1
|
Donadini MP, Calcaterra F, Romualdi E, Ciceri R, Cancellara A, Lodigiani C, Bacci M, Della Bella S, Ageno W, Mavilio D. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells 2025; 14:144. [PMID: 39851572 PMCID: PMC11763525 DOI: 10.3390/cells14020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Venous thromboembolism (VTE) and arterial thrombosis (AT) are distinct yet closely related pathological processes. While traditionally considered separate entities, accumulating evidence suggests that they share common risk factors, such as inflammation and endothelial dysfunction (ED). This review explores the parallels and differences between venous and arterial thrombosis, with particular attention to the role of unprovoked VTE and its potential links to atherosclerosis and systemic inflammation. A key focus is the role of ED, which is emerging as a critical factor in thrombogenesis across both the venous and arterial systems. We examine the current methods for clinically detecting ED, including the use of biomarkers and advanced imaging techniques. Additionally, we discuss novel research avenues, such as the potential of endothelial colony-forming cells and other innovative methodologies, to further unravel the complex mechanisms of thrombosis. Finally, we propose future clinical scenarios where targeting endothelial health could pave the way for more effective prevention and treatment strategies in thrombosis management.
Collapse
Affiliation(s)
- Marco Paolo Donadini
- Department of Medicine and Surgery, Research Center on Thromboembolic Diseases and Antithrombotic Therapies, University of Insubria, 21100 Varese, Italy;
- Centro Trombosi e TAO, Azienda Socio Sanitaria Territoriale dei Sette Laghi, 21100 Varese, Italy;
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Erica Romualdi
- Centro Trombosi e TAO, Azienda Socio Sanitaria Territoriale dei Sette Laghi, 21100 Varese, Italy;
| | - Roberta Ciceri
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Lodigiani
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.L.); (M.B.)
| | - Monica Bacci
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.L.); (M.B.)
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, Research Center on Thromboembolic Diseases and Antithrombotic Therapies, University of Insubria, 21100 Varese, Italy;
- Department of Internal Medicine, Ospedale Regionale di Bellinzona e Valli, 6500 Bellinzona, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20125 Milan, Italy; (F.C.); (R.C.); (A.C.); (S.D.B.); (D.M.)
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
2
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T. Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| |
Collapse
|
3
|
Bordeleau ME, Audemard É, Métois A, Theret L, Lisi V, Farah A, Spinella JF, Chagraoui J, Moujaber O, Aubert L, Khakipoor B, Mallinger L, Boivin I, Mayotte N, Hajmirza A, Bonneil É, Béliveau F, Pfammatter S, Feghaly A, Boucher G, Gendron P, Thibault P, Barabé F, Lemieux S, Richard-Carpentier G, Hébert J, Lavallée VP, Roux PP, Sauvageau G. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep 2024; 43:114260. [PMID: 38838225 DOI: 10.1016/j.celrep.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.
Collapse
Affiliation(s)
- Marie-Eve Bordeleau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Éric Audemard
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arnaud Métois
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis Theret
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Véronique Lisi
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Azer Farah
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Jean-François Spinella
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jalila Chagraoui
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Ossama Moujaber
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Léo Aubert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Banafsheh Khakipoor
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Laure Mallinger
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Isabel Boivin
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nadine Mayotte
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Azadeh Hajmirza
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric Bonneil
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - François Béliveau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
| | - Sybille Pfammatter
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Albert Feghaly
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Geneviève Boucher
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick Gendron
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pierre Thibault
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédéric Barabé
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Sébastien Lemieux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guillaume Richard-Carpentier
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medicine, Division of Medical Oncology and Hematology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Josée Hébert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| | - Vincent-Philippe Lavallée
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Hematology and Oncology Division, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC H3T 1C5, Canada.
| | - Philippe P Roux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guy Sauvageau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
4
|
Iida M, Crossman BE, Kostecki KL, Glitchev CE, Kranjac CA, Crow MT, Adams JM, Liu P, Ong I, Yang DT, Kang I, Salgia R, Wheeler DL. MerTK Drives Proliferation and Metastatic Potential in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:5109. [PMID: 38791148 PMCID: PMC11121248 DOI: 10.3390/ijms25105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Christine E. Glitchev
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Carlene A. Kranjac
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Madisen T. Crow
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Jillian M. Adams
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
| | - Peng Liu
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Irene Ong
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; (P.L.); (I.O.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Irene Kang
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; (I.K.); (R.S.)
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.I.); (B.E.C.); (K.L.K.); (C.E.G.); (C.A.K.); (M.T.C.); (J.M.A.)
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
5
|
Callan A, Jha S, Valdez L, Baldado L, Tsin A. TGF-β Signaling Pathways in the Development of Diabetic Retinopathy. Int J Mol Sci 2024; 25:3052. [PMID: 38474297 PMCID: PMC10932130 DOI: 10.3390/ijms25053052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-β (TGF-β) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-β signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-β superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-β signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-β and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-β superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Tsin
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.C.); (S.J.); (L.V.); (L.B.)
| |
Collapse
|
6
|
González-Muñoz T, Di Giannatale A, García-Silva S, Santos V, Sánchez-Redondo S, Savini C, Graña-Castro O, Blanco-Aparicio C, Fischer S, De Wever O, Creus-Bachiller E, Ortega-Bertran S, Pisapia DJ, Rodríguez-Peralto JL, Fernández-Rodríguez J, Pérez-Portabella CR, Alaggio R, Benassi MS, Pazzaglia L, Scotlandi K, Ratner N, Yohay K, Theuer CP, Peinado H. Endoglin, a Novel Biomarker and Therapeutical Target to Prevent Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis. Clin Cancer Res 2023; 29:3744-3758. [PMID: 37432984 DOI: 10.1158/1078-0432.ccr-22-2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFβ coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Teresa González-Muñoz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Claudia Savini
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Patients in Science, Medical Writing and Communication, Valencia, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Suzanne Fischer
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Edgar Creus-Bachiller
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Ortega-Bertran
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jose L Rodríguez-Peralto
- Department of Dermatology, 12 de Octubre University Hospital, Complutense University of Madrid, Investigation institute I+12, CIBERONC, Madrid, Spain
| | - Juana Fernández-Rodríguez
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Plataforma Mouse Lab, Servicios Científico-Técnicos, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies La Sapienza University, Rome, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kaleb Yohay
- New York University Grossman School of Medicine, New York, New York
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
7
|
Bernabeu C, Olivieri C, Rossi E. Editorial: Role of membrane-bound and circulating endoglin in disease. Front Med (Lausanne) 2023; 10:1271756. [PMID: 37731711 PMCID: PMC10507402 DOI: 10.3389/fmed.2023.1271756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carla Olivieri
- General Biology and Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Rossi
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, Paris, France
| |
Collapse
|
8
|
Rossi E, Bernabeu C. Novel vascular roles of human endoglin in pathophysiology. J Thromb Haemost 2023; 21:2327-2338. [PMID: 37315795 DOI: 10.1016/j.jtha.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-β family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-β system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.
Collapse
Affiliation(s)
- Elisa Rossi
- Université Paris Cité, INSERM U1140, Innovative Therapies in Haemostasis, Paris, France.
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
9
|
Hakuno SK, Janson SGT, Trietsch MD, de Graaf M, de Jonge-Muller E, Crobach S, Harryvan TJ, Boonstra JJ, Dinjens WNM, Slingerland M, Hawinkels LJAC. Endoglin and squamous cell carcinomas. Front Med (Lausanne) 2023; 10:1112573. [PMID: 37396898 PMCID: PMC10313935 DOI: 10.3389/fmed.2023.1112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Despite the fact that the role of endoglin on endothelial cells has been extensively described, its expression and biological role on (epithelial) cancer cells is still debatable. Especially its function on squamous cell carcinoma (SCC) cells is largely unknown. Therefore, we investigated SCC endoglin expression and function in three types of SCCs; head and neck (HNSCC), esophageal (ESCC) and vulvar (VSCC) cancers. Endoglin expression was evaluated in tumor specimens and 14 patient-derived cell lines. Next to being expressed on angiogenic endothelial cells, endoglin is selectively expressed by individual SCC cells in tumor nests. Patient derived HNSCC, ESCC and VSCC cell lines express varying levels of endoglin with high interpatient variation. To assess the function of endoglin in signaling of TGF-β ligands, endoglin was overexpressed or knocked out or the signaling was blocked using TRC105, an endoglin neutralizing antibody. The endoglin ligand BMP-9 induced strong phosphorylation of SMAD1 independent of expression of the type-I receptor ALK1. Interestingly, we observed that endoglin overexpression leads to strongly increased soluble endoglin levels, which in turn decreases BMP-9 signaling. On the functional level, endoglin, both in a ligand dependent and independent manner, did not influence proliferation or migration of the SCC cells. In conclusion, these data show endoglin expression on individual cells in the tumor nests in SCCs and a role for (soluble) endoglin in paracrine signaling, without directly affecting proliferation or migration in an autocrine manner.
Collapse
Affiliation(s)
- Sarah K. Hakuno
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefanus G. T. Janson
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolijn D. Trietsch
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, Netherlands
| | - Manon de Graaf
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline de Jonge-Muller
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom J. Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Tumor Radiosensitization by Gene Electrotransfer-Mediated Double Targeting of Tumor Vasculature. Int J Mol Sci 2023; 24:ijms24032755. [PMID: 36769077 PMCID: PMC9917180 DOI: 10.3390/ijms24032755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor β co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.
Collapse
|
11
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
12
|
Gerrits T, Brouwer IJ, Dijkstra KL, Wolterbeek R, Bruijn JA, Scharpfenecker M, Baelde HJ. Endoglin Is an Important Mediator in the Final Common Pathway of Chronic Kidney Disease to End-Stage Renal Disease. Int J Mol Sci 2022; 24:ijms24010646. [PMID: 36614087 PMCID: PMC9820946 DOI: 10.3390/ijms24010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Chronic kidney disease (CKD) is a slow-developing, progressive deterioration of renal function. The final common pathway in the pathophysiology of CKD involves glomerular sclerosis, tubular atrophy and interstitial fibrosis. Transforming growth factor-beta (TGF-β) stimulates the differentiation of fibroblasts towards myofibroblasts and the production of extracellular matrix (ECM) molecules, and thereby interstitial fibrosis. It has been shown that endoglin (ENG, CD105), primarily expressed in endothelial cells and fibroblasts, can function as a co-receptor of TGF signaling. In several human organs, endoglin tends to be upregulated when chronic damage and fibrosis is present. We hypothesize that endoglin is upregulated in renal interstitial fibrosis and plays a role in the progression of CKD. We first measured renal endoglin expression in biopsy samples obtained from patients with different types of CKD, i.e., IgA nephropathy, focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN) and patients with chronic allograft dysfunction (CAD). We showed that endoglin is upregulated in CAD patients (p < 0.001) and patients with DN (p < 0.05), compared to control kidneys. Furthermore, the amount of interstitial endoglin expression correlated with eGFR (p < 0.001) and the amount of interstitial fibrosis (p < 0.001), independent of the diagnosis of the biopsies. Finally, we investigated in vitro the effect of endoglin overexpression in TGF-β stimulated human kidney fibroblasts. Overexpression of endoglin resulted in an enhanced ACTA2, CCN2 and SERPINE1 mRNA response (p < 0.05). It also increased the mRNA and protein upregulation of the ECM components collagen type I (COL1A1) and fibronectin (FN1) (p < 0.05). Our results suggest that endoglin is an important mediator in the final common pathway of CKD and could be used as a possible new therapeutic target to counteract the progression towards end-stage renal disease (ESRD).
Collapse
Affiliation(s)
- Tessa Gerrits
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Isabella J. Brouwer
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Kyra L. Dijkstra
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Biomedical Data Sciences, Medical Statistics, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Jan A. Bruijn
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Marion Scharpfenecker
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Hans J. Baelde
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-(0)-71-526-4788
| |
Collapse
|
13
|
Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, Sun J, Wang H. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol 2022; 13:973182. [PMID: 36210850 PMCID: PMC9537553 DOI: 10.3389/fphar.2022.973182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peritoneal fibrosis (PF) is an intractable complication in patients on long-term peritoneal dialysis (PD). Transforming growth factor-β (TGF-β) is a key pro-fibrogenic factor involved in PD-associated PF, and endoglin, as a coreceptor for TGF-β, plays a role in balancing the TGF-β signaling pathway. Here, we investigated whether endoglin could be a potential therapeutic target for PF. Methods: In vivo, we established PF model in SD rats by daily intraperitoneal injection of peritoneal dialysis fluids (PDF) containing 4.25% glucose for 6 weeks and downregulated endoglin expression by tail vein injection of AAV9-ENG on day 14 to assess the effect of endoglin on peritoneal morphology and markers related to fibrosis, angiogenesis, and epithelial-mesenchymal transition (EMT). In vitro, we treated human peritoneal mesothelial cells (HPMCs) transfected with ENG siRNA in high glucose medium to explore the potential mechanism of endoglin in PF. Results: Compared to control group, continuous exposure to biologically incompatible PDF induced exacerbated PF, accompanied by a significant increase in endoglin expression. Conversely, knockdown of endoglin ameliorated peritoneal injury characterized by increased peritoneal thickening and collagen deposition, angiogenesis, as well as EMT. Consistently, HPMCs cultured in high glucose medium underwent the EMT process and exhibited over-expression of fibronectin, collagen type I, vascular endothelial growth factor (VEGF), whereas these aforementioned alterations were alleviated after ENG siRNA transfection. In addition, we also found that ENG siRNA inhibited TGF-β-induced phosphorylation of Smad2/3 and Smad1/5/9 in HPMCs treated with high glucose (HG). Conclusion: Our findings confirmed for the first time that endoglin exacerbated PF by regulating the activation of TGF-β/ALK/Smads signaling, which will provide a novel potential therapeutic target in PF.
Collapse
Affiliation(s)
- Qian Huang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Xiao
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jing Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiping Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Tripska K, Igreja Sá IC, Vasinova M, Vicen M, Havelek R, Eissazadeh S, Svobodova Z, Vitverova B, Theuer C, Bernabeu C, Nachtigal P. Monoclonal anti-endoglin antibody TRC105 (carotuximab) prevents hypercholesterolemia and hyperglycemia-induced endothelial dysfunction in human aortic endothelial cells. Front Med (Lausanne) 2022; 9:845918. [PMID: 36160139 PMCID: PMC9490272 DOI: 10.3389/fmed.2022.845918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Endoglin (Eng) is a co-receptor of the transforming growth factor β superfamily playing an important role in endothelial dysfunction. TRC105 (carotuximab) is a monoclonal antibody that blocks Eng and its downstream Smad signaling pathway. Here we have investigated for the first time the effects of TRC105 treatment on the development of endothelial dysfunction induced by 7-ketocholesterol (7K) or high glucose (HG), focusing on Eng expression, signaling, and function. In the hypercholesterolemia study, human aortic endothelial cells (HAoECs) were treated with TRC105 (300 μg/ml) for 1 h, followed by the addition of 7K (10 μg/ml) for another 12 h. In the hyperglycemia study, HAoECs were exposed to HG (45 mM) for 60 h, followed by the addition of TRC105 for another 12 h, and cells treated with 5mM glucose and 40 mM mannitol served as control. Protein levels, adhesion, and transmigration of monocytes were assessed by flow cytometry, mRNA expression was measured by qRT-PCR. 7K and HG treatment increased protein levels of NF-κB and Eng and adhesion and transmigration of monocytes through HAoECs monolayer. TRC105 pretreatment reduced the 7K- or HG-induced Eng protein levels and pSmad1/5 and pSmad2/3 signaling. Despite increased protein levels of P-selectin and VCAM-1, TRC105 mediated blockage of Eng prevented 7K- and HG-induced adhesion and transmigration of monocytes through endothelial monolayers. These results suggest that TRC105-mediated Eng blockage can counteract the hypercholesterolemia- and hyperglycemia-induced endothelial dysfunction in HAoECs, suggesting that Eng might be a potential therapeutic target in disorders associated with elevated cholesterol and glucose levels.
Collapse
Affiliation(s)
- Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ivone Cristina Igreja Sá
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Matej Vicen
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Zuzana Svobodova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Charles Theuer
- Tracon Pharmaceuticals, Inc., San Diego, CA, United States
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Petr Nachtigal,
| |
Collapse
|
15
|
Bastos AGP, Carvalho B, Silva R, Leitão D, Linhares P, Vaz R, Lima J. Endoglin (CD105) and proliferation index in recurrent glioblastoma treated with anti-angiogenic therapy. Front Oncol 2022; 12:910196. [PMID: 36147918 PMCID: PMC9486379 DOI: 10.3389/fonc.2022.910196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction CD105 is an angiogenic biomarker that is useful to determine the microvessel density (MVD) within a tumor, namely, in highly vascularized tumors like glioblastoma (GBM). However, its expression has shown inconsistent associations with the prognosis of GBM patients. The aim of this study was to evaluate the value of MVD-CD105 (microvessel density assessed with anti-CD105 antibody) and Ki-67 (proliferation index marker) as prognostic and therapy response biomarkers, specifically in primary tumors and in recurrent tumoral specimens of a cohort of GBM patients treated with bevacizumab upon recurrence. Materials and methods We conducted a retrospective study of 102 consecutive GBM patients treated with bevacizumab upon recurrence at CHUSJ between 2010 and 2017. Demographic, clinical, and survival data of all patients were collected and analyzed. The tissue expression of MVD-CD105 and Ki-67 in primary and recurrent specimens was correlated with progression-free survival after temozolomide (PFS-1), progression-free survival after bevacizumab (PFS-2), and overall survival (OS). Results The immunohistochemical expression score for MVD-CD105 was similar in primary and recurrent tumoral specimens (mean scores of 15 and 16, respectively). Likewise, the mean Ki-67 expression was similar in primary (mean of 31% of tumor cells) and recurrent tumoral specimens (mean of 29% of tumor cells). MVD-CD105 expression in primary tumors had no impact on PFS-1, PFS-2, or OS. At recurrence, patients whose tumors showed increased MVD-CD105 had worse median PFS-2 (2 vs. 8 months, p = 0.045) and OS (17 vs. 26 months, p = 0.007) compared to those whose tumors showed lower MVD-CD105. CD105 tumoral pattern and localization had no impact on prognosis. Ki-67 expression was not associated with differences in survival outcomes. Conclusion In this study, higher MVD-CD105 expression in recurrent GBM patients seems to be associated with a worse PFS-2 and OS while portending no prognostic significance in the primary tumors. This highlights the importance of keeping track of the molecular evolution of the tumor over the course of the disease.
Collapse
Affiliation(s)
| | - Bruno Carvalho
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Neurosurgery, Centro Hospitalar Universitário S. João, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), R. Alfredo Allen Porto, Porto, Portugal
- *Correspondence: Bruno Carvalho,
| | - Roberto Silva
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Dina Leitão
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Paulo Linhares
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Neurosurgery, Centro Hospitalar Universitário S. João, Porto, Portugal
- Neurosciences Center-CUF Hospital, Porto, Portugal
| | - Rui Vaz
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Neurosurgery, Centro Hospitalar Universitário S. João, Porto, Portugal
- Neurosciences Center-CUF Hospital, Porto, Portugal
| | - Jorge Lima
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), R. Alfredo Allen Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| |
Collapse
|
16
|
Li J, Ek F, Olsson R, Belting M, Bengzon J. Glioblastoma CD105 + cells define a SOX2 - cancer stem cell-like subpopulation in the pre-invasive niche. Acta Neuropathol Commun 2022; 10:126. [PMID: 36038950 PMCID: PMC9426031 DOI: 10.1186/s40478-022-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. Glioma stem like cells (GSC) represent the highest cellular hierarchy in GBM and have a determining role in tumor growth, recurrence and patient prognosis. However, a better definition of GSC subpopulations, especially at the surgical resection margin, is warranted for improved oncological treatment options. The present study interrogated cells expressing CD105 (CD105+) specifically within the tumor front and the pre-invasive niche as a potential GSC subpopulation. GBM primary cell lines were generated from patients (n = 18) and CD105+ cells were isolated and assessed for stem-like characteristics. In vitro, CD105+ cells proliferated and enriched in serum-containing medium but not in serum-free conditions. CD105+ cells were characterized by Nestin+, Vimentin+ and SOX2-, clearly distinguishing them from SOX2+ GCS. GBM CD105+ cells differentiated into osteocytes and adipocytes but not chondrocytes. Exome sequencing revealed that GBM CD105+ cells matched 83% of somatic mutations in the Cancer cell line encyclopedia, indicating a malignant phenotype and in vivo xenotransplantation assays verified their tumorigenic potential. Cytokine assays showed that immunosuppressive and protumorigenic cytokines such as IL6, IL8, CCL2, CXCL-1 were produced by CD105+ cells. Finally, screening for 88 clinical drugs revealed that GBM CD105+ cells are resistant to most chemotherapeutics except Doxorubicin, Idarubicin, Fludarabine and ABT-751. Our study provides a rationale for targeting tumoral CD105+ cells in order to reshape the tumor microenvironment and block GBM progression.
Collapse
Affiliation(s)
- Jiaxin Li
- Stem Cell Center, Lund University, Lund, Sweden.
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mattias Belting
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiophysics, Skane University Hospital, Lund, Sweden
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem 2022; 477:479-491. [PMID: 34783962 DOI: 10.1007/s11010-021-04294-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia remains till today a leading cause of maternal and fetal morbidity and mortality. Pathophysiology of the disease is not yet fully elucidated, though it is evident that it revolves around placenta. Cellular ischemia in the preeclamptic placenta creates an imbalance between angiogenic and anti-angiogenic factors in maternal circulation. Endoglin, a transmembrane co-receptor of transforming growth factor β (TGF-β) demonstrating angiogenic effects, is involved in a variety of angiogenesis-dependent diseases with endothelial dysfunction, including preeclampsia. Endoglin expression is up-regulated in preeclamptic placentas, through mechanisms mainly induced by hypoxia, oxidative stress and oxysterol-mediated activation of liver X receptors. Overexpression of endoglin results in an increase of its soluble form in maternal circulation. Soluble endoglin represents the extracellular domain of membrane endoglin, cleaved by the action of metalloproteinases, predominantly matrix metalloproteinase-14. Released in circulation, soluble endoglin interferes in TGF-β1 and activin receptor-like kinase 1 signaling pathways and inhibits endothelial nitric oxide synthase activation, consequently deranging angiogenesis and promoting vasoconstriction. Due to these properties, soluble endoglin actively contributes to the impaired placentation observed in preeclampsia, as well as to the pathogenesis and manifestation of its clinical signs and symptoms, especially hypertension and proteinuria. The significant role of endoglin and soluble endoglin in pathophysiology of preeclampsia could have prognostic, diagnostic and therapeutic perspectives. Further research is essential to extensively explore the potential use of these molecules in the management of preeclampsia in clinical settings.
Collapse
Affiliation(s)
- Georgia Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece.
| | - Chrysoula Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Kosmas Margaritis
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, IVF Unit, Villa Sofia Cervello Hospital, University of Palermo, Palermo, Italy
| | - Maria Alexandratou
- Department of Radiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Alexandros Sotiriadis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Georgios Mavromatidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| |
Collapse
|
18
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Ruiz-Llorente L, Vega MC, Fernández FJ, Langa C, Morrell NW, Upton PD, Bernabeu C. Generation of a Soluble Form of Human Endoglin Fused to Green Fluorescent Protein. Int J Mol Sci 2021; 22:ijms222011282. [PMID: 34681942 PMCID: PMC8539536 DOI: 10.3390/ijms222011282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
| | - Francisco J. Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
| | - Carmen Langa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.W.M.); (P.D.U.)
| | - Paul D. Upton
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.W.M.); (P.D.U.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (L.R.-L.); (M.C.V.); (F.J.F.); (C.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
20
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Zhang Y, Long J, Ren J, Huang X, Zhong P, Wang B. Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects. Front Oncol 2021; 11:731441. [PMID: 34646772 PMCID: PMC8503266 DOI: 10.3389/fonc.2021.731441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannomas (VSs, also known as acoustic neuromas) are relatively rare benign brain tumors stem from the Schwann cells of the eighth cranial nerve. Tumor growth is the paramount factor for neurosurgeons to decide whether to choose aggressive treatment approach or careful follow-up with regular magnetic resonance imaging (MRI), as surgery and radiation can introduce significant trauma and affect neurological function, while tumor enlargement during long-term follow-up will compress the adjacent nerves and tissues, causing progressive hearing loss, tinnitus and vertigo. Recently, with the deepening research of VS biology, some proteins that regulate merlin conformation changes, inflammatory cytokines, miRNAs, tissue proteins and cerebrospinal fluid (CSF) components have been proposed to be closely related to tumor volume increase. In this review, we discuss advances in the study of biomarkers that associated with VS growth, providing a reference for exploring the growth course of VS and determining the optimal treatment strategy for each patient.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Junwei Ren
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
23
|
Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063208. [PMID: 33809908 PMCID: PMC8004096 DOI: 10.3390/ijms22063208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Endoglin (CD105) is a type-1 integral transmembrane glycoprotein and coreceptor for transforming growth factor-β (TGF-β) ligands. The endoglin/TGF-β signaling pathway regulates hemostasis, cell proliferation/migration, extracellular matrix (ECM) synthesis and angiogenesis. Angiogenesis contributes to early progression, invasion, postoperative recurrence, and metastasis in hepatocellular carcinoma (HCC), one of the most widespread malignancies globally. Endoglin is overexpressed in newly formed HCC microvessels. It increases microvessel density in cirrhotic and regenerative HCC nodules. In addition, circulating endoglin is present in HCC patients, suggesting potential for use as a diagnostic or prognostic factor. HCC angiogenesis is dynamic and endoglin expression varies by stage. TRC105 (carotuximab) is an antibody against endoglin, and three of its clinical trials were related to liver diseases. A partial response was achieved when combining TRC105 with sorafenib. Although antiangiogenic therapy still carries some risks, combination therapy with endoglin inhibitors or other targeted therapies holds promise.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - I-Shyan Sheen
- Department of Hepatogastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan city 33305, Taiwan;
| | - Shu-Sheng Lin
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei city 11221, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
- Correspondence: ; Tel.: +886-2-7728-4564
| |
Collapse
|