of insulin on renal sodium transport, although additional mechanisms might be involved. Solid evidence indicates that insulin causes sodium and water retention, and both endogenous and exogenous hyperinsulinemia have been correlated to increased blood pressure. Although important information was gathered on the cellular mechanisms that are triggered by insulin in metabolic tissues and on their abnormalities, knowledge of the insulin-related mechanisms possibly involved in blood pressure regulation is limited. In this review, we summarize the current understanding of the cellular mechanisms that are involved in the pro-hypertensive actions of insulin, focusing on the contribution of insulin to the renal regulation of sodium balance and body fluids.
Collapse
|
40
|
Zhan X, Cheng L, Huo N, Yu L, Liu C, Liu T, Li G, Fu H. Sodium-glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway. Front Cardiovasc Med 2022; 9:908037. [PMID: 36148071 PMCID: PMC9485554 DOI: 10.3389/fcvm.2022.908037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The mechanism of sodium-glucose cotransporter-2 inhibitor (SGLT-2i) reducing the incidence of atrial fibrillation remains unclear. We hypothesize that sodium-glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway. METHODS A total of 42 rats were randomly assigned into three groups: control group (CON group); diabetes group (DM group): diabetes mellitus rats were established by 65 mg/kg streptozotocin (STZ) intraperitoneal injection; and diabetes + dapagliflozin group (DM + DAPA group): diabetic rats were given DAPA gavage administration (DAPA 2mg/kg/d for 4 weeks by gavage administration), 14 rats in each group. Epicardial multiple-lead recording and intracardiac electrophysiology studies were performed to investigate the electrical remodeling in the heart and the atrial fibrillation inducibility in each group. Western blot analysis and real-time PCR were used to determine the protein and mRNA expression of toll-like receptor 4 (TLR4), interleukin receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor-kappa B (NF-κB), and type I collagen (collagen I). RESULTS Compared with rats in CON group, rats in DM group showed marked myocardial fibrosis, ectopic pacing excitement, reduced conduction velocity, decreased cardiac function. TLR4/IRAK1/TRAF6/NF-κB, collagen I proteins expressions and incidence of atrial fibrillation (27.3%) were increased in DM group. Parts of these changes were reversed by treatment of DAPA. Incidence of atrial fibrillation was decreased in DM + DAPA group (2.8%). CONCLUSIONS SGLT-2i dapagliflozin may prevent diabetic rats' atrial remodeling and reduce the inducibility of atrial fibrillation partly by targeting TLR4/IRAK1/TRAF6/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
41
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
42
|
Piazzolla G, Vozza A, Volpe S, Bergamasco A, Triggiani V, Lisco G, Falconieri M, Tortorella C, Solfrizzi V, Sabbà C. Effectiveness and clinical benefits of new anti-diabetic drugs: A real life experience. Open Med (Wars) 2022; 17:1203-1215. [PMID: 35859794 PMCID: PMC9263895 DOI: 10.1515/med-2022-0504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
We evaluated the clinical impact, in daily clinical practice, of sodium-glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1RA) therapies in patients with type 2 diabetes. Data from 500 unselected consecutive patients were retrospectively analyzed. Only those with a full assessment at baseline (T0) and after 3 (T3), 6 (T6), and 12 (T12) months of treatment with SGLT2i or GLP1RA were included in the study (n = 167). At baseline, patients had a high mean body weight (BW), abdominal circumference (AC), body mass index (BMI), and HOMA index. Despite normal C-peptide values, 39 patients were being treated with insulin (up to 120 IU/day). During therapy, a progressive improvement in BW, BMI, and AC was observed with both the molecules. Fasting glucose and glycated Hb decrease was already significant at T3 in all patients, while the HOMA index selectively improved with SGLT2i therapy. Renal function parameters remained stable regardless of the drug used. Finally, SGLT2i reduced serum uric acid and improved the lipid profile, while GLP1RA reduced serum levels of liver enzymes. Both the therapeutic regimens allowed a significant reduction or complete suspension of unnecessary insulin therapies. Our real life data confirm the results obtained from randomized clinical trials and should be taken as a warning against inappropriate use of insulin in patients with preserved β-cell function.
Collapse
Affiliation(s)
- Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari, Piazza G. Cesare 11 , 70124 Bari , Italy
| | - Alfredo Vozza
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Sara Volpe
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Alessandro Bergamasco
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Michela Falconieri
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Cosimo Tortorella
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| |
Collapse
|
43
|
Adam CA, Anghel R, Marcu DTM, Mitu O, Roca M, Mitu F. Impact of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Arterial Stiffness and Vascular Aging-What Do We Know So Far? (A Narrative Review). Life (Basel) 2022; 12:803. [PMID: 35743834 PMCID: PMC9224553 DOI: 10.3390/life12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular aging, early vascular aging or supernormal vascular aging are concepts used for estimating the cardiovascular risk at a certain age. From the famous line of Thomas Sydenham that "a man is as old as his arteries" to the present day, clinical studies in the field of molecular biology of the vasculature have demonstrated the active role of vascular endothelium in the onset of cardiovascular diseases. Arterial stiffness is an important cardiovascular risk factor associated with the occurrence of cardiovascular events and a high risk of morbidity and mortality, especially in the presence of diabetes. Sodium-glucose cotransporter 2 inhibitors decrease arterial stiffness and vascular resistance by decreasing endothelial cell activation, stimulating direct vasorelaxation and ameliorating endothelial dysfunction or expression of pro-atherogenic cells and molecules.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
| | - Razvan Anghel
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Dragos Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
- Sf. Spiridon Clinical Emergency Hospital, Independence Boulevard nr. 1, 700111 Iasi, Romania
| | - Mihai Roca
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Florin Mitu
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| |
Collapse
|
44
|
Charaya K, Shchekochikhin D, Andreev D, Dyachuk I, Tarasenko S, Poltavskaya M, Mesitskaya D, Bogdanova A, Ananicheva N, Kuzub A. Impact of dapagliflozin treatment on renal function and diuretics use in acute heart failure: a pilot study. Open Heart 2022; 9:e001936. [PMID: 35609943 PMCID: PMC9131063 DOI: 10.1136/openhrt-2021-001936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/02/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To determine the impact of sodium-dependent glucose type 2 cotransporter inhibitors on the renal function in acute heart failure. METHODS In a single-centre, controlled, randomised study, patients were prescribed dapagliflozin in addition to standard therapy, or were in receipt of standard therapy. The prespecified outcome was renal function deterioration; the secondary outcomes were the development of resistance to diuretics, weight loss, death during hospitalisation and the rehospitalisation or death for any reason within 30 days following discharge. RESULTS 102 patients were included (73.4±11.7 years, 57.8% men). The average left ventricular ejection fraction was 44.9%±14.7%, the average N-terminal prohormone of brain natriuretic peptide (NT-proBNP) was 4706 (1757; 11 244) pg/mL, the average estimated glomerular filtration rate (eGFR) was 51.6±19.5 mL/min. eGFR decreased 48 hours after randomisation in the dapagliflozin group (-4.2 (-11.03; 2.28) mL/min vs 0.3 (-6; 6) mL/min; p=0.04) but did not differ between the groups on discharge (54.71±19.18 mL/min and 58.92±24.65 mL/min; p=0.36). The incidence of worsening renal function did not differ (34.4% vs 15.2%; p=0.07). In the dapagliflozin group, there was less tendency to increase the dose of loop diuretics (14% vs 30%; p=0.048), lower average doses of loop diuretics (78.46±38.95 mg/day vs 102.82±31.26 mg/day; p=0.001) and more significant weight loss (4100 (2950; 5750) g vs 3000 (1380; 4650) g; p=0.02). In-hospital mortality was 7.8% (4(8%) in the dapagliflozin and 4 (7.7%) in the control group (p=0.95). The number of deaths within 30 days following discharge in the dapagliflozin group and in the control group was 9 (19%) and 12 (25%), p=0.55; the number of rehospitalisations was 14 (29%) and 17 (35%), respectively (p=0.51). CONCLUSION The use of dapagliflozin was associated with a more pronounced weight loss and less need to increase diuretic therapy without significant deterioration of the renal function. Dapagliflozin did not improve the in-hospital and 30-day prognosis after discharge. TRIAL REGISTRATION NUMBER N04778787.
Collapse
Affiliation(s)
- Kristina Charaya
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Dmitry Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Denis Andreev
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Irina Dyachuk
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Svetlana Tarasenko
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Maria Poltavskaya
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Dinara Mesitskaya
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Alexandra Bogdanova
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Natalia Ananicheva
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| | - Alina Kuzub
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moskva, Moskva, Russian Federation
| |
Collapse
|
45
|
Granata A, Pesce F, Iacoviello M, Anzaldi M, Amico F, Catalano M, Leonardi G, Gatta C, Costanza G, Corrao S, Gesualdo L. SGLT2 Inhibitors: A Broad Impact Therapeutic Option for the Nephrologist. FRONTIERS IN NEPHROLOGY 2022; 2:867075. [PMID: 37674992 PMCID: PMC10479658 DOI: 10.3389/fneph.2022.867075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 09/08/2023]
Abstract
Since their introduction as antidiabetic drugs, SGLT2 inhibitors (SGLT2i) have come a long way, proving to be beneficial on cardiovascular and renal outcomes independently of diabetes status. The benefits go far beyond glycemic control, and both the cardio- and nephroprotection are underpinned by diverse mechanisms. From the activation of tubule glomerular feedback and the consequent reduction in hyperfiltration to the improvement of hypoxia and oxidative stress in the renal cortex, SGLT2i have also been shown to inhibit hepcidin and limit podocyte damage. Likewise, they improve cardiac metabolism and bioenergetics, and reduce necrosis and cardiac fibrosis and the production of adipokines, cytokines, and epicardial adipose tissue mass. In terms of outcomes, the efficacy has been demonstrated on blood pressure control, BMI, albuminuria, stroke, heart disease, and mortality rate due to cardiovascular events. Patients with chronic kidney disease and proteinuria, with or without diabetes, treated with some SGLT2i have a reduced risk of progression. The analysis of subgroups of individuals with specific diseases such as IgA nephropathy has confirmed this solid effect on renal outcomes. Given these overarching activities on such a broad pathophysiological background and the favorable safety profile that goes with the use of SGLT2i, it is now certain that they are changing our approach to clinical interventions for important outcomes with an impressive impact.
Collapse
Affiliation(s)
- Antonio Granata
- Nephrology and Dialysis Unit, “Cannizzaro” Emergency Hospital, Catania, Italy
| | - Francesco Pesce
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | | | - Francesco Amico
- Cardiology Unit, “Cannizzaro” Emergency Hospital, Catania, Italy
| | - Maria Catalano
- Cardiology Unit, “Cannizzaro” Emergency Hospital, Catania, Italy
| | - Giuseppe Leonardi
- Cardiology Unit, Azienda Ospedaliera Universitaria (A.O.U.) “Policlinico-San Marco”, Catania, Italy
| | - Carmela Gatta
- Internal Medicine Unit, Azienda Ospedaliera Universitaria (A.O.U.) “Policlinico-San Marco”, Catania, Italy
| | - Giusy Costanza
- Nephrology and Dialysis, “Vittorio Emanuele” Hospital, Gela, Italy
| | - Salvatore Corrao
- Department of Internal Medicine, “Azienda di Rilievo Nazionale ed Alta Specializzazione (ARNAS) Civico, Di Cristina e Benfratelli”, Palermo, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
46
|
Cheang I, Liao S, Zhu Q, Ni G, Wei C, Jia Z, Wu Y, Li X. Integrating Evidence of the Traditional Chinese Medicine Collateral Disease Theory in Prevention and Treatment of Cardiovascular Continuum. Front Pharmacol 2022; 13:867521. [PMID: 35370696 PMCID: PMC8964948 DOI: 10.3389/fphar.2022.867521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease has become a major public health problem. The concept of “cardiovascular continuum” refers to the continuous process from the risk factors that lead to arteriosclerosis, vulnerable plaque rupture, myocardial infarction, arrhythmia, heart failure, and death. These characteristics of etiology and progressive development coincide with the idea of “preventing disease” in traditional Chinese medicine (TCM), which corresponds to the process of systemic intervention. With the update of the understanding via translational medicine, this article reviews the current evidence of the TCM collateral disease theory set prescriptions in both mechanical and clinical aspects, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
- Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Zhenhua Jia
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Yiling Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Chen S, Coronel R, Hollmann MW, Weber NC, Zuurbier CJ. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol 2022; 21:45. [PMID: 35303888 PMCID: PMC8933888 DOI: 10.1186/s12933-022-01480-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Sodium-glucose-cotransporter 2 inhibitors (SGLT2is) demonstrate large cardiovascular benefit in both diabetic and non-diabetic, acute and chronic heart failure patients. These inhibitors have on-target (SGLT2 inhibition in the kidney) and off-target effects that likely both contribute to the reported cardiovascular benefit. Here we review the literature on direct effects of SGLT2is on various cardiac cells and derive at an unifying working hypothesis. SGLT2is acutely and directly (1) inhibit cardiac sodium transporters and alter ion homeostasis, (2) reduce inflammation and oxidative stress, (3) influence metabolism, and (4) improve cardiac function. We postulate that cardiac benefit modulated by SGLT2i’s can be commonly attributed to their inhibition of sodium-loaders in the plasma membrane (NHE-1, Nav1.5, SGLT) affecting intracellular sodium-homeostasis (the sodium-interactome), thereby providing a unifying view on the various effects reported in separate studies. The SGLT2is effects are most apparent when cells or hearts are subjected to pathological conditions (reactive oxygen species, inflammation, acidosis, hypoxia, high saturated fatty acids, hypertension, hyperglycemia, and heart failure sympathetic stimulation) that are known to prime these plasmalemmal sodium-loaders. In conclusion, the cardiac sodium-interactome provides a unifying testable working hypothesis and a possible, at least partly, explanation to the clinical benefits of SGLT2is observed in the diseased patient.
Collapse
Affiliation(s)
- Sha Chen
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam,, University of Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands.
| |
Collapse
|
48
|
SGLT2 Inhibitors in Type 2 Diabetes Mellitus and Heart Failure-A Concise Review. J Clin Med 2022; 11:jcm11061470. [PMID: 35329796 PMCID: PMC8952302 DOI: 10.3390/jcm11061470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 01/25/2023] Open
Abstract
The incidence of both diabetes mellitus type 2 and heart failure is rapidly growing, and the diseases often coexist. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a new antidiabetic drug class that mediates epithelial glucose transport at the renal proximal tubules, inhibiting glucose absorption—resulting in glycosuria—and therefore improving glycemic control. Recent trials have proven that SGLT2i also improve cardiovascular and renal outcomes, including reduced cardiovascular mortality and fewer hospitalizations for heart failure. Reduced preload and afterload, improved vascular function, and changes in tissue sodium and calcium handling may also play a role. The expected paradigm shift in treatment strategies was reflected in the most recent 2021 guidelines published by the European Society of Cardiology, recommending dapagliflozin and empagliflozin as first-line treatment for heart failure patients with reduced ejection fraction. Moreover, the recent results of the EMPEROR-Preserved trial regarding empagliflozin give us hope that there is finally an effective treatment for patients with heart failure with preserved ejection fraction. This review aims to assess the efficacy and safety of these new anti-glycemic oral agents in the management of diabetic and heart failure patients.
Collapse
|
49
|
Zhang F, Wang W, Hou X. Effectiveness and safety of ertugliflozin for type 2 diabetes: A meta-analysis of data from randomized controlled trials. J Diabetes Investig 2022; 13:478-488. [PMID: 34610204 PMCID: PMC8902385 DOI: 10.1111/jdi.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION To evaluate the effectiveness and safety of the novel sodium-glucose cotransporter inhibitor, ertugliflozin, compared with a placebo or other antihyperglycemic agents for type 2 diabetes patients. MATERIALS AND METHODS We carried out a meta-analysis of randomized controlled trials to assess the benefits and harms of ertugliflozin. Online database searches were carried out in PubMed, EMBASE, WEB OF SCIENCE and Cochrane from inception up to 11 March 2021. Our end-points were glycated hemoglobin, fasting plasma glucose and bodyweight. We analyzed the results using a random effects model, computed weighted mean differences and risk ratios. RESULT A total of 10 randomized controlled trials with 13,223 patients met the inclusion criteria. Compared with a placebo, the weighted mean differences in glycated hemoglobin were -0.77% (95% confidence interval [CI] -0.86 to -0.68%) for ertugliflozin 5 mg, and -0.82% (95% CI -1.01 to -0.63%) for ertugliflozin 15 mg. Ertugliflozin 5 mg daily was also associated with bodyweight loss (weighted mean difference -1.87 kg, 95% CI -2.12 to -1.6). When compared with a placebo, ertugliflozin significantly reduced fasting plasma glucose by -1.62 mmol/L (weighted mean difference, 95% CI -1.82 to -1.42 for 5 mg ertugliflozin). Yet, we observed a rising risk for genital mycotic infections (risk ratio 4.34, 95% CI 2.78-6.76). The results were similar for the 15 mg ertugliflozin group. CONCLUSION Ertugliflozin effectively reduces glycated hemoglobin levels and provides extra clinical benefits including bodyweight and fasting plasma glucose. Common adverse effects, including genital mycotic infections and so on, were reviewed.
Collapse
Affiliation(s)
- Fudan Zhang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wenting Wang
- Department of Endocrinology and Metabolic DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xu Hou
- Department of Intensive Care UnitShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
50
|
Affiliation(s)
- Haiko Schlögl
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and the University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|