1
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Mönnich D, Humphrys LJ, Höring C, Hoare BL, Forster L, Pockes S. Activation of Multiple G Protein Pathways to Characterize the Five Dopamine Receptor Subtypes Using Bioluminescence Technology. ACS Pharmacol Transl Sci 2024; 7:834-854. [PMID: 38481695 PMCID: PMC10928903 DOI: 10.1021/acsptsci.3c00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors show preference for G protein subtypes but can recruit multiple G proteins with various downstream signaling cascades. This functional selection can guide drug design. Dopamine receptors are both stimulatory (D1-like) and inhibitory (D2-like) with diffuse expression across the central nervous system. Functional selectivity of G protein subunits may help with dopamine receptor targeting and their downstream effects. Three bioluminescence-based assays were used to characterize G protein coupling and function with the five dopamine receptors. Most proximal to ligand binding was the miniG protein assay with split luciferase technology used to measure recruitment. For endogenous and selective ligands, the G-CASE bioluminescence resonance energy transfer (BRET) assay measured G protein activation and receptor selectivity. Downstream, the BRET-based CAMYEN assay quantified cyclic adenosine monophosphate (cAMP) changes. Several dopamine receptor agonists and antagonists were characterized for their G protein recruitment and cAMP effects. G protein selectivity with dopamine revealed potential Gq coupling at all five receptors, as well as the ability to activate subtypes with the "opposite" effects to canonical signaling. D1-like receptor agonist (+)-SKF-81297 and D2-like receptor agonist pramipexole showed selectivity at all receptors toward Gs or Gi/o/z activation, respectively. The five dopamine receptors show a wide range of potentials for G protein coupling and activation, reflected in their downstream cAMP signaling. Targeting these interactions can be achieved through drug design. This opens the door to pharmacological treatment with more selectivity options for inducing the correct physiological events.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Carina Höring
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bradley L. Hoare
- Florey
Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Mönnich D, Nagl M, Forster L, Rosier N, Igel P, Pockes S. Discovery of a Tritiated Radioligand with High Affinity and Selectivity for the Histamine H 3 Receptor. ACS Med Chem Lett 2023; 14:1589-1595. [PMID: 37974943 PMCID: PMC10641923 DOI: 10.1021/acsmedchemlett.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Radioligands used previously for histamine H3 receptor (H3R) are accompanied by a number of disadvantages. In this study, we report the synthesis of the new H3R radioligand [3H]UR-MN259 ([3H]11) with high (radio)chemical purity and stability. The radioligand exhibits sub-nanomolar affinity for the target receptor (pKi (H3R) = 9.56) and displays an outstanding selectivity profile within the histamine receptor family (>100,000-fold selective). [3H]UR-MN259 is ideally suitable for the characterization of H3R ligands in competition binding and shows one-site binding to the H3R in saturation binding experiments. The radiotracer shows fast association to the receptor (τassoc = 6.11 min), as well as full dissociation from the receptor (τdissoc = 14.48 min) in kinetic binding studies. The distinguished profile of [3H]UR-MN259 makes it a highly promising pharmacological tool to further investigate the role of the H3R in the CNS.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martin Nagl
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Niklas Rosier
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Patrick Igel
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
4
|
Miller RM, Sescil J, Sarcinella MC, Bailey RC, Wang W. Accessible and Generalizable in Vitro Luminescence Assay for Detecting GPCR Activation. ACS MEASUREMENT SCIENCE AU 2023; 3:337-343. [PMID: 37868356 PMCID: PMC10588934 DOI: 10.1021/acsmeasuresciau.3c00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 10/24/2023]
Abstract
G protein-coupled receptors (GPCRs) serve critical physiological roles as the most abundant family of receptors. Here, we describe the design of a generalizable and cell lysate-based method that leverages the interaction between an agonist-activated GPCR and a conformation-specific binder to reconstitute split nanoluciferase (NanoLuc) in vitro. This tool, In vitro GPCR split NanoLuc ligand Triggered Reporter (IGNiTR), has broad applications. We have demonstrated IGNiTR's use with three Gs-coupled GPCRs, two Gi-coupled GPCRs and three classes of conformation-specific binders: nanobodies, miniG proteins, and G protein peptidomimetics. As an in vitro method, IGNiTR enables the use of synthetic G protein peptidomimetics and provides easily scalable and portable reagents for characterizing GPCRs and ligands. We tested three diverse applications of IGNiTR: (1) proof-of-concept GPCR ligand screening using dopamine receptor D1 IGNiTR; (2) detection of opioids for point-of-care testing; and (3) characterizing GPCR functionality during Nanodisc-based reconstitution processes. Due to IGNiTR's unique advantages and the convenience of its cell lysate-based format, this tool will find extensive applications in GPCR ligand detection, screening, and GPCR characterization.
Collapse
Affiliation(s)
- Ruby M. Miller
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Sescil
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marina C. Sarcinella
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan C. Bailey
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Cai B, El Daibani A, Bai Y, Che T, Krusemark CJ. Direct Selection of DNA-Encoded Libraries for Biased Agonists of GPCRs on Live Cells. JACS AU 2023; 3:1076-1088. [PMID: 37124302 PMCID: PMC10131204 DOI: 10.1021/jacsau.2c00674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of human membrane target proteins for approved drugs. GPCR ligands can have a complex array of pharmacological activities. Among these activities, biased agonists have potential to serve as both chemical probes to understand specific aspects of receptor signaling and therapeutic leads with more specific, desired activity. Challenges exist, however, in the development of new biased activators due, in part, to the low throughput of traditional screening approaches. DNA-encoded chemical libraries (DELs) dramatically improve the throughput of drug discovery by allowing a collective selection, rather than discrete screening, of large compound libraries. The use of DELs has been largely limited to affinity-based selections against purified protein targets, which identify binders only. Herein, we report a split protein complementation approach that allows direct identification of DNA-linked molecules that induce the dimerization of two proteins. We used this selection with a DEL against opioid receptor GPCRs on living cells for the identification of small molecules that possess the specific function of activation of either β-arrestin or G protein signaling pathways. This approach was applied to δ-, μ-, and κ-opioid receptors and enabled the discovery of compound [66,66], a selective, G-protein-biased agonist of the κ-opioid receptor (EC50 = 100 nM, E max = 82%, Gi bias factor = 6.6). This approach should be generally applicable for the direct selection of chemical inducers of dimerization from DELs and expand the utility of DELs to enrich molecules with a specific and desired biochemical function.
Collapse
Affiliation(s)
- Bo Cai
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amal El Daibani
- Center
for Clinical Pharmacology, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Yuntian Bai
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tao Che
- Center
for Clinical Pharmacology, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Casey J. Krusemark
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Vysotski ES. Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications. Int J Mol Sci 2022; 24:ijms24010281. [PMID: 36613724 PMCID: PMC9820413 DOI: 10.3390/ijms24010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Light emission by living organisms in the visible spectrum range is called bioluminescence [...].
Collapse
Affiliation(s)
- Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| |
Collapse
|
7
|
Guo S, Zhao T, Yun Y, Xie X. Recent Progress in Assays for GPCR Drug Discovery. Am J Physiol Cell Physiol 2022; 323:C583-C594. [PMID: 35816640 DOI: 10.1152/ajpcell.00464.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein coupled receptors (GPCRs), also known as 7 transmembrane receptors, are the largest family of cell surface receptors in eukaryotes. There are ~800 GPCRs in human, regulating diverse physiological processes. GPCRs are the most intensively studied drug targets. Drugs that target GPCRs account for about a quarter of the global market share of therapeutic drugs. Therefore, to develop physiologically relevant and robust assays to search new GPCR ligands or modulators remain the major focus of drug discovery research worldwide. Early functional GPCR assays are mainly depend on the measurement of G protein-mediated second messenger generation. Recent development in GPCR biology indicate the signaling of these receptors is much more complex than the oversimplified classical view. GPCRs have been found to activate multiple G proteins simultaneously and induce b-arrestin-mediated signaling. GPCRs have also been found to interacte with other cytosolic scaffolding proteins and form dimer or heteromer with GPCRs or other transmembrane proteins. Here we mainly discuss technologies focused on detecting protein-protein interactions, such as FRET/BRET, NanoBiT, Tango, etc, and their applications in measuring GPCRs interacting with various signaling partners. In the final part, we also discuss the species differences in GPCRs when using animal models to study the in vivofunctions of GPCR ligands, and possible ways to solve this problem with modern genetic tools.
Collapse
Affiliation(s)
- Shimeng Guo
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Tingting Zhao
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Ying Yun
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Xin Xie
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| |
Collapse
|
8
|
BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H 1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins. Int J Mol Sci 2022; 23:ijms23063184. [PMID: 35328605 PMCID: PMC8953162 DOI: 10.3390/ijms23063184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H1R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H1R signals via heterotrimeric Gq proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of β-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H1R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H1R signaling through heterotrimeric Gq proteins, second messengers (inositol 1,4,5-triphosphate and Ca2+), and receptor-protein interactions (GRKs and β-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting β-arrestin2 to H1R over Gq biosensor activation.
Collapse
|
9
|
Szczepańska K, Podlewska S, Dichiara M, Gentile D, Patamia V, Rosier N, Mönnich D, Ruiz Cantero MC, Karcz T, Łażewska D, Siwek A, Pockes S, Cobos EJ, Marrazzo A, Stark H, Rescifina A, Bojarski AJ, Amata E, Kieć-Kononowicz K. Structural and Molecular Insight into Piperazine and Piperidine Derivatives as Histamine H 3 and Sigma-1 Receptor Antagonists with Promising Antinociceptive Properties. ACS Chem Neurosci 2022; 13:1-15. [PMID: 34908391 PMCID: PMC8739840 DOI: 10.1021/acschemneuro.1c00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Sabina Podlewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Maria Dichiara
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Niklas Rosier
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Denise Mönnich
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ma Carmen Ruiz Cantero
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dorota Łażewska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Steffen Pockes
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Enrique J. Cobos
- Department
of Pharmacology and Neurosciences Institute (Biomedical Research Center)
and Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Andrzej J. Bojarski
- Maj
Institute of Pharmacology, Polish Academy
of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Emanuele Amata
- Department
of Drug and Health Sciences, University
of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Katarzyna Kieć-Kononowicz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
10
|
Shining light on the histamine H 2 receptor: Synthesis of carbamoylguanidine-type agonists as a pharmacological tool to study internalization. Bioorg Med Chem Lett 2021; 52:128388. [PMID: 34600035 DOI: 10.1016/j.bmcl.2021.128388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
So far, only little is known about the internalization process of the histamine H2 receptor (H2R). One promising approach to study such dynamic processes is the use of agonistic fluorescent ligands. Therefore, a series of carbamoylguanidine-type H2R agonists containing various fluorophores, heterocycles, and linkers (28-40) was synthesized. The ligands were pharmacologically characterized in several binding and functional assays. These studies revealed a significantly biased efficacy (Emax) for some of the compounds, e.g. 32: whereas 32 acted as strong partial (Emax: 0.77, mini-Gs recruitment) or full agonist (Emax: 1.04, [35S]GTPγS binding) with respect to G protein activation, it was only a weak partial agonist regarding β-arrestin1/2 recruitment (Emax: 0.09-0.12) and failed to promote H2R internalization (confocal microscopy). On the other hand, H2R internalization was observed for compounds that exhibited moderate agonistic activity in the β-arrestin1/2 pathways (Emax ≥ 0.22). The presented differently-biased fluorescent ligands are versatile molecular tools for future H2R studies on receptor trafficking and internalization e.g. using fluorescence microscopy.
Collapse
|
11
|
Ametovski A, Cairns EA, Grafinger KE, Cannaert A, Deventer MH, Chen S, Wu X, Shepperson CE, Lai F, Ellison R, Gerona R, Blakey K, Kevin R, McGregor IS, Hibbs DE, Glass M, Stove C, Auwärter V, Banister SD. NNL-3: A Synthetic Intermediate or a New Class of Hydroxybenzotriazole Esters with Cannabinoid Receptor Activity? ACS Chem Neurosci 2021; 12:4020-4036. [PMID: 34676751 DOI: 10.1021/acschemneuro.1c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a prolific class of new psychoactive substances (NPS) and continue to expand rapidly. Despite the recent identification of hydroxybenzotriazole (HOBt) containing SCRAs in synthetic cannabis samples, there is currently no information regarding the pharmacological profile of these NPS with respect to human CB1 and CB2 receptors. In the current study, a series consisting of seven HOBt indole-, indazole-, and 7-azaindole-carboxylates bearing a range of N-alkyl substituents were synthesized and pharmacologically evaluated. Competitive binding assays at CB1 and CB2 demonstrated that all analogues except a 2-methyl-substituted derivative had low affinity for CB1 (Ki = 3.80-43.7 μM) and CB2 (Ki = 2.75-18.2 μM). A fluorometric functional assay revealed that 2-methylindole- and indole-derived HOBt carboxylates were potent and efficacious agonists of CB1 (EC50 = 12.0 and 63.7 nM; Emax = 118 and 120%) and CB2 (EC50 = 10.9 and 321 nM; Emax = 91 and 126%). All other analogues incorporating indazole and 7-azaindole cores and bearing a range of N1-substituents showed relatively low potency for CB1 and CB2. Additionally, a reporter assay monitoring β-arrestin 2 (βarr2) recruitment to the receptor revealed that the 2-methylindole example was the most potent and efficacious at CB1 (EC50 = 131 nM; Emax = 724%) and the most potent at CB2 (EC50 = 38.2 nM; Emax = 51%). As with the membrane potential assay, the indazole and other indole HOBt carboxylates were considerably less potent at both receptors, and analogues comprising a 7-azaindole core showed little activity. Taken together, these data suggest that NNL-3 demonstrates little CB1 receptor activity and is unlikely to be psychoactive in humans. NNL-3 is likely an unintended SCRA manufacturing byproduct. However, the synthesis of NNL-3 analogues proved simple and general, and some of these showed potent cannabimetic profiles in vitro, indicating that HOBt esters of this type may represent an emerging class of SCRA NPS.
Collapse
Affiliation(s)
- Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marie H. Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Xinyi Wu
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Shepperson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Karen Blakey
- Illicit Drug Group, Forensic Chemistry, QHFSS, Queensland Health, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Richard Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Gergs U, Büxel ML, Bresinsky M, Kirchhefer U, Fehse C, Höring C, Hofmann B, Marušáková M, Čináková A, Schwarz R, Pockes S, Neumann J. Cardiac Effects of Novel Histamine H 2 Receptor Agonists. J Pharmacol Exp Ther 2021; 379:223-234. [PMID: 34535565 DOI: 10.1124/jpet.121.000822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
In an integrative approach, we studied cardiac effects of recently published novel H2 receptor agonists in the heart of mice that overexpress the human H2 receptor (H2-TG mice) and littermate wild type (WT) control mice and in isolated electrically driven muscle preparations from patients undergoing cardiac surgery. Under our experimental conditions, the H2 receptor agonists UR-Po563, UR-MB-158, and UR-MB-159 increased force of contraction in left atrium from H2-TG mice with pEC50 values of 8.27, 9.38, and 8.28, respectively, but not in WT mice. Likewise, UR-Po563, UR-MB-158, and UR-MB-159 increased the beating rate in right atrium from H2-TG mice with pEC50 values of 9.01, 9.24, and 7.91, respectively, but not from WT mice. These effects could be antagonized by famotidine, a H2 receptor antagonist. UR-Po563 (1 µM) increased force of contraction in Langendorff-perfused hearts from H2-TG but not WT mice. Similarly, UR-Po563, UR-MB-158, or UR-MB-159 increased the left ventricular ejection fraction in echocardiography of H2-TG mice. Finally, UR-Po563 increased force of contraction in isolated human right atrial muscle strips. The contractile effects of UR-Po563 in H2-TG mice were accompanied by an increase in the phosphorylation state of phospholamban. In summary, we report here three recently developed agonists functionally stimulating human cardiac H2 receptors in vitro and in vivo. We speculate that these compounds might be of some merit to treat neurologic disorders if their cardiac effects are blocked by concomitantly applied receptor antagonists that cannot pass through the blood-brain barrier or might be useful to treat congestive heart failure in patients. SIGNIFICANCE STATEMENT: Recently, a new generation of histamine H2 receptor (H2R) agonists has been developed as possible treatment option for Alzheimer's disease. Here, possible cardiac (side) effects of these novel H2R agonists have been evaluated.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Maren L Büxel
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Merlin Bresinsky
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Charlotte Fehse
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Carina Höring
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Britt Hofmann
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Margaréta Marušáková
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Aneta Čináková
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Rebecca Schwarz
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Steffen Pockes
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology (U.G., M.L.B., C.F., M.M., A.C., R.S., J.N.) and Cardiac Surgery (B.H.), Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.B., C.H., S.P.); Institute for Pharmacology and Toxicology, University Hospital, Westfälische Wilhelms-Universität, Münster, Germany (U.K.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia (M.M., A.C.)
| |
Collapse
|
13
|
Höring C, Conrad M, Söldner CA, Wang J, Sticht H, Strasser A, Miao Y. Specific Engineered G Protein Coupling to Histamine Receptors Revealed from Cellular Assay Experiments and Accelerated Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10047. [PMID: 34576210 PMCID: PMC8467750 DOI: 10.3390/ijms221810047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are targets of extracellular stimuli and hence occupy a key position in drug discovery. By specific and not yet fully elucidated coupling profiles with α subunits of distinct G protein families, they regulate cellular responses. The histamine H2 and H4 receptors (H2R and H4R) are prominent members of Gs- and Gi-coupled GPCRs. Nevertheless, promiscuous G protein and selective Gi signaling have been reported for the H2R and H4R, respectively, the molecular mechanism of which remained unclear. Using a combination of cellular experimental assays and Gaussian accelerated molecular dynamics (GaMD) simulations, we investigated the coupling profiles of the H2R and H4R to engineered mini-G proteins (mG). We obtained coupling profiles of the mGs, mGsi, or mGsq proteins to the H2R and H4R from the mini-G protein recruitment assays using HEK293T cells. Compared to H2R-mGs expressing cells, histamine responses were weaker (pEC50, Emax) for H2R-mGsi and -mGsq. By contrast, the H4R selectively bound to mGsi. Similarly, in all-atom GaMD simulations, we observed a preferential binding of H2R to mGs and H4R to mGsi revealed by the structural flexibility and free energy landscapes of the complexes. Although the mG α5 helices were consistently located within the HR binding cavity, alternative binding orientations were detected in the complexes. Due to the specific residue interactions, all mG α5 helices of the H2R complexes adopted the Gs-like orientation toward the receptor transmembrane (TM) 6 domain, whereas in H4R complexes, only mGsi was in the Gi-like orientation toward TM2, which was in agreement with Gs- and Gi-coupled GPCRs structures resolved by X-ray/cryo-EM. These cellular and molecular insights support (patho)physiological profiles of the histamine receptors, especially the hitherto little studied H2R function in the brain, as well as of the pharmacological potential of H4R selective drugs.
Collapse
Affiliation(s)
- Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Marcus Conrad
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Christian A Söldner
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
| | - Jinan Wang
- Department of Computational Biology and Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Yinglong Miao
- Department of Computational Biology and Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
14
|
Seibel-Ehlert U, Plank N, Inoue A, Bernhardt G, Strasser A. Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. Int J Mol Sci 2021; 22:9739. [PMID: 34575903 PMCID: PMC8467282 DOI: 10.3390/ijms22189739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such "invasive" techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1-4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1-4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1-4Rs.
Collapse
Affiliation(s)
- Ulla Seibel-Ehlert
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Nicole Plank
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Guenther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| |
Collapse
|
15
|
Tropmann K, Bresinsky M, Forster L, Mönnich D, Buschauer A, Wittmann HJ, Hübner H, Gmeiner P, Pockes S, Strasser A. Abolishing Dopamine D 2long/D 3 Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H 2 Receptor Agonists. J Med Chem 2021; 64:8684-8709. [PMID: 34110814 DOI: 10.1021/acs.jmedchem.1c00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
3-(2-Amino-4-methylthiazol-5-yl)propyl-substituted carbamoylguanidines are potent, subtype-selective histamine H2 receptor (H2R) agonists, but their applicability as pharmacological tools to elucidate the largely unknown H2R functions in the central nervous system (CNS) is compromised by their concomitant high affinity toward dopamine D2-like receptors (especially to the D3R). To improve the selectivity, a series of novel carbamoylguanidine-type ligands containing various heterocycles, spacers, and side residues were rationally designed, synthesized, and tested in binding and/or functional assays at H1-4 and D2long/3 receptors. This study revealed a couple of selective candidates (among others 31 and 47), and the most promising ones were screened at several off-target receptors, showing good selectivities. Docking studies suggest that the amino acid residues (3.28, 3.32, E2.49, E2.51, 5.42, and 7.35) are responsible for the different affinities at the H2- and D2long/3-receptors. These results provide a solid base for the exploration of the H2R functions in the brain in further studies.
Collapse
Affiliation(s)
- Katharina Tropmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.,Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Andrea Strasser
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
16
|
Szczepańska K, Pockes S, Podlewska S, Höring C, Mika K, Latacz G, Bednarski M, Siwek A, Karcz T, Nagl M, Bresinsky M, Mönnich D, Seibel U, Kuder KJ, Kotańska M, Stark H, Elz S, Kieć-Kononowicz K. Structural modifications in the distal, regulatory region of histamine H 3 receptor antagonists leading to the identification of a potent anti-obesity agent. Eur J Med Chem 2021; 213:113041. [PMID: 33261900 DOI: 10.1016/j.ejmech.2020.113041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
A series of 4-pyridylpiperazine derivatives with varying regulatory region substituents proved to be potent histamine H3 receptor (H3R) ligands in the nanomolar concentration range. The most influential modification that affected the affinity toward the H3R appeared by introducing electron-withdrawing moieties into the distal aromatic ring. In order to finally discuss the influence of the characteristic 4-pyridylpiperazine moiety on H3R affinity, two Ciproxifan analogues 2 and 3 with a slight modification in their basic part were obtained. The replacement of piperazine in 3 with piperidine in compound 2, led to slightly reduced affinity towards the H3R (Ki = 3.17 and 7.70 nM, respectively). In fact, 3 showed the highest antagonistic properties among all compounds in this series, hence affirming our previous assumptions, that the 4-pyridylpiperazine moiety is the key element for suitable interaction with the human histamine H3 receptor. While its structural replacement to piperidine is also tolerated for H3R binding, the heteroaromatic 4-pyridyl moiety seems to be essential for proper ligand-receptor interaction. The putative protein-ligand interactions responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at the H3R, as well as drug-like properties of ligands were evaluated using in vitro methods. Moreover, pharmacological in vivo test results of compound 9 (structural analogue of Abbott's A-331440) clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil Mika
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Marek Bednarski
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Martin Nagl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ulla Seibel
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Magdalena Kotańska
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland.
| |
Collapse
|
17
|
Weinhart CG, Wifling D, Schmidt MF, Neu E, Höring C, Clark T, Gmeiner P, Keller M. Dibenzodiazepinone-type muscarinic receptor antagonists conjugated to basic peptides: Impact of the linker moiety and unnatural amino acids on M 2R selectivity. Eur J Med Chem 2021; 213:113159. [PMID: 33571911 DOI: 10.1016/j.ejmech.2021.113159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The family of human muscarinic acetylcholine receptors (MRs) is characterized by a high sequence homology among the five subtypes (M1R-M5R), being the reason for a lack of subtype selective MR ligands. In continuation of our work on dualsteric dibenzodiazepinone-type M2R antagonists, a series of M2R ligands containing a dibenzodiazepinone pharmacophore linked to small basic peptides was synthesized (64 compounds). The linker moiety was varied with respect to length, number of basic nitrogens (0-2) and flexibility. Besides proteinogenic basic amino acids (Lys, Arg), shorter homologues of Lys and Arg, containing three and two methylene groups, respectively, as well as D-configured amino acids were incorporated. The type of linker had a marked impact on M2R affinity and also effected M2R selectivity. In contrast, the structure of the basic peptide rather determined M2R selectivity than M2R affinity. For example, the most M2R selective compound (UR-CG188, 89) with picomolar M2R affinity (pKi 9.60), exhibited a higher M2R selectivity (ratio of Ki M1R/M2R/M3R/M4R/M5R: 110:1:5200:55:2300) compared to the vast majority of reported M2R preferring MR ligands. For selected ligands, M2R antagonism was confirmed in a M2R miniG protein recruitment assay.
Collapse
Affiliation(s)
- Corinna G Weinhart
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058, Erlangen, Germany; Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052, Erlangen, Germany
| | - Eduard Neu
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058, Erlangen, Germany; Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052, Erlangen, Germany
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058, Erlangen, Germany; Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058, Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| |
Collapse
|
18
|
Bondar A, Lazar J. Optical sensors of heterotrimeric G protein signaling. FEBS J 2020; 288:2570-2584. [DOI: 10.1111/febs.15655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey Bondar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Josef Lazar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|