1
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
2
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
3
|
Veviorskiy A, Mkrtchyan GV, Osipov AN, Izumchenko E, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. Variability in radiotherapy outcomes across cancer types: a comparative study of glioblastoma multiforme and low-grade gliomas. Aging (Albany NY) 2025; 17:550-562. [PMID: 40015963 DOI: 10.18632/aging.206212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Radiotherapy is a crucial treatment option for various cancers. However, the results of radiotherapy can vary widely across different cancer types and even among patients with the same type of cancer. This variability presents a major challenge in optimizing treatment strategies and improving patient survival. Here, we collected radiotherapy phenotype and expression data from 32 TCGA cancer datasets and performed overall survival analysis for 32 cancer types. Additionally, we conducted a signaling pathway enrichment analysis to identify key pathways involved in radiotherapy resistance and sensitivity. Our findings show that radiotherapy improves survival outcomes in certain cancer types, such as glioblasoma multiforme (GBM), while worsening outcomes in others, such as low-grade glioma (LGG). Next, we focused on exploring the differences in radiotherapy outcomes between GBM and LGG, focusing on the molecular mechanisms contributing to these variations. We identify differential regulation of pathways related to programmed cell death, DNA repair, telomere maintenance, chromosome condensation, antiviral responses, and interferon signaling between GBM and LGG patients perhaps explaining radiotherapy efficacy. A genetic analysis confirmed the importance of immune response and radiotherapy outcome for LGG patients. These insights underscore the importance of personalized treatment approaches and the need for further research to improve radiotherapy outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Garik V Mkrtchyan
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| | | | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan V Ozerov
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alex Aliper
- Insilico Medicine AI Limited, Abu Dhabi, UAE
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
- Insilico Medicine Canada Inc., René-Lévesque Blvd W, Montreal, Quebec H3B 4W8, Canada
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang X, Li J, Huang Y, Yang A, Liu X, Luo Y, Tian H, Wen M, Zhong C, Peng B, Sun H, Zheng L. Plasma extracellular vesicles from recurrent GBMs carrying LDHA to activate glioblastoma stemness by enhancing glycolysis. Theranostics 2025; 15:3655-3672. [PMID: 40093910 PMCID: PMC11905145 DOI: 10.7150/thno.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Glioblastoma multiforme (GBM) is the most aggressive primary malignant brain tumor in adults, characterized by high invasiveness and poor prognosis. Glioma stem cells (GSCs) drive GBM treatment resistance and recurrence, however, the molecular mechanisms activating intracranial GSCs remain unclear. Extracellular vesicles (EVs) are crucial signaling mediators in regulating cell metabolism and can cross the blood-brain barrier (BBB). This study aimed to elucidate how EV cargo contributes to the intracranial GSC state and validate a non-invasive diagnostic strategy for GBM relapse. Methods: We isolated plasma extracellular vesicles (pl-EVs) from three groups: recurrent GBM patients post-resection, non-recurrent GBM patients post-resection, and healthy individuals. Newly diagnosed GBM patients served as an additional control. EVs were characterized and co-cultured with primary GBM cell lines to assess their effect on tumor stemness. EV cargo was analyzed using proteomics to investigate specific EV subpopulations contributing to GBM relapse. Based on these findings, we generated engineered LDHA-enriched EVs (LDHA-EVs) and co-cultured them with patient-derived organoids (PDOs). Metabolomics was performed to elucidate the underlying signal transduction pathways. Results: Our study demonstrated that pl-EVs from recurrent GBM patients enhanced aerobic glycolysis and stemness in GBM cells. Proteomic analysis revealed that plasma EVs from recurrent GBMs encapsulated considerable amounts of the enzyme lactate dehydrogenase A (LDHA). Mechanistically, LDHA-loaded EVs promoted glycolysis, induced cAMP/ATP cycling, and accelerated lactate production, thereby maintained the GSC phenotype. Concurrently, post-surgical therapy-induced stress-modulated hypoxia in residual tumors, promoted LDHA-enriched EV release. Clinically, high levels of circulating LDHA-positive EVs correlated with increased glycolysis, poor therapeutic response, and shorter survival in recurrent GBM patients. Conclusion: Our study highlights LDHA-loaded EVs as key mediators promoting GSC properties and metabolic reprogramming in GBM. These findings provide insights into recurrence mechanisms and suggest potential liquid biopsy approaches for monitoring and preventing GBM relapse.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Institution of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - JunJie Li
- Institution of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anming Yang
- Institution of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliu Liu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhao Luo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Tian
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengzong Zhong
- Institution of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Peng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Institution of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Geng J, Shao Y, Pu Y, Wu Y, Yang Z. Transcription Factor CEBPD-Mediated WTAP Facilitates the Stemness, Growth, Migration and Glycolysis of Glioblastoma Stem Like Cells. Neurochem Res 2025; 50:100. [PMID: 39945969 DOI: 10.1007/s11064-024-04321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 04/26/2025]
Abstract
Glioblastoma stem like cells (GSCs) are a group of cells with strong tumorigenicity that exist in glioblastoma (GBM). Wilms tumor 1-associated protein (WTAP) is thought to promote the malignant process of GBM. However, whether WTAP regulates GSCs function to mediate GBM process is still unclear. The expression levels of WTAP and CCAAT/enhancer-binding protein delta (CEBPD) were examined by qRT-PCR and western blot. GSCs stemness, proliferation, apoptosis, and migration were assessed using sphere formation assay, CCK8 assay, EdU assay, colony formation assay, flow cytometry and transwell assay. Cell glycolysis was evaluated by testing glucose consumption and lactification. The regulation of CEBPD on WTAP was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to explore the effect of CEBPD/WTAP on the tumorigenicity of GSCs. WTAP and CEBPD had increased expression in GBM tissues and GSCs. Silencing of WTAP suppressed GSCs stemnness, proliferation, migration, glycolysis and promoted apoptosis. CEBPD could bind to WTAP promoter region to enhance its transcription. Besides, WTAP overexpression reversed the suppressive effect of CEBPD knockdown on GSCs stemnness, growth, migration and glycolysis in vitro, as well as the reducing effect on tumorigenicity of GSCs in vivo. CEBPD/WTAP axis played a vital role in regulating GSCs function, providing a potential therapy target for GBM.
Collapse
Affiliation(s)
- Jiong Geng
- Department of Emergency, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, 214023, China
| | - Yun Shao
- Department of Neurosurgery, Nanjing Medical University Affiliated Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Yi Pu
- Department of Neurosurgery, Nanjing Medical University Affiliated Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Yiping Wu
- Department of Neurosurgery, Nanjing Medical University Affiliated Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Zhengxiang Yang
- Department of Neurosurgery, Nanjing Medical University Affiliated Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
6
|
Markov AV, Moralev AD, Odarenko KV. Sesquiterpene Lactones as Promising Anti-Glioblastoma Drug Candidates Exerting Complex Effects on Glioblastoma Cell Viability and Proneural-Mesenchymal Transition. Biomedicines 2025; 13:133. [PMID: 39857717 PMCID: PMC11761231 DOI: 10.3390/biomedicines13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma is one of the most aggressive brain cancers, characterized by active infiltrative growth and high resistance to radiotherapy and chemotherapy. Sesquiterpene triterpenoids (STLs) and their semi-synthetic analogs are considered as a promising source of novel anti-tumor agents due to their low systemic toxicity and multi-target pharmacological effects on key processes associated with tumor progression. The current review aims to systematize the knowledge on the anti-glioblastoma potential of STLs accumulated over the last decade and to identify key processes in glioblastoma cells that are most susceptible to the action of STLs. An analysis of published data clearly demonstrated that STLs, which can successfully cross the blood-brain barrier, exert a complex inhibitory effect on glioblastoma cells through the induction of the "mitochondrial dysfunction-oxidative stress-apoptosis" axis, the inhibition of glucose metabolism and cell cycle phase transition, and the suppression of glioblastoma cell motility and invasion through the blockade of proneural-mesenchymal transition. Taken together, this review highlights the promising anti-glioblastoma potential of STLs, which are not only able to induce glioblastoma cell death, but also effectively affect their diffusive spread, and suggests the possible directions for further investigation of STLs in the context of glioblastoma to better understand their mechanism of action.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Avenue 8, 630090 Novosibirsk, Russia; (A.D.M.); (K.V.O.)
| | | | | |
Collapse
|
7
|
Pun S, Prakash A, Demaree D, Krummel DP, Sciumè G, Sengupta S, Barrile R. Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma. Adv Healthc Mater 2024; 13:e2401876. [PMID: 39101329 PMCID: PMC11616263 DOI: 10.1002/adhm.202401876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
| | - Anusha Prakash
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- AbbvieWorcesterMassachusetts01605USA
| | - Dalee Demaree
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Thermo Fisher ScientificWalthamMassachusetts02451USA
| | - Daniel Pomeranz Krummel
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
| | - Giuseppe Sciumè
- Institute of Mechanics and Engineering‐12 MUniversity of BordeauxBordeaux33607France
| | - Soma Sengupta
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
- Department of NeurologyUniversity of North CarolinaChapel HillNC27599‐7025USA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNC27599‐7295USA
| | - Riccardo Barrile
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Center for Stem Cells and Organoid Medicine (CuSTOM)Cincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| |
Collapse
|
8
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
10
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024; 40:1963-1984. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Du R, Sanin AY, Shi W, Huang B, Nickel AC, Vargas-Toscano A, Huo S, Nickl-Jockschat T, Dumitru CA, Hu W, Duan S, Sandalcioglu IE, Croner RS, Alcaniz J, Walther W, Berndt C, Kahlert UD. Muscarinic receptor drug trihexyphenidyl can alter growth of mesenchymal glioblastoma in vivo. Front Pharmacol 2024; 15:1468920. [PMID: 39386028 PMCID: PMC11461351 DOI: 10.3389/fphar.2024.1468920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Glioblastoma (GBM) is the most commonly occurring and most aggressive primary brain tumor. Transcriptomics-based tumor subtype classification has established the mesenchymal lineage of GBM (MES-GBM) as cancers with particular aggressive behavior and high levels of therapy resistance. Previously it was show that Trihexyphenidyl (THP), a market approved M1 muscarinic receptor-targeting oral drug can suppress proliferation and survival of GBM stem cells from the classical transcriptomic subtype. In a series of in vitro experiments, this study confirms the therapeutic potential of THP, by effectively suppressing the growth, proliferation and survival of MES-GBM cells with limited effects on non-tumor cells. Transcriptomic profiling of treated cancer cells identified genes and associated metabolic signaling pathways as possible underlying molecular mechanisms responsible for THP-induced effects. In vivo trials of THP in immunocompromised mice carry orthotopic MES-GBMs showed moderate response to the drug. This study further highlights the potential of THP repurposing as an anti-cancer treatment regimen but mode of action and d optimal treatment procedures for in vivo regimens need to be investigated further.
Collapse
Affiliation(s)
- Renfei Du
- Chifeng Municipal Hospital, Chifeng, China
- Clinic for Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Ahmed Y. Sanin
- Molecular and Experimental Surgery, Clinic for General-, Visceral -, Vascular- and Transplantation Surgery, Medical Faculty and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenjie Shi
- Molecular and Experimental Surgery, Clinic for General-, Visceral -, Vascular- and Transplantation Surgery, Medical Faculty and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Bing Huang
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Andres Vargas-Toscano
- Clinic for Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Claudia A. Dumitru
- Clinic for Neurosurgery, Medical Faculty and University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Wei Hu
- Chifeng Municipal Hospital, Chifeng, China
| | - Siyu Duan
- Chifeng Municipal Hospital, Chifeng, China
| | - I. Erol Sandalcioglu
- Clinic for Neurosurgery, Medical Faculty and University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Roland S. Croner
- Molecular and Experimental Surgery, Clinic for General-, Visceral -, Vascular- and Transplantation Surgery, Medical Faculty and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Joshua Alcaniz
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Carsten Berndt
- Clinic for Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral -, Vascular- and Transplantation Surgery, Medical Faculty and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Chakraborty S, Wei D, Tran M, Lang FF, Newman RA, Yang P. PBI-05204, a supercritical CO 2 extract of Nerium oleander, suppresses glioblastoma stem cells by inhibiting GRP78 and inducing programmed necroptotic cell death. Neoplasia 2024; 54:101008. [PMID: 38823209 PMCID: PMC11177059 DOI: 10.1016/j.neo.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Newman
- Phoenix Biotechnology, San Antonio, Texas 78217, United States
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.
| |
Collapse
|
13
|
Jangholi E, Tehran HA, Ghasemi A, Hoseinian M, Firoozi S, Ghodsi SM, Tamaddon M, Bereimipour A, Hadjighassem M. Evaluation of secretome biomarkers in glioblastoma cancer stem cells: A bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2080. [PMID: 38967113 PMCID: PMC11224916 DOI: 10.1002/cnr2.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.
Collapse
Affiliation(s)
- Ehsan Jangholi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Hoda Ahmari Tehran
- Department of Medical EducationQom University of Medical SciencesQomIran
| | - Afsaneh Ghasemi
- Department of Public HealthSchool of Health, Fasa University of Medical SciencesFasaIran
| | - Mohammad Hoseinian
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| | - Sina Firoozi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Mohammad Ghodsi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Mona Tamaddon
- Chronic Disease Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Zhao Y, Chen Y, Liu R, Liu M, You N, Zhao K, Zhang J, Xu B. Knockdown of ATRX enhances radiosensitivity in glioblastoma. Chin Neurosurg J 2024; 10:19. [PMID: 38898533 PMCID: PMC11186225 DOI: 10.1186/s41016-024-00371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Glioblastoma are highly malignant type of primary brain tumors. Treatment for glioblastoma multiforme (GBM) generally involves surgery combined with chemotherapy and radiotherapy. However, the development of tumoral chemo- and radioresistance induces complexities in clinical practice. Multiple signaling pathways are known to be involved in radiation-induced cell survival. However, the role of alpha-thalassemia X-linked mutant retardation syndrome (ATRX), a chromatin remodeling protein, in GBM radioresistance remains unclear. METHODS In the present study, the ATRX mutation rate in patients with glioma was obtained from The Cancer Genome Atlas, while its expression analyzed using bioinformatics. Datasets were also obtained from the Gene Expression Omnibus, and ATRX expression levels following irradiation of GBM were determined. The effects of ATRX on radiosensitivity were investigated using a knockdown assays. RESULTS The present study demonstrated that the ATRX mutation rate in patients with GBM was significantly lower than that in patients with low-grade glioma, and that patients harboring an ATRX mutation exhibited a prolonged survival, compared with to those harboring the wild-type gene. Single-cell RNA sequencing demonstrated that ATRX counts increased 2 days after irradiation, with ATRX expression levels also increasing in U-251MG radioresistant cells. Moreover, the results of in vitro irradiation assays revealed that ATRX expression was increased in U-251MG cells, while ATRX knockdown was associated with increased levels of radiosensitivity. CONCLUSIONS High ATRX expression levels in primary GBM may contribute to high levels of radioresistance. Thus ATRX is a potential target for overcoming the radioresistance in GBM.
Collapse
Affiliation(s)
- Yue Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572014, Hainan, China
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yifei Chen
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruoyu Liu
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Minghang Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na You
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kai Zhao
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiashu Zhang
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Bainan Xu
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
15
|
Abdelrahman Z, Abdelatty A, Luo J, McKnight AJ, Wang X. Stratification of glioma based on stemness scores in bulk and single-cell transcriptomes. Comput Biol Med 2024; 175:108304. [PMID: 38663352 DOI: 10.1016/j.compbiomed.2024.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Brain tumours are known to have a high mortality and morbidity rate due to their localised and frequent invasive growth. The concept that glioma resistance could originate from the dissimilarity in the vulnerability of clonogenic glial stem cells to chemotherapeutic drugs and radiation has driven the scientific community to reexamine the comprehension of glioma growth and strategies that target these cells or modify their stemness. METHODS Based on the enrichment scores of 12 stemness signatures, we identified glioma subtypes in both tumour bulks and single cells by clustering analysis. Furthermore, we comprehensively compared molecular and clinical features among the glioma subtypes. RESULTS Consistently, in seven different datasets, hierarchical clustering uncovered three subtypes of glioma, termed Stem-H, Stem-M, and Stem-L, with high, medium, and low stemness signatures, respectively. Stem-H and Stem-L exhibited the most unfavorable and favourable overall and disease-free survival, respectively. Stem-H showed the highest enrichment scores of the EMT, invasion, proliferation, differentiation, and metastasis processes signatures, while Stem-L displayed the lowest. Stem-H harboured a greater proportion of late-stage tumours compared to Stem-L. Moreover, Stem-H manifested higher tumour mutation burden, DNA damage repair and cell cycle activity, intratumour heterogeneity, and a more frequent incidence of TP53 and EGFR mutations than Stem-L. In contrast, Stem-L had higher O6-Methylguanine-DNA Methyltransferase (MGMT) methylation levels. CONCLUSION The classification of glioma based on stemness may offer new insights into the biology of the tumour, as well as more accurate clinical management of the disease.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
| | - Alaa Abdelatty
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Agosti E, Zeppieri M, Ghidoni M, Ius T, Tel A, Fontanella MM, Panciani PP. Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments. World J Stem Cells 2024; 16:604-614. [PMID: 38817336 PMCID: PMC11135247 DOI: 10.4252/wjsc.v16.i5.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy. Glioma stem cells (GSCs), a subset within tumors, contribute to resistance, tumor heterogeneity, and plasticity. Recent studies reveal GSCs' role in therapeutic resistance, driven by DNA repair mechanisms and dynamic transitions between cellular states. Resistance mechanisms can involve different cellular pathways, most of which have been recently reported in the literature. Despite progress, targeted therapeutic approaches lack consensus due to GSCs' high plasticity. AIM To analyze targeted therapies against GSC-mediated resistance to radio- and chemotherapy in gliomas, focusing on underlying mechanisms. METHODS A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to September 30, 2023. The search strategy utilized relevant Medical Subject Heading terms and keywords related to including "glioma stem cells", "radiotherapy", "chemotherapy", "resistance", and "targeted therapies". Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated resistance to radiotherapy resistance (RTR). RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI, 452 papers were initially identified, with 203 chosen for full-text analysis. Among them, 201 were deemed eligible after excluding 168 for various reasons. The temporal breakdown of studies illustrates this trend: 2005-2010 (33.3%), 2011-2015 (36.4%), and 2016-2022 (30.3%). Key GSC models, particularly U87 (33.3%), U251 (15.2%), and T98G (15.2%), emerge as significant in research, reflecting their representativeness of glioma characteristics. Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) (27.3%) and Notch (12.1%) pathways, suggesting their crucial roles in resistance development. Targeted molecules with mTOR (18.2%), CHK1/2 (15.2%), and ATP binding cassette G2 (12.1%) as frequent targets underscore their importance in overcoming GSC-mediated resistance. Various therapeutic agents, notably RNA inhibitor/short hairpin RNA (27.3%), inhibitors (e.g., LY294002, NVP-BEZ235) (24.2%), and monoclonal antibodies (e.g., cetuximab) (9.1%), demonstrate versatility in targeted therapies. among 20 studies (60.6%), the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance (51.5%), followed by reductions in carmustine resistance (9.1%) and doxorubicin resistance (3.0%), while resistance to RTR is reduced in 42.4% of studies. CONCLUSION GSCs play a complex role in mediating radioresistance and chemoresistance, emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| | - Mattia Ghidoni
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Head-Neck and NeuroScience, University Hospital of Udine, Udine 33100, Italy
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Department of Head-Neck and NeuroScience, University Hospital of Udine, Udine 33100, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
17
|
Zhou H, Chen M, Zhao C, Shao R, Xu Y, Zhao W. The Natural Product Secoemestrin C Inhibits Colorectal Cancer Stem Cells via p38-S100A8 Feed-Forward Regulatory Loop. Cells 2024; 13:620. [PMID: 38607060 PMCID: PMC11011747 DOI: 10.3390/cells13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cancer stem cells (CSCs) are closely associated with tumor initiation, metastasis, chemoresistance, and recurrence, which represent some of the primary obstacles to cancer treatment. Targeting CSCs has become an important therapeutic approach to cancer care. Secoemestrin C (Sec C) is a natural compound with strong anti-tumor activity and low toxicity. Here, we report that Sec C effectively inhibited colorectal CSCs and non-CSCs concurrently, mainly by inhibiting proliferation, self-renewal, metastasis, and drug resistance. Mechanistically, RNA-seq analysis showed that the pro-inflammation pathway of the IL17 axis was enriched, and its effector S100A8 was dramatically decreased in Sec C-treated cells, whose roles in the stemness of CSCs have not been fully clarified. We found that the overexpression of S100A8 hindered the anti-CSCs effect of Sec C, and S100A8 deficiency attenuated the stemness traits of CSCs to enhance the Sec C killing activity on them. Meanwhile, the p38 signal pathway, belonging to the IL17 downstream axis, can also mediate CSCs and counter with Sec C. Notably, we found that S100A8 upregulation increased the p38 protein level, and p38, in turn, promoted S100A8 expression. This indicated that p38 may have a mutual feedback loop with S100A8. Our study discovered that Sec C was a powerful anti-colorectal CSC agent, and that the positive feedback loop of p38-S100A8 mediated Sec C activity. This showed that Sec C could act as a promising clinical candidate in colorectal cancer treatment, and S100A8 could be a prospective drug target.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| |
Collapse
|
18
|
Lombardi F, Augello FR, Artone S, Ciafarone A, Topi S, Cifone MG, Cinque B, Palumbo P. Involvement of Cyclooxygenase-2 in Establishing an Immunosuppressive Microenvironment in Tumorspheres Derived from TMZ-Resistant Glioblastoma Cell Lines and Primary Cultures. Cells 2024; 13:258. [PMID: 38334650 PMCID: PMC10854914 DOI: 10.3390/cells13030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Glioblastoma (GBM) is characterized by an immunosuppressive tumor microenvironment (TME) strictly associated with therapy resistance. Cyclooxygenase-2 (COX-2) fuels GBM proliferation, stemness, and chemoresistance. We previously reported that COX-2 upregulation induced by temozolomide (TMZ) supported chemoresistance. Also, COX-2 transfer by extracellular vesicles released by T98G promoted M2 polarization in macrophages, whereas COX-2 inhibition counteracted these effects. Here, we investigated the COX-2 role in the stemness potential and modulation of the GBM immunosuppressive microenvironment. The presence of macrophages U937 within tumorspheres derived from GBM cell lines and primary cultures exposed to celecoxib (COX-2 inhibitor) with or without TMZ was studied by confocal microscopy. M2 polarization was analyzed by TGFβ-1 and CD206 levels. Osteopontin (OPN), a crucial player within the TME by driving the macrophages' infiltration, and CD44 expression was assessed by Western blot. TMZ strongly enhanced tumorsphere size and induced the M2 polarization of infiltrating macrophages. In macrophage-infiltrated tumorspheres, TMZ upregulated OPN and CD44 expression. These TMZ effects were counteracted by the concurrent addition of CXB. Remarkably, exogenous prostaglandin-E2 restored OPN and CD44, highlighting the COX-2 pivotal role in the protumor macrophages' state promotion. COX-2 inhibition interfered with TMZ's ability to induce M2-polarization and counteracted the development of an immunosuppressive TME.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Serena Artone
- PhD School in Medicine and Public Health, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessia Ciafarone
- PhD School in Health & Environmental Sciences, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, Aleksandër Xhuvani University, 3001 Elbasan, Albania;
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (M.G.C.); (B.C.)
| |
Collapse
|
19
|
Ramar V, Guo S, Hudson B, Liu M. Progress in Glioma Stem Cell Research. Cancers (Basel) 2023; 16:102. [PMID: 38201528 PMCID: PMC10778204 DOI: 10.3390/cancers16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents a diverse spectrum of primary tumors notorious for their resistance to established therapeutic modalities. Despite aggressive interventions like surgery, radiation, and chemotherapy, these tumors, due to factors such as the blood-brain barrier, tumor heterogeneity, glioma stem cells (GSCs), drug efflux pumps, and DNA damage repair mechanisms, persist beyond complete isolation, resulting in dismal outcomes for glioma patients. Presently, the standard initial approach comprises surgical excision followed by concurrent chemotherapy, where temozolomide (TMZ) serves as the foremost option in managing GBM patients. Subsequent adjuvant chemotherapy follows this regimen. Emerging therapeutic approaches encompass immunotherapy, including checkpoint inhibitors, and targeted treatments, such as bevacizumab, aiming to exploit vulnerabilities within GBM cells. Nevertheless, there exists a pressing imperative to devise innovative strategies for both diagnosing and treating GBM. This review emphasizes the current knowledge of GSC biology, molecular mechanisms, and associations with various signals and/or pathways, such as the epidermal growth factor receptor, PI3K/AKT/mTOR, HGFR/c-MET, NF-κB, Wnt, Notch, and STAT3 pathways. Metabolic reprogramming in GSCs has also been reported with the prominent activation of the glycolytic pathway, comprising aldehyde dehydrogenase family genes. We also discuss potential therapeutic approaches to GSC targets and currently used inhibitors, as well as their mode of action on GSC targets.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr., New Orleans, LA 70125, USA;
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| |
Collapse
|
20
|
Chiariello M, Inzalaco G, Barone V, Gherardini L. Overcoming challenges in glioblastoma treatment: targeting infiltrating cancer cells and harnessing the tumor microenvironment. Front Cell Neurosci 2023; 17:1327621. [PMID: 38188666 PMCID: PMC10767996 DOI: 10.3389/fncel.2023.1327621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma (GB) is a highly malignant primary brain tumor with limited treatment options and poor prognosis. Despite current treatment approaches, including surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), GB remains mostly incurable due to its invasive growth pattern, limited drug penetration beyond the blood-brain barrier (BBB), and resistance to conventional therapies. One of the main challenges in GB treatment is effectively eliminating infiltrating cancer cells that remain in the brain parenchyma after primary tumor resection. We've reviewed the most recent challenges and surveyed the potential strategies aimed at enhancing local treatment outcomes.
Collapse
Affiliation(s)
- Mario Chiariello
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| | - Giovanni Inzalaco
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Fiorentina, Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Via Fiorentina, Siena, Italy
| |
Collapse
|
21
|
Hasan U, Rajakumara E, Giri J. Reversal of Multidrug Resistance by the Synergistic Effect of Reversan and Hyperthermia to Potentiate the Chemotherapeutic Response of Doxorubicin in Glioblastoma and Glioblastoma Stem Cells. ACS APPLIED BIO MATERIALS 2023; 6:5399-5413. [PMID: 37975516 DOI: 10.1021/acsabm.3c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The glioblastoma stem cell (GSC) population in glioblastoma multiforme (GBM) poses major complication in clinical oncology owing to increased resistance to chemotherapeutic drugs, thereby limiting treatment in patients with recurring glioblastoma. To completely eradicate glioblastoma, a single therapy module is not enough; therefore, there is a need to develop a multimodal approach to eliminate bulk tumors along with the CSC population. With an aim to target transporters associated with multidrug resistance (MDR), such as P-glycoprotein (P-gp), a small-molecule inhibitor, reversan (RV) was used along with multifunctional magnetic nanoparticles (MNPs) for hyperthermia (HT) therapy and targeted drug delivery. Higher efflux of free doxorubicin (Dox) from the cells was stabilized by encapsulation in PPS-MnFe nanoparticles, whose physicochemical properties were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Treatment with RV also enhanced the cellular uptake of PPS-MnFe-Dox, whereas RV and magnetic hyperthermia (MHT) together showed prolonged retention of fluorescence dye, Rhodamine123 (R123), in glioblastoma cells compared with individual treatment. Overall, in this work, we demonstrated the synergistic action of RV and HT to combat MDR in GBM and GSCs, and chemo-hyperthermia therapy enhanced the cytotoxic effect of the chemotherapeutic drug Dox (with lower effective concentration) and induced a higher degree of apoptosis compared to single-drug dosage.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| |
Collapse
|
22
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
23
|
Cao Y, Liu B, Cai L, Li Y, Huang Y, Zhou Y, Sun X, Yang W, Sun T. G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther 2023; 29:2508-2521. [PMID: 36971192 PMCID: PMC10401078 DOI: 10.1111/cns.14191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/22/2023] [Accepted: 03/09/2023] [Indexed: 08/05/2023] Open
Abstract
AIM Immunotherapy for glioblastoma multiforme (GBM) is limited because of a strongly immunosuppressive tumor microenvironment (TME). Remodeling the immune TME is an effective strategy to eliminate GBM immunotherapy resistance. Glioma stem cells (GSCs) are inherently resistant to chemotherapy and radiotherapy and involved in immune evasion mechanism. This study aimed to investigate the effects of histone methyltransferases 2 (EHMT2 or G9a) on immunosuppressive TME and whether this effect was related to changes on cell stemness. METHODS Tumor-infiltrating immune cells were analyzed by flow cytometry and immunohistochemistry in orthotopic implanted glioma mice model. The gene expressions were measured by RT-qPCR, western blot, immunofluorescence, and flow cytometry. Cell viability was detected by CCK-8, and cell apoptosis and cytotoxicity were detected by flow cytometry. The interaction of G9a and F-box and WD repeat domain containing 7 (Fbxw7) promotor was verified by dual-luciferase reporter assay and chromatin immunoprecipitation. RESULTS Downregulation of G9a retarded tumor growth and extended survival in an immunocompetent glioma mouse model, promoted the filtration of IFN-γ + CD4+ and CD8+ T lymphocytes, and suppressed the filtration of PD-1+ CD4+ and CD8+ T lymphocytes, myeloid-derived suppressor cells (MDSCs) and M2-like macrophages in TME. G9a inhibition decreased PD-L1 and increased MHC-I expressions by inactivating Notch pathway companying stemness decrease in GSCs. Mechanistically, G9a bound to Fbxw7, a Notch suppressor, to inhibit gene transcription through H3K9me2 of Fbxw7 promotor. CONCLUSION G9a promotes stemness characteristics through binding Fbxw7 promotor to inhibit Fbxw7 transcription in GSCs, forming an immunosuppressive TME, which provides novel treatment strategies for targeting GSCs in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yufei Cao
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Lize Cai
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yulun Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xingjian Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Lee SG. Molecular Target and Action Mechanism of Anti-Cancer Agents. Int J Mol Sci 2023; 24:ijms24098259. [PMID: 37175963 PMCID: PMC10179523 DOI: 10.3390/ijms24098259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Precision oncology, also known as personalized medicine, is an evolving approach to cancer treatment that aims to tailor therapies to individual patients based on their unique molecular profile, including genetic alterations and other biomarkers [...].
Collapse
Affiliation(s)
- Seok-Geun Lee
- Department of Biomedical Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Colardo M, Gargano D, Russo M, Petraroia M, Pensabene D, D'Alessandro G, Santoro A, Limatola C, Segatto M, Di Bartolomeo S. Bromodomain and Extraterminal Domain (BET) Protein Inhibition Hinders Glioblastoma Progression by Inducing Autophagy-Dependent Differentiation. Int J Mol Sci 2023; 24:ijms24087017. [PMID: 37108181 PMCID: PMC10138987 DOI: 10.3390/ijms24087017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Miriam Russo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Antonio Santoro
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | |
Collapse
|
26
|
Quantitative Evaluation of Stem-like Markers of Human Glioblastoma Using Single-Cell RNA Sequencing Datasets. Cancers (Basel) 2023; 15:cancers15051557. [PMID: 36900348 PMCID: PMC10001303 DOI: 10.3390/cancers15051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like markers lack validation and comparison with common standards regarding their efficiency and feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM patients, we obtained a large pool of 2173 GBM stem-like marker candidates. To evaluate and select these candidates quantitatively, we characterized the efficiency of the candidate markers in targeting the GBM stem-like cells by their frequencies and significance of being the stem-like cluster markers. This was followed by further selection based on either their differential expression in GBM stem-like cells compared with normal brain cells or their relative expression level compared with other expressed genes. The cellular location of the translated protein was also considered. Different combinations of selection criteria highlight different markers for different application scenarios. By comparing the commonly used GSCs marker CD133 (PROM1) with markers selected by our method regarding their universality, significance, and abundance, we revealed the limitations of CD133 as a GBM stem-like marker. Overall, we propose BCAN, PTPRZ1, SOX4, etc. for laboratory-based assays with samples free of normal cells. For in vivo targeting applications that require high efficiency in targeting the stem-like subtype, the ability to distinguish GSCs from normal brain cells, and a high expression level, we recommend the intracellular marker TUBB3 and the surface markers PTPRS and GPR56.
Collapse
|
27
|
Zhang G, Xu X, Zhu L, Li S, Chen R, Lv N, Li Z, Wang J, Li Q, Zhou W, Yang P, Liu J. A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories. Stem Cells Int 2023; 2023:2826815. [PMID: 37964983 PMCID: PMC10643041 DOI: 10.1155/2023/2826815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2023] Open
Abstract
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Collapse
Affiliation(s)
- Guanghao Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luojiang Zhu
- Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China
| | - Sisi Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wang Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
29
|
Rončević A, Koruga N, Soldo Koruga A, Debeljak Ž, Rončević R, Turk T, Kretić D, Rotim T, Krivdić Dupan Z, Troha D, Perić M, Šimundić T. MALDI Imaging Mass Spectrometry of High-Grade Gliomas: A Review of Recent Progress and Future Perspective. Curr Issues Mol Biol 2023; 45:838-851. [PMID: 36826000 PMCID: PMC9955680 DOI: 10.3390/cimb45020055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the brain with a relatively short median survival and high mortality. Advanced age, high socioeconomic status, exposure to ionizing radiation, and other factors have been correlated with an increased incidence of GBM, while female sex hormones, history of allergies, and frequent use of specific drugs might exert protective effects against this disease. However, none of these explain the pathogenesis of GBM. The most recent WHO classification of CNS tumors classifies neoplasms based on their histopathological and molecular characteristics. Modern laboratory techniques, such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, enable the comprehensive metabolic analysis of the tissue sample. MALDI imaging is able to characterize the spatial distribution of a wide array of biomolecules in a sample, in combination with histological features, without sacrificing the tissue integrity. In this review, we first provide an overview of GBM epidemiology, risk, and protective factors, as well as the recent WHO classification of CNS tumors. We then provide an overview of mass spectrometry workflow, with a focus on MALDI imaging, and recent advances in cancer research. Finally, we conclude the review with studies of GBM that utilized MALDI imaging and offer our perspective on future research.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-98-169-8481
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Zdravka Krivdić Dupan
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Troha
- Department of Radiology, Vinkovci General Hospital, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Clinical Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| |
Collapse
|
30
|
Isoginkgetin-A Natural Compound to Control U87MG Glioblastoma Cell Growth and Migration Activating Apoptosis and Autophagy. Molecules 2022; 27:molecules27238335. [PMID: 36500428 PMCID: PMC9740329 DOI: 10.3390/molecules27238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Isoginkgetin (Iso) is a natural bioflavonoid isolated from the leaves of Ginkgo biloba, this natural substance exhibits many healing properties, among which the antitumor effect stands out. Here we tested the effect of Iso on the growth of U87MG glioblastoma cells. Growth curves and MTT toxicity assays showed time and dose-dependent growth inhibition of U87MG after treatment with Iso (15/25 µM) for 1, 2, and 3 days. The cell growth block of U87MG was further investigated with the colony formation test, which showed that iso treatment for 24 h reduced colony formation. The present study also aimed to evaluate the effect of Iso on U87MG glioblastoma cell migration. The FACS analysis, on the other hand, showed that treatment with Iso 15 µM determines a blockage of the cell cycle in the S1 phase. Further investigation shows that Iso treatment of U87MG altered the protein pathways of homeostasis including autophagy and apoptosis. The present study demonstrated, for the first time, that Iso could represent an excellent adjuvant drug for the treatment of glioblastoma by simultaneously activating multiple mechanisms that control the growth and migration of neoplastic cells.
Collapse
|
31
|
FMRP modulates the Wnt signalling pathway in glioblastoma. Cell Death Dis 2022; 13:719. [PMID: 35982038 PMCID: PMC9388540 DOI: 10.1038/s41419-022-05019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/21/2023]
Abstract
Converging evidence indicates that the Fragile X Messenger Ribonucleoprotein (FMRP), which absent or mutated in Fragile X Syndrome (FXS), plays a role in many types of cancers. However, while FMRP roles in brain development and function have been extensively studied, its involvement in the biology of brain tumors remains largely unexplored. Here we show, in human glioblastoma (GBM) biopsies, that increased expression of FMRP directly correlates with a worse patient outcome. In contrast, reductions in FMRP correlate with a diminished tumor growth and proliferation of human GBM stem-like cells (GSCs) in vitro in a cell culture model and in vivo in mouse brain GSC xenografts. Consistently, increased FMRP levels promote GSC proliferation. To characterize the mechanism(s) by which FMRP regulates GSC proliferation, we performed GSC transcriptome analyses in GSCs expressing high levels of FMRP, and in these GSCs after knockdown of FMRP. We show that the WNT signalling is the most significantly enriched among the published FMRP target genes and genes involved in ASD. Consistently, we find that reductions in FMRP downregulate both the canonical WNT/β-Catenin and the non-canonical WNT-ERK1/2 signalling pathways, reducing the stability of several key transcription factors (i.e. β-Catenin, CREB and ETS1) previously implicated in the modulation of malignant features of glioma cells. Our findings support a key role for FMRP in GBM cancer progression, acting via regulation of WNT signalling.
Collapse
|
32
|
Tang J, Peng S, Yan H, Ni M, Hou X, Ma P, Li Y. The role of A-kinase interacting protein 1 in regulating progression and stemness as well as indicating the prognosis in glioblastoma. Transl Oncol 2022; 22:101463. [PMID: 35691247 PMCID: PMC9194846 DOI: 10.1016/j.tranon.2022.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
AKIP1 was higher in GBM vs. LGG tissues, and in GBM cell lines vs. control cell line. AKIP1 promoted GBM cell invasion, CD133+ proportion, and sphere formation ability. PI3K/AKT, Notch, EGFR, Ras, ErbB, mTOR pathways linked with AKIP1’s function in GBM. AKIP1 correlated with poor prognosis in GBM patients.
Background A-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness, and its underlying molecular mechanisms. Methods U-87 MG and A172 cells were transfected with control or AKIP1 overexpression plasmid; control or AKIP1 siRNA plasmid. Then cell proliferation, apoptosis, invasion, CD133+ cell proportion, and sphere formation assays were performed. Furthermore, RNA-Seq was performed in U-87 MG cells. Besides, AKIP1 expression was detected in 25 GBM and 25 low-grade glioma (LGG) tumor samples. Results AKIP1 was increased in several GBM cell lines compared to the control cell line. After transfections, it was found that AKIP1 overexpression increased cell invasion, CD133+ cell proportion, and sphere formation ability while less affecting cell proliferation or cell apoptosis in U-87 MG and A172 cells. Moreover, AKIP1 siRNA achieved the opposite effect in these cells, except that it inhibited cell proliferation but induced cell apoptosis to some extent. Subsequent RNA-Seq assay showed several critical carcinogenetic pathways, such as PI3K/AKT, Notch, EGFR tyrosine kinase inhibitor resistance, Ras, ErbB, mTOR pathways, etc. were potentially related to the function of AKIP1 in U-87 MG cells. Clinically, AKIP1 expression was higher in GBM tissues than in LGG tissues, which was also correlated with the poor prognosis of GBM to some degree. Conclusions AKIP1 regulates the malignant behaviors and stemness of GBM via regulating multiple carcinogenetic pathways.
Collapse
Affiliation(s)
- Jingxia Tang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, Henan Children's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Shirong Peng
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, Henan Children's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Haifeng Yan
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, Henan Children's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Ming Ni
- Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Xiaodan Hou
- Ward of Heart Failure, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, No.7 Weiwu Road, Zhengzhou, Henan 450000, China; Department of Pharmacy, School of Clinical Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, Henan, China
| | - Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, No.7 Weiwu Road, Zhengzhou, Henan 450000, China; Department of Pharmacy, School of Clinical Medicine, People's Hospital of Henan University, Henan University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Guda MR, Tsung AJ, Asuthkar S, Velpula KK. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis 2022; 13:574. [PMID: 35773253 PMCID: PMC9247167 DOI: 10.1038/s41419-022-05024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Galectins are a family of β-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.
Collapse
Affiliation(s)
- Maheedhara R. Guda
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Andrew J. Tsung
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,Illinois Neurological Institute, Peoria, IL USA
| | - Swapna Asuthkar
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Kiran K. Velpula
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| |
Collapse
|
34
|
Rodríguez-Camacho A, Flores-Vázquez JG, Moscardini-Martelli J, Torres-Ríos JA, Olmos-Guzmán A, Ortiz-Arce CS, Cid-Sánchez DR, Pérez SR, Macías-González MDS, Hernández-Sánchez LC, Heredia-Gutiérrez JC, Contreras-Palafox GA, Suárez-Campos JDJE, Celis-López MÁ, Gutiérrez-Aceves GA, Moreno-Jiménez S. Glioblastoma Treatment: State-of-the-Art and Future Perspectives. Int J Mol Sci 2022; 23:ijms23137207. [PMID: 35806212 PMCID: PMC9267036 DOI: 10.3390/ijms23137207] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Glioblastoma is the most frequent and lethal primary tumor of the central nervous system. Through many years, research has brought various advances in glioblastoma treatment. At this time, glioblastoma management is based on maximal safe surgical resection, radiotherapy, and chemotherapy with temozolomide. Recently, bevacizumab has been added to the treatment arsenal for the recurrent scenario. Nevertheless, patients with glioblastoma still have a poor prognosis. Therefore, many efforts are being made in different clinical research areas to find a new alternative to improve overall survival, free-progression survival, and life quality in glioblastoma patients. (2) Methods: Our objective is to recap the actual state-of-the-art in glioblastoma treatment, resume the actual research and future perspectives on immunotherapy, as well as the new synthetic molecules and natural compounds that represent potential future therapies at preclinical stages. (3) Conclusions: Despite the great efforts in therapeutic research, glioblastoma management has suffered minimal changes, and the prognosis remains poor. Combined therapeutic strategies and delivery methods, including immunotherapy, synthetic molecules, natural compounds, and glioblastoma stem cell inhibition, may potentiate the standard of care therapy and represent the next step in glioblastoma management research.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Camacho
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José Guillermo Flores-Vázquez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- Correspondence:
| | - Júlia Moscardini-Martelli
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Jorge Alejandro Torres-Ríos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Alejandro Olmos-Guzmán
- Hospital de Especialidades No.1 Centro Médico Nacional del Bajío, León 37680, Mexico; (A.O.-G.); (C.S.O.-A.)
| | - Cindy Sharon Ortiz-Arce
- Hospital de Especialidades No.1 Centro Médico Nacional del Bajío, León 37680, Mexico; (A.O.-G.); (C.S.O.-A.)
| | - Dharely Raquel Cid-Sánchez
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (D.R.C.-S.); (S.R.P.)
| | - Samuel Rosales Pérez
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (D.R.C.-S.); (S.R.P.)
| | | | - Laura Crystell Hernández-Sánchez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Juan Carlos Heredia-Gutiérrez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Gabriel Alejandro Contreras-Palafox
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José de Jesús Emilio Suárez-Campos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Miguel Ángel Celis-López
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Guillermo Axayacalt Gutiérrez-Aceves
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Sergio Moreno-Jiménez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (A.R.-C.); (J.M.-M.); (J.A.T.-R.); (L.C.H.-S.); (J.C.H.-G.); (G.A.C.-P.); (J.d.J.E.S.-C.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- American British Cowdray Medical Center, Cancer Center, Mexico City 01120, Mexico
| |
Collapse
|
35
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
36
|
Crosstalk between β-Catenin and CCL2 Drives Migration of Monocytes towards Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23094562. [PMID: 35562953 PMCID: PMC9101913 DOI: 10.3390/ijms23094562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is a fast growing and highly heterogeneous tumor, often characterized by the presence of glioblastoma stem cells (GSCs). The plasticity of GSCs results in therapy resistance and impairs anti-tumor immune response by influencing immune cells in the tumor microenvironment (TME). Previously, β-catenin was associated with stemness in GBM as well as with immune escape mechanisms. Here, we investigated the effect of β-catenin on attracting monocytes towards GBM cells. In addition, we evaluated whether CCL2 is involved in β-catenin crosstalk between monocytes and tumor cells. Our analysis revealed that shRNA targeting β-catenin in GBMs reduces monocytes attraction and impacts CCL2 secretion. The addition of recombinant CCL2 restores peripheral blood mononuclear cells (PBMC) migration towards medium (TCM) conditioned by shβ-catenin GBM cells. CCL2 knockdown in GBM cells shows similar effects and reduces monocyte migration to a similar extent as β-catenin knockdown. When investigating the effect of CCL2 on β-catenin activity, we found that CCL2 modulates components of the Wnt/β-catenin pathway and alters the clonogenicity of GBM cells. In addition, the pharmacological β-catenin inhibitor MSAB reduces active β-catenin, downregulates the expression of associated genes and alters CCL2 secretion. Taken together, we showed that β-catenin plays an important role in attracting monocytes towards GBM cells in vitro. We hypothesize that the interactions between β-catenin and CCL2 contribute to maintenance of GSCs via modulating immune cell interaction and promoting GBM growth and recurrence.
Collapse
|
37
|
Colapietro A, Yang P, Rossetti A, Mancini A, Vitale F, Chakraborty S, Martellucci S, Marampon F, Mattei V, Gravina GL, Iorio R, Newman RA, Festuccia C. The Botanical Drug PBI-05204, a Supercritical CO2 Extract of Nerium Oleander, Is Synergistic With Radiotherapy in Models of Human Glioblastoma. Front Pharmacol 2022; 13:852941. [PMID: 35401175 PMCID: PMC8984197 DOI: 10.3389/fphar.2022.852941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common as well as one of the most malignant types of brain cancer. Despite progress in development of novel therapies for the treatment of GBM, it remains largely incurable with a poor prognosis and a very low life expectancy. Recent studies have shown that oleandrin, a unique cardiac glycoside from Nerium oleander, as well as a defined extract (PBI-05204) that contains this molecule, inhibit growth of human glioblastoma, and modulate glioblastoma patient-derived stem cell-renewal properties. Here we demonstrate that PBI-05204 treatment leads to an increase in vitro in the sensitivity of GBM cells to radiation in which the main mechanisms are the transition from autophagy to apoptosis, enhanced DNA damage and reduced DNA repair after radiotherapy (RT) administration. The combination of PBI-05204 with RT was associated with reduced tumor progression evidenced by both subcutaneous as well as orthotopic implanted GBM tumors. Collectively, these results reveal that PBI-05204 enhances antitumor activity of RT in preclinical/murine models of human GBM. Given the fact that PBI-05204 has already been examined in Phase I and II clinical trials for cancer patients, its efficacy when combined with standard-of-care radiotherapy regimens in GBM should be explored.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Flora Vitale
- Laboratory of Neurophysiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy
- Laboratory of Experimental Medicine and Environmental Pathology, University Hub “Sabina Universitas”, Rieti, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Iorio
- Laboratory of Biology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Robert A. Newman
- Phoenix Biotechnology, Inc., San Antonio, TX, United States
- *Correspondence: Robert A. Newman, ; Claudio Festuccia,
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Robert A. Newman, ; Claudio Festuccia,
| |
Collapse
|
38
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
39
|
Abstract
Preclinical models provided ample evidence that cannabinoids are cytotoxic against cancer cells. Among the best studied phytocannabinoids, cannabidiol (CBD) is most promising for the treatment of cancer as it lacks the psychotomimetic properties of delta-9-tetrahydrocannabinol (THC). In vitro studies and animal experiments point to a concentration- (dose-)dependent anticancer effect. The effectiveness of pure compounds versus extracts is the subject of an ongoing debate. Actual results demonstrate that CBD-rich hemp extracts must be distinguished from THC-rich cannabis preparations. Whereas pure CBD was superior to CBD-rich extracts in most in vitro experiments, the opposite was observed for pure THC and THC-rich extracts, although exceptions were noted. The cytotoxic effects of CBD, THC and extracts seem to depend not only on the nature of cannabinoids and the presence of other phytochemicals but also largely on the nature of cell lines and test conditions. Neither CBD nor THC are universally efficacious in reducing cancer cell viability. The combination of pure cannabinoids may have advantages over single agents, although the optimal ratio seems to depend on the nature of cancer cells; the existence of a 'one size fits all' ratio is very unlikely. As cannabinoids interfere with the endocannabinoid system (ECS), a better understanding of the circadian rhythmicity of the ECS, particularly endocannabinoids and receptors, as well as of the rhythmicity of biological processes related to the growth of cancer cells, could enhance the efficacy of a therapy with cannabinoids by optimization of the timing of the administration, as has already been reported for some of the canonical chemotherapeutics. Theoretically, a CBD dose administered at noon could increase the peak of anandamide and therefore the effects triggered by this agent. Despite the abundance of preclinical articles published over the last 2 decades, well-designed controlled clinical trials on CBD in cancer are still missing. The number of observations in cancer patients, paired with the anticancer activity repeatedly reported in preclinical in vitro and in vivo studies warrants serious scientific exploration moving forward.
Collapse
|
40
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
41
|
Videla-Richardson GA, Morris-Hanon O, Torres NI, Esquivel MI, Vera MB, Ripari LB, Croci DO, Sevlever GE, Rabinovich GA. Galectins as Emerging Glyco-Checkpoints and Therapeutic Targets in Glioblastoma. Int J Mol Sci 2021; 23:ijms23010316. [PMID: 35008740 PMCID: PMC8745137 DOI: 10.3390/ijms23010316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.
Collapse
Affiliation(s)
- Guillermo A. Videla-Richardson
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Olivia Morris-Hanon
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Nicolás I. Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
| | - Myrian I. Esquivel
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Mariana B. Vera
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Luisina B. Ripari
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza C5500, Argentina;
| | - Gustavo E. Sevlever
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
- Correspondence: ; Tel.: +54-11-4783-2869 (ext. 266)
| |
Collapse
|
42
|
Colapietro A, Rossetti A, Mancini A, Martellucci S, Ocone G, Pulcini F, Biordi L, Cristiano L, Mattei V, Delle Monache S, Marampon F, Gravina GL, Festuccia C. Multiple Antitumor Molecular Mechanisms Are Activated by a Fully Synthetic and Stabilized Pharmaceutical Product Delivering the Active Compound Sulforaphane (SFX-01) in Preclinical Model of Human Glioblastoma. Pharmaceuticals (Basel) 2021; 14:1082. [PMID: 34832864 PMCID: PMC8626029 DOI: 10.3390/ph14111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Giuseppe Ocone
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Fanny Pulcini
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Leda Biordi
- Laboratory of Medical Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Division of Human Anatomy, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
| | - Simona Delle Monache
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| |
Collapse
|