1
|
Xia L, Luo X, Liang Y, Jiang X, Yang W, Yan J, Qi K, Li P. Epigenetic modifications of nuclear and mitochondrial DNA are associated with the disturbance of serum iron biomarkers among the metabolically unhealthy obesity school-age children. Nutr J 2025; 24:51. [PMID: 40176047 PMCID: PMC11963457 DOI: 10.1186/s12937-025-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Serum iron biomarkers are disordered on the progression of obesity and its associated metabolic syndrome (MetS). However, limited evidence is explored the interactions between serum iron biomarkers and the incidence of MetS. Thus, the purpose of this study is to discuss whether epigenetic modifications of nuclear and mitochondrial DNA (mtDNA) are associated with the disturbance of serum iron biomarkers among the metabolically unhealthy obesity (MUO) school-age children. METHODS A representative cross-sectional study was performed using the data from 104 obesity school-age children, while the subjects without obesity were as controls (n = 65). Then, the 104 obesity subjects were defined as metabolically healthy obesity (MHO, n = 60) and MUO (n = 44) subgroups according to whether they were accompanied with MetS. Their serum metabolic indicators, transferrin receptor 1 (TFR1), transferrin (TF) and genome-wide methylation were determined by the Elisa method. Moreover, the methylation levels of TFR1 and TF were measured by the Bisulfite sequencing PCR (BSP-PCR). Furthermore, the copy number (mtDNA-CN) and methylation of mtDNA were detected by the RT-PCR, while the semi-long RT-PCR was then used to estimate the lesions of mtDNA. RESULTS Compared with the control and MHO groups, the levels of MetS related indicators, anthropological characteristics and 8-OHdG were higher, and the concentrations of CAT, GSH-Px, TF, TFR1 and genome-wide methylation were lower in the MUO group in a BMI-independent manner (P < 0.05). Then, the contents of serum iron were lower in both the MHO and MUO groups than those in the control group (P < 0.017). Moreover, they were positively related with the contents of serum CAT and GSH-Px, and negatively with 8-OHdG, TF and TFR1 (P < 0.05). Furthermore, the methylation patterns on the TF, TFR1 and mtDNA were higher in the MUO group than those in the MHO and control groups (P < 0.017), which were negatively correlated with their serum contents (P < 0.05). Meanwhile, the ratio of methylated/unmethylated mtDNA was significantly associated with their mtDNA-CN and lesions (P < 0.05). CONCLUSIONS Our findings suggested that the impairments on the epigenetic modifications of nuclear (genome-wide DNA, TF and TFR1) and mtDNA were associated with the disturbance of serum iron biomarkers to involve in the pathophysiology of MetS among the school-age MUO children. TRIAL REGISTRATION This study was approved by the Ethics Committee of Beijing Children's Hospital affiliated to Capital Medical University (No. IEC-C-006-A04-V.06), which was also registered at the website of http://www.chictr.org.cn/showproj.aspx?proj=4673 (No: ChiCTR-OCH-14004900).
Collapse
Affiliation(s)
- Lulu Xia
- Department of Clinical Nutrition, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Luo
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Yueqing Liang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xueyi Jiang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Wenli Yang
- Department of Clinical Nutrition, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Yan
- Department of Clinical Nutrition, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China.
| |
Collapse
|
2
|
Hou X, Jiang J, Deng M. Exploring epigenetic modifications as potential biomarkers and therapeutic targets in amyotrophic lateral sclerosis. J Neurol 2025; 272:304. [PMID: 40169452 DOI: 10.1007/s00415-025-13028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. Whole-genome sequencing has identified many novel ALS-associated genes, but genetics alone cannot fully explain the onset of ALS and an effective treatment is still lacking. Moreover, we need more biomarkers for accurate diagnosis and assessment of disease prognosis. Epigenetics, which includes DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs, influences gene transcription and expression by affecting chromatin accessibility and transcription factor binding without altering genetic information. These processes play a role in the onset and progression of ALS. Epigenetic targets can serve as potential biomarkers and more importantly, the reversibility of epigenetic changes supports their potential role as versatile therapeutic targets in ALS. This review summarized the alterations in different epigenetic modulations in ALS. Additionally, given the close association between aberrant metabolic profiles characterized by hypoxia and high glycolytic metabolism in ALS and epigenetic changes, we also integrate epigenetics with metabolomics. Finally, we discuss the application of therapies based on epigenetic mechanisms in ALS. Our data integration helps to identify potential diagnostic and prognostic biomarkers and support the development of new effective therapies.
Collapse
Affiliation(s)
- XiaoTong Hou
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - JingSi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China.
| |
Collapse
|
3
|
Shi S, Liang W, Qie Y, Wu R, Zhu Y. Investigation of mitochondrial DNA methylation-related prognostic biomarkers in hepatocellular carcinoma using The Cancer Genome Atlas (TCGA) database. Transl Cancer Res 2025; 14:2095-2112. [PMID: 40224972 PMCID: PMC11985178 DOI: 10.21037/tcr-2025-546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally, with complex pathogenesis and limited therapeutic options. Emerging evidence suggests that mitochondrial DNA methylation (MTDM) plays a regulatory role in tumorigenesis, but its specific contributions to HCC progression, prognosis, and tumor microenvironment (TME) remodeling remain poorly characterized. This study aims to investigate MTDM-associated molecular subtypes in HCC, screen potential prognostic biomarkers linked to MTDM dysregulation, and explore their implications for immune landscape heterogeneity and therapeutic response. Methods Several HCC datasets and MTDM-related prognostic genes associated with the clinicopathological features of HCC were collected from public databases. The ConsensusClusterPlus tool was used for unsupervised clustering to identify the MTDM differentially expressed genes (DEGs) and then the candidate genes. Subsequently, a univariate Cox regression analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis were performed on the data of the candidate genes to identify and validate the prognostic genes. Additionally, differences in the TME and the enriched pathways between the high- and low-risk groups were evaluated, and drug response prediction was performed using the pRRophetic R package. Results Eight MTDM-related genes were found to be differentially expressed in HCC. In relation to these MTDM-related DEGs, two molecular subtypes of HCC (Cluster 1 and Cluster 2) were identified. In addition, 333 candidate genes were identified. The regression analysis of the DEGs included in the risk model identified ADH4 and DNASE1L3 as prognostic genes that could be used to predict the overall survival of the HCC patients. The results of the differential immune recognition by immune cells using immune cell infiltration and the prognostic genes showed that the strongest negative correlation [correlation coefficient (r) =-0.312] was between ADH4 and activated cluster of differentiation (CD)4+ T cells, while the strongest positive correlation (r=0.332) was between DNASE1L3 and effector memory CD8+ T cells. The gene set enrichment analysis revealed five Kyoto Encyclopedia of Genes and Genomes pathways in the high- and low-risk groups that were clearly enriched in biological processes and signaling pathways, such as fatty acid degradation and peroxisome. The chemotherapeutic drug sensitivity analysis revealed significant differences in sensitivity to BI.2536 [a Polo-like kinase 1 (Plk1) inhibitor], A.443654 [a protein kinase B (Akt) 1/2 inhibitor], and ABT.888 [Veliparib, a poly(ADP-ribose) polymerase 1/2 (PARP1/2) inhibitor] between the high- and low-risk groups. Conclusions This study constructed a risk model for HCC based on two identified prognostic genes (ADH4 and DNASE1L3). It also elucidated the pathogenesis of MTDM-associated HCC. Our findings provide novel insights that could lead to the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Shanfan Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Liang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunxue Qie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runtong Wu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yejin Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zheng J, Liu Y, Liang Z, Wang YA, Yu W, Ding B, Wang H. A Rigorous Nuclear DNA-Excluding Mass Spectrometry Assay for Accurate Identification of 5-Methylcytosine in Mitochondrial DNA. Anal Chem 2025; 97:5914-5918. [PMID: 40079347 DOI: 10.1021/acs.analchem.4c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
5-Methylcytosine (5mC) functions as a well-characterized epigenetic DNA mark in nuclear DNA, but its presence in mitochondrial DNA (mtDNA) remains elusive. Here, we report a new and rigorous nuclear DNA (nDNA)-excluding mass spectrometry assay enabling the reliable and accurate identification of 5mC in mtDNA for the first time. First, circular mtDNA is enriched over 809-946-fold by combining alkaline lysis and linear DNA-specific RecBCD cutting; nDNA accounts for ∼12-19% of the DNA remaining after this step. Second, assisted by the restrictive endonucleases BbsI (for human mtDNA) and EcoRV (for mouse mtDNA), circular mtDNA was cut into only one or two linearized mtDNA fragments, while the residual nuclear DNA was efficiently degraded into shorter fragments; thus, the linearized mtDNA fragment(s) could be well isolated from the residual degraded nDNA via gel electrophoresis. Finally, the linearized mtDNA bands are excised and subjected to in-gel digestion followed by precise stable isotope-diluted LC-MS/MS analysis. With this sensitive and accurate method, we demonstrated that mtDNA is hypomethylated in a normal mouse cell line, which is rationally attributed to de novo methylation. Overall, we provide a powerful, gold-standard mass spectrometry assay for screening and identifying mtDNA 5mC in diverse scenarios.
Collapse
Affiliation(s)
- Jing Zheng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiran Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ang Wang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenqiang Yu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Baoquan Ding
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hailin Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lu MY, Wei YJ, Wang CW, Liang PC, Yeh ML, Tsai YS, Tsai PC, Ko YM, Lin CC, Chen KY, Lin YH, Jang TY, Hsieh MY, Lin ZY, Huang CF, Huang JF, Dai CY, Chuang WL, Yu ML. Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes. World J Gastroenterol 2025; 31:103716. [PMID: 40093674 PMCID: PMC11886537 DOI: 10.3748/wjg.v31.i10.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases reactive oxygen species production, leading to steatohepatitis and hepatic fibrosis. Artificial intelligence (AI) is a potent tool for disease diagnosis and risk stratification. AIM To investigate mitochondrial DNA polymorphisms in susceptibility to MASLD and establish an AI model for MASLD screening. METHODS Multiplex polymerase chain reaction was performed to comprehensively genotype 82 mitochondrial DNA variants in the screening dataset (n = 264). The significant mitochondrial single nucleotide polymorphism was validated in an independent cohort (n = 1046) using the Taqman® allelic discrimination assay. Random forest, eXtreme gradient boosting, Naive Bayes, and logistic regression algorithms were employed to construct an AI model for MASLD. RESULTS In the screening dataset, only mt12361A>G was significantly associated with MASLD. mt12361A>G showed borderline significance in MASLD patients with 2-3 cardiometabolic traits compared with controls in the validation dataset (P = 0.055). Multivariate regression analysis confirmed that mt12361A>G was an independent risk factor of MASLD [odds ratio (OR) = 2.54, 95% confidence interval (CI): 1.19-5.43, P = 0.016]. The genetic effect of mt12361A>G was significant in the non-diabetic group but not in the diabetic group. mt12361G carriers had a 2.8-fold higher risk than A carriers in the non-diabetic group (OR = 2.80, 95%CI: 1.22-6.41, P = 0.015). By integrating clinical features and mt12361A>G, random forest outperformed other algorithms in detecting MASLD [training area under the receiver operating characteristic curve (AUROC) = 1.000, validation AUROC = 0.876]. CONCLUSION The mt12361A>G variant increased the severity of MASLD in non-diabetic patients. AI supports the screening and management of MASLD in primary care settings.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| | - Yu-Ju Wei
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Wen Wang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Shan Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Min Ko
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Chih Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kuan-Yu Chen
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Hung Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tyng-Yuan Jang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Yen Hsieh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zu-Yau Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
7
|
Shinde U, Khambata K, Raut S, Rao A, Bansal V, Mayadeo N, Das DK, Madan T, Gunasekaran VP, Balasinor NH. "Whole genome bisulfite sequencing of serum extracellular vesicle DNA identifies alterations in mitochondrial DNA methylation in early onset preeclampsia". Clin Chim Acta 2025; 569:120168. [PMID: 39889919 DOI: 10.1016/j.cca.2025.120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Early-onset preeclampsia (EOPE) is a serious pregnancy complication. Understanding its underlying mechanisms could lead to improved diagnosis and management. Genome-wide DNA methylation changes in circulating Extracellular Vesicle DNA (EV-DNA) from women with EOPE could serve as a non-invasive approach to identify key regions and genes that could serve as biomarkers to understand placental pathophysiology. In this case-control study, serum extracellular vesicles were isolated from 3rd trimester pregnant women and characterized using Nanoparticle Tracking Analysis and Transmission Electron Microscopy. The circulating EV-DNA samples were subjected to Whole Genome Bisulfite Sequencing analysis (WGBS) to identify differentially methylated CpGs (DMCs) sites in EOPE cases compared to control. A total of 154 DMCs were identified in EV-DNA, of which 131 were hypomethylated and 23 were hypermethylated. Majority of DMCs were of mitochondrial origin. Previously, it has been reported that oxidative stress, decreased trophoblast differentiation, and invasion are linked to preeclampsia pathogenesis and are related to mitochondrial dysfunction. Therefore, DMCs of the mitochondrial genes like MT-ND1, MT-ND4, MT-CO2, MT-CO3, and MT-RNR1 were selected for validation and showed a similar trend by pyrosequencing. The expression of these genes were also altered in circulating extracellular vesicles. Our study shows changes in the DNA methylation patterns of circulating EV-DNA in women with EOPE. These changes, especially in mitochondrial genes, could lead to mitochondrial dysfunction and contribute EOPE pathogenesis. These findings suggest that these alterations could be explored as non-invasive approach to better understand placental health and improve disease management.
Collapse
Affiliation(s)
- Uma Shinde
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Kushaan Khambata
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Sanketa Raut
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Aishwarya Rao
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Vandana Bansal
- Department of Obstetrics and Gynaecology, Nowrosjee Wadia Maternity Hospital, Parel, Mumbai, India
| | - Niranjan Mayadeo
- Department of Obstetrics and Gynaecology, Seth G.S. Medical College and K.E.M. Hospital, Parel, Mumbai, India
| | - Dhanjit Kumar Das
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India
| | - Taruna Madan
- Development Research, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India
| | - Vinoth Prasanna Gunasekaran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India.
| | - Nafisa Huseni Balasinor
- ICMR-National Institute for Research in Reproductive & Child Health, J.M. Street, Parel, Mumbai, Maharashtra 400012, India.
| |
Collapse
|
8
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
10
|
Patange V, Ahirwar K, Tripathi T, Tripathi P, Shukla R. Scientific investigation of non-coding RNAs in mitochondrial epigenetic and aging disorders: Current nanoengineered approaches for their therapeutic improvement. Mitochondrion 2025; 80:101979. [PMID: 39505245 DOI: 10.1016/j.mito.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Genetic control is vital for the growth of cells and tissues, and it also helps living things, from single-celled organisms to complex creatures, maintain a stable internal environment. Within cells, structures called mitochondria act like tiny power plants, producing energy and keeping the cell balanced. The two primary categories of RNA are messenger RNA (mRNA) and non-coding RNA (ncRNA). mRNA carries the instructions for building proteins, while ncRNA does various jobs at the RNA level. There are different kinds of ncRNA, each with a specific role. Some help put RNA molecules together correctly, while others modify other RNAs or cut them into smaller pieces. Still others control how much protein is made from a gene. Scientists have recently discovered many more ncRNAs than previously known, and their functions are still being explored. This article analyzes the RNA molecules present within mitochondria, which have a crucial purpose in the operation of mitochondria. We'll also discuss how genes can be turned on and off without changing their DNA code, and how this process might be linked to mitochondrial RNA. Finally, we'll explore how scientists are using engineered particles to silence genes and develop new treatments based on manipulating ncRNA.
Collapse
Affiliation(s)
- Vaibhav Patange
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Tripti Tripathi
- Department of Physiology, Integral University, Kursi Road, Dashauli, UP 226026, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
11
|
Arya D, Pawar P, Gajbhiye R, Tandon D, Kothari P, Goankar R, Singh D. Status of sperm mitochondrial functions and DNA methylation in infertile men with clinical varicocele before and after treatment. Mol Cell Endocrinol 2025; 595:112393. [PMID: 39481748 DOI: 10.1016/j.mce.2024.112393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Varicocele has been associated with reduced male fertility potential. Treatment modalities for varicocele improve semen parameters, yet more than 50% of cases remain infertile. Varicocele-induced heat and hypoxia stress may affect sperm mitochondrial functions, possibly leading to aberrant epigenetic modifications. This study includes 30 fertile men and 40 infertile men with clinical varicocele. The effect of varicocele treatment (antioxidant supplementation and or varicocelectomy) was evaluated after 3 months of treatment. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (iROS) were measured by flow cytometry using JC-1 and DCFDA, respectively. mtDNA copy number and deletions were determined by PCR. DNA methylation was analysed by pyrosequencing. Present investigations suggest that infertile men with varicocele have abnormal semen parameters; significantly low MMP, high iROS, and high mtDNA copy number. Semen parameters were improved in a subset of men of both the treatment modalities; however, it was noted that varicocelectomy helped better in improving sperm parameters compared to antioxidant treatment. Both treatment modalities helped in reducing iROS and mtDNA copy number significantly; however, they were noneffective in improving MMP. Altered DNA methylation at mitochondria D loop and mitochondrial structure and function genes UQCRC2, MIC60, TOM22, and LETM1 (promoter region) were observed in varicocele group. The DNA methylation levels were restored after varicocele treatment; however, the restoration was not consistent at all CpG sites. Both the treatment modalities helped in restoring the altered DNA methylation levels of mitochondrial genes but the restoration is nonhomogeneous across the studied CpG sites.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Prakash Pawar
- Lokmanya Tilak Municipal General Hospital, Sion, Mumbai, 400022, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Priyank Kothari
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, 400008, India
| | - Reshma Goankar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
13
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
14
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Bruno F, Naselli F, Brancato D, Volpes S, Cardinale PS, Saccone S, Federico C, Caradonna F. Effects of Pterostilbene on the Cell Division Cycle of a Neuroblastoma Cell Line. Nutrients 2024; 16:4152. [PMID: 39683545 DOI: 10.3390/nu16234152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background. The "Cell Cycle Hypothesis" suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. Methods. In this study, we investigated the effects of pterostilbene on neuronal-like cells derived from the human neuroblastoma SK-N-BE cell line, where cell cycle reactivation was induced by forskolin treatment. We analyzed molecular endpoints associated with differentiated versus replicative cell states, specifically the following: (a) the expression of cyclin CCND1, (b) the Ki67 cell proliferation marker, (c) the AT8 nuclear tau epitope, and (d) genome-wide DNA methylation changes. Results. Our findings indicate that pterostilbene exerts distinct effects on the cell division cycle depending on the cellular state, with neuroprotective benefits observed in differentiated neuronal-like cells, but not in cells undergoing induced division. Additionally, pterostilbene alters DNA methylation patterns. Conclusion. These results suggest that pterostilbene may offer neuroprotective advantages for differentiated neuronal-like cells. However, further studies are required to confirm these effects in vivo by examining specific biomarkers in human populations consuming pterostilbene-containing foods.
Collapse
Affiliation(s)
- Francesca Bruno
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Flores Naselli
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Desiree Brancato
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Sara Volpes
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Paola Sofia Cardinale
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Salvatore Saccone
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceutics and Health Products, 95125 Catania, Italy
| | - Concetta Federico
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceutics and Health Products, 95125 Catania, Italy
| | - Fabio Caradonna
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
16
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
17
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
18
|
Zhang F, Zhang L, Hu G, Chen X, Liu H, Li C, Guo X, Huang C, Sun F, Li T, Cui Z, Guo Y, Yan W, Xia Y, Liu Z, Lin Z, Duan W, Lu L, Wang X, Wang Z, Wang S, Tao L. Rectifying METTL4-Mediated N 6-Methyladenine Excess in Mitochondrial DNA Alleviates Heart Failure. Circulation 2024; 150:1441-1458. [PMID: 38686562 DOI: 10.1161/circulationaha.123.068358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.
Collapse
Affiliation(s)
- Fuyang Zhang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Zhang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangyu Hu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiyao Chen
- Geriatrics (X.C.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Liu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiong Guo
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chong Huang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangfang Sun
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tongzheng Li
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Cui
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongzhen Guo
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Yan
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunlong Xia
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiyuan Liu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Lin
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Cardiovascular Surgery (W.D., L.L.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linhe Lu
- Cardiovascular Surgery (W.D., L.L.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyi Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengyang Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Tao
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Cinzori ME, Nicol M, Dewald AL, Goodrich JM, Zhou Z, Gardiner JC, Kerver JM, Dolinoy DC, Talge N, Strakovsky RS. Maternal mitochondrial DNA copy number and methylation as possible predictors of pregnancy outcomes in a Michigan pregnancy cohort. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae021. [PMID: 39628676 PMCID: PMC11614404 DOI: 10.1093/eep/dvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Little is understood about the roles of mitochondria in pregnancy-related adaptations. Therefore, we evaluated associations of maternal early-to-mid pregnancy mitochondrial DNA copy number (mtDNAcn) and mtDNA methylation with birth size and gestational length. Michigan women (n = 396) provided venous bloodspots at median 11 weeks gestation to quantify mtDNAcn marker NADH-ubiquinone oxidoreductase chain 1 (ND1) using real-time quantitative PCR and mtDNA methylation at several regions within four mitochondria-specific genes using pyrosequencing: MTTF (mitochondrially encoded tRNA phenylalanine), DLOOP (D-loop promoter region, heavy strand), CYTB (cytochrome b), and LDLR (D-loop promoter region, light strand). We abstracted gestational length and birthweight from birth certificates and calculated birthweight z-scores using published references. We used multivariable linear regression to evaluate associations of mtDNAcn and mtDNA methylation with birthweight and birthweight z-scores. Cox Proportional Hazards Models (PHMs) and quantile regression characterized associations of mitochondrial measures with gestational length. We also considered differences by fetal sex. Using linear regression and Cox PHMs, mtDNAcn was not associated with birth outcomes, whereas associations of mtDNA methylation with birth outcomes were inconsistent. However, using quantile regression, mtDNAcn was associated with shorter gestation in female newborns at the upper quantiles of gestational length, but with longer gestational length in males at the lower quantiles of gestational length. Maternal LDLR, DLOOP, and MTTF methylation was associated with longer gestational length in females at the upper quantiles and in males at lower gestational length quantiles. Maternal mtDNAcn and mtDNA methylation were associated with gestational length in babies born comparatively early or late, which could reflect adaptations in mitochondrial processes that regulate the length of gestation.
Collapse
Affiliation(s)
- Maria E Cinzori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Megan Nicol
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Alisa L Dewald
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, United States
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Jean M Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicole Talge
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
20
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
21
|
Wang L, Zhang J, Xu X. A Comparison of DNA-Methylation during Protoplast Culture of Ponkan Mandarin ( Citrus reticulata Blanco) and Tobacco ( Nicotiana tabacum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2878. [PMID: 39458825 PMCID: PMC11511572 DOI: 10.3390/plants13202878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The epigenetic variation in protoplast regeneration is a topic that has attracted interest recently. To elucidate the role of DNA methylation in the regeneration of protoplasts from the ponkan (Citrus reticulata), this study employs the methylation-sensitive amplification polymorphism (MSAP) molecular marker technique to analyze changes in DNA methylation levels and patterns during the isolation and culture of protoplasts from ponkan and tobacco. Additionally, differential DNA methylation fragments are cloned, sequenced, and subjected to bioinformatics analysis. The results reveal that, for non-regenerable ponkan mesophyll protoplasts, DNA methylation levels increase by 3.98% after isolation and then show a trend of initial decrease followed by an increase during culture. In contrast, for regenerable ponkan callus protoplasts and tobacco mesophyll protoplasts, DNA methylation levels decrease by 1.75% and 2.33%, respectively, after isolation. During culture, the DNA methylation levels of ponkan callus protoplasts first increase and then decrease, while those of tobacco mesophyll protoplasts show an opposite trend of initial decrease followed by an increase. Regarding DNA methylation patterns, ponkan mesophyll protoplasts exhibit primarily hypermethylation changes accompanied by a small amount of gene demethylation, whereas ponkan callus protoplasts are dominated by demethylation changes with some genes undergoing hypermethylation. The methylation exhibits dynamic changes in protoplast isolation regeneration. By recovering, cloning, sequencing, and performing BLASTn alignment analysis on specific methylation modification sites in the ponkan, 18 DNA sequences with high homology are identified which are found to be involved in various biological functions, thereby establishing a foundational basis for genetic editing in protoplasts.
Collapse
Affiliation(s)
- Lun Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
22
|
Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. EPIGENOMES 2024; 8:38. [PMID: 39449362 PMCID: PMC11503383 DOI: 10.3390/epigenomes8040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels. METHODS In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects. RESULTS We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04). CONCLUSIONS This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Martina Lari
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
23
|
Song J, Zhao A, Li R, Luo Y, Dong Y, Wang C, Zhang T, Deng J, Qi X, Guan Z, He Y. Association of PPARGC1A gene polymorphism and mtDNA methylation with coal-burning fluorosis: a case-control study. BMC Genomics 2024; 25:908. [PMID: 39350036 PMCID: PMC11441093 DOI: 10.1186/s12864-024-10819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Coal-burning fluorosis is a chronic poisoning resulting from the prolonged use of locally available high-fluoride coal for heating and cooking. Prolonged fluoride exposure has been demonstrated to decrease PPARGC1A levels. Therefore, this case-control aims to evaluate the genetic association of PPARGC1A gene polymorphisms and methylation of the mitochondrial D-loop region with coal-burning fluorosis. RESULT The results showed that the TT genotype at rs13131226 and the AA genotype at rs1873532 increased the risk of coal-burning fluorosis (OR = 1.84, P = 0.004; OR = 1.97, P = 0.007), the CT and CC genotypes at rs7665116 decreased the risk of coal-burning fluorosis (OR = 0.54, P = 0.003). The TT genotype at the rs2970847 site and the AA genotype at the rs2970870 site increase the risk of developing skeletal fluorosis (OR = 4.12, P = 0.003; OR = 2.22, P = 0.011). Haplotype AG constructed by rs3736265-rs1873532 increased the risk of the prevalence of coal-burning fluorosis (OR = 1.465, P = 0.005); CG decreased the risk of the prevalence of coal-burning fluorosis (OR = 0.726, P = 0.020). Haplotype CGGT constructed by rs6821591-rs768695-rs3736265-rs2970847 increased the risk of the prevalence of skeletal fluorosis (OR = 1.558, P = 0.027). A 1% increase in CpG_4 methylation levels in the mtDNA D-loop region is associated with a 2.3% increase in the risk of coal-burning fluorosis. Additionally. There was a significant interaction between rs13131226 and rs1873532; CpG_4 and CpG_8.9; rs13131224,rs6821591 and rs7665116 were observed in the occurrence of fluorosis in the Guizhou population (χ2 = 16.917, P < 0.001; χ2 = 21.198, P < 0.001; χ2 = 36.078, P < 0.001). CONCLUSION PPARGC1A polymorphisms rs13131226 and rs1873532 and the mitochondrial DNA D-loop methylation site CpG_4 have been associated with an increased risk of fluorosis, conversely polymorphism rs7665116 was associated with a decreased risk of fluorosis. Polymorphisms rs2970870 were associated with increased risk of skeletal fluorosis, and polymorphism rs2970847 was associated with decreased risk of skeletal fluorosis. These SNPs and CpG can be used as potential targets to assess fluorosis risk.
Collapse
Affiliation(s)
- Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yunyan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
24
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
26
|
Zhang D, Li J, Zhao L, Yang Z, Wu C, Liu Y, Li W, Jin Z, Ma J. Mitochondrial DNA Leakage Promotes Persistent Pancreatic Acinar Cell Injury in Acute Pancreatitis via the cGAS-STING-NF-κB Pathway. Inflammation 2024:10.1007/s10753-024-02132-0. [PMID: 39180578 DOI: 10.1007/s10753-024-02132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Previous research has shown that the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in macrophages can promote severe acute pancreatitis through the release of inflammatory factors. The role of this pathway in pancreatic acinar cells, however, has not been studied, and understanding its mechanism could be crucial. We analysed plasma from 50 acute pancreatitis (AP) patients and 10 healthy donors using digital PCR, which links mitochondrial DNA (mtDNA) levels to the severity of AP. Single-cell sequencing of the pancreas during AP revealed differentially expressed genes and pathways in acinar cells. Experimental studies using mouse and cell models, which included mtDNA staining and quantitative PCR, revealed mtDNA leakage and the activation of STING-related pathways, indicating potential inflammatory mechanisms in AP. In conclusion, our study revealed that the mtDNA-STING-nuclear factor κB(NF-κB) pathway in pancreatic acinar cells could be a novel pathogenic factor in AP.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Jiayu Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Linlin Zhao
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chang Wu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yue Liu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
- College of Basic Medical Science, Naval Medical University, Shanghai, 200433, China
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jiayi Ma
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
28
|
Kaur P, Nazeer N, Gurjar V, Tiwari R, Mishra PK. Nanophotonic waveguide-based sensing of circulating cell-free mitochondrial DNA: implications for personalized medicine. Drug Discov Today 2024; 29:104086. [PMID: 38960132 DOI: 10.1016/j.drudis.2024.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) has emerged as a promising biomarker, with potential implications for disease diagnosis. Changes in mtDNA, such as deletions, mutations or variations in the number of copies, have been associated with mitochondrial disorders, heart diseases, cancer and age-related non-communicable diseases. Previous methods, such as polymerase chain reaction-based approaches, next-generation sequencing and imaging-based techniques, have shown improved accuracy in identifying rare mtDNA variants or mutations, but they have limitations. This article explains the basic principles and benefits of using planar optical waveguide-based detection devices, which represent an advanced approach in the field of sensing.
Collapse
Affiliation(s)
- Prasan Kaur
- Division of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Vikas Gurjar
- Division of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rajnarayan Tiwari
- Division of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
29
|
Faria R, Vivès E, Boisguérin P, Descamps S, Sousa Â, Costa D. Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics 2024; 16:961. [PMID: 39065658 PMCID: PMC11281276 DOI: 10.3390/pharmaceutics16070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The lack of effective delivery systems has slowed the development of mitochondrial gene therapy. Delivery systems based on cell-penetrating peptides (CPPs) like the WRAP (tryptophan and arginine-rich peptide) family conjugated with a mitochondrial targeting sequence (MTS) have emerged as adequate carriers to mediate gene expression into the mitochondria. In this work, we performed the PEGylation of WRAP/pDNA nanocomplexes and compared them with previously analyzed nanocomplexes such as (KH)9/pDNA and CpMTP/pDNA. All nanocomplexes exhibited nearly homogeneous sizes between 100 and 350 nm in different environments. The developed complexes were biocompatible and hemocompatible to both human astrocytes and lung smooth muscle cells, ensuring in vivo safety. The nanocomplexes displayed mitochondria targeting ability, as through transfection they preferentially accumulate into the mitochondria of astrocytes and muscle cells to the detriment of cytosol and lysosomes. Moreover, the transfection of these cells with MTS-CPP/pDNA complexes produced significant levels of mitochondrial protein ND1, highlighting their efficient role as gene delivery carriers toward mitochondria. The positive obtained data pave the way for in vivo research. Using confocal microscopy, the cellular internalization capacity of these nanocomplexes in the zebrafish embryo model was assessed. The peptide-based nanocomplexes were easily internalized into zebrafish embryos, do not cause harmful or toxic effects, and do not affect zebrafish's normal development and growth. These promising results indicate that MTS-CPP complexes are stable nanosystems capable of internalizing in vivo models and do not present associated toxicity. This work, even at an early stage, offers good prospects for continued in vivo zebrafish research to evaluate the performance of nanocomplexes for mitochondrial gene therapy.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Eric Vivès
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Simon Descamps
- CRBM-CNRS, Cell Biology Research of Montpellier, UMR5237, 34293 Montpellier, France
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| |
Collapse
|
30
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. From shells to sequences: A proof-of-concept study for on-site analysis of hemolymphatic circulating cell-free DNA from sentinel mussels using Nanopore technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172969. [PMID: 38754506 DOI: 10.1016/j.scitotenv.2024.172969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Campus Moulin de la Housse, 51687 Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
31
|
Dai K, Wang Z, Gao B, Li L, Gu F, Tao X, You W, Wang Z. APE1 regulates mitochondrial DNA damage repair after experimental subarachnoid haemorrhage in vivo and in vitro. Stroke Vasc Neurol 2024; 9:230-242. [PMID: 37612054 PMCID: PMC11221324 DOI: 10.1136/svn-2023-002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.
Collapse
Affiliation(s)
- Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Ferreira LL, Gonçalves ABR, Adiala IJB, Loiola S, Dias A, Azulay RS, Silva DA, Gomes MB. A pilot study of mitochondrial genomic ancestry in admixed Brazilian patients with type 1 diabetes. Diabetol Metab Syndr 2024; 16:130. [PMID: 38879575 PMCID: PMC11179274 DOI: 10.1186/s13098-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/19/2024] Open
Abstract
Interactions between multiple genes and environmental factors could be related to the pathogenesis of type 1 diabetes (T1D). The Brazilian population results from different historical miscegenation events, resulting in a highly diverse genetic pool. This study aimed to analyze the mtDNA of patients with T1D and to investigate whether there is a relationship between maternal ancestry, self-reported color and the presence of T1D. The mtDNA control region of 204 patients with T1D residing in three geographic regions of Brazil was sequenced following the International Society for Forensic Genetics (ISFG) recommendations. We obtained a frequency of Native American matrilineal origin (43.6%), African origin (38.2%), and European origin (18.1%). For self-declared color, 42.6% of the patients with diabetes reported that they were White, 50.9% were Brown, and 5.4% were Black. Finally, when we compared the self-declaration data with maternal ancestral origin, we found that for the self-declared White group, there was a greater percentage of haplogroups of Native American origin (50.6%); for the self-declared Black group, there was a greater percentage of African haplogroups (90.9%); and for the Brown group, there was a similar percentage of Native American and African haplogroups (42.3% and 45.2%, respectively). The Brazilian population with diabetic has a maternal heritage of more than 80% Native American and African origin, corroborating the country's colonization history.
Collapse
Affiliation(s)
- Lívia Leite Ferreira
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvia Loiola
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Dias
- Forensic Science and Technology Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Boulevard 28 Setembro 77, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
34
|
Yu Y, Martins LM. Mitochondrial One-Carbon Metabolism and Alzheimer's Disease. Int J Mol Sci 2024; 25:6302. [PMID: 38928008 PMCID: PMC11203557 DOI: 10.3390/ijms25126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
35
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
36
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
37
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
38
|
Feng R, Li H, Meng T, Fei M, Yang C. Bioinformatics analysis and experimental validation of m6A and cuproptosis-related lncRNA NFE4 in clear cell renal cell carcinoma. Discov Oncol 2024; 15:187. [PMID: 38797784 PMCID: PMC11128431 DOI: 10.1007/s12672-024-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aimed to construct an m6A and cuproptosis-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using the information acquired from The Cancer Genome Atlas (TCGA) database. METHODS First, the co-expression analysis was performed to identify lncRNAs linked with N6-methyladenosine (m6A) and cuproptosis in ccRCC. Then, a model encompassing four candidate lncRNAs was constructed via univariate, least absolute shrinkage together with selection operator (LASSO), and multivariate regression analyses. Furthermore, Kaplan-Meier, principal component, functional enrichment annotation, and nomogram analyses were performed to develop a risk model that could effectively assess medical outcomes for ccRCC cases. Moreover, the cellular function of NFE4 in Caki-1/OS-RC-2 cultures was elucidated through CCK-8/EdU assessments and Transwell experiments. Dataset outcomes indicated that NFE4 can have possible implications in m6A and cuproptosis, and may promote ccRCC progression. RESULTS We constructed a panel of m6A and cuproptosis-related lncRNAs to construct a prognostic prediction model. The Kaplan-Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. Furthermore, the m6A and cuproptosis-related lncRNA model indicated higher diagnostic efficiency than other clinical features. Moreover, the NFE4 function analysis indicated a gene associated with m6A and cuproptosis-related lncRNAs in ccRCC. It was also revealed that the proliferation and migration of Caki-1 /OS-RC-2 cells were inhibited in the NFE4 knockdown group. CONCLUSION Overall, this study indicated that NFE4 and our constructed risk signature could predict outcomes and have potential clinical value.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Mingtian Fei
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
39
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
40
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
41
|
Gurugubelli KR, Ballambattu VB. Perspectives on folate with special reference to epigenetics and neural tube defects. Reprod Toxicol 2024; 125:108576. [PMID: 38479591 DOI: 10.1016/j.reprotox.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Folate is a micronutrient essential for DNA synthesis, cell division, fetal growth and development. Folate deficiency leads to genomic instability. Inadequate intake of folate during conception may lead to neural tube defects (NTDs) in the offspring. Folate influences the DNA methylation, histone methylation and homocysteine mediated gene methylation. DNA methylation influences the expression of microRNAs (miRNAs). Folate deficiency may be associated with miRNAs misregulation leading to NTDs. Mitochondrial epigenetics and folate metabolism has proved to be involved in embryogenesis and neural tube development. Folate related genetic variants also cause the occurrence of NTDs. Unmetabolized excessive folate may affect health adversely. Hence estimation of folate levels in the blood plays an important role in high-risk cases.
Collapse
Affiliation(s)
- Krishna Rao Gurugubelli
- Department of Biochemistry, Andhra Medical College (AMC), Visakhapatnam, Andhra Pradesh, India
| | - Vishnu Bhat Ballambattu
- Aarupadai Veedu Medical College & Hospital (AVMC & H), Vinayaka Mission's Research Foundation (DU), Kirumambakkam, Puducherry, India.
| |
Collapse
|
42
|
Duan H, Pan C, Wu T, Peng J, Yang L. MT-TN mutations lead to progressive mitochondrial encephalopathy and promotes mitophagy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167043. [PMID: 38320662 DOI: 10.1016/j.bbadis.2024.167043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.
Collapse
Affiliation(s)
- Haolin Duan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cunhui Pan
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tenghui Wu
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Peng
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| | - Li Yang
- Department of Pediatrics, Clinical Research Center of Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China..
| |
Collapse
|
43
|
Chi H, Su L, Yan Y, Gu X, Su K, Li H, Yu L, Liu J, Wang J, Wu Q, Yang G. Illuminating the immunological landscape: mitochondrial gene defects in pancreatic cancer through a multiomics lens. Front Immunol 2024; 15:1375143. [PMID: 38510247 PMCID: PMC10953916 DOI: 10.3389/fimmu.2024.1375143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
This comprehensive review delves into the complex interplay between mitochondrial gene defects and pancreatic cancer pathogenesis through a multiomics approach. By amalgamating data from genomic, transcriptomic, proteomic, and metabolomic studies, we dissected the mechanisms by which mitochondrial genetic variations dictate cancer progression. Emphasis has been placed on the roles of these genes in altering cellular metabolic processes, signal transduction pathways, and immune system interactions. We further explored how these findings could refine therapeutic interventions, with a particular focus on precision medicine applications. This analysis not only fills pivotal knowledge gaps about mitochondrial anomalies in pancreatic cancer but also paves the way for future investigations into personalized therapy options. This finding underscores the crucial nexus between mitochondrial genetics and oncological immunology, opening new avenues for targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Hao Chi
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Ke Su
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lili Yu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jue Wang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Guanhu Yang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
44
|
Peng N, Guo L, Wei Z, Wang X, Zhao L, Kang L, Wang K, Zhou W, Cheng S, Yin S, Xu B, Bao X. Platelet mitochondrial DNA methylation: A novel biomarker for myocardial infarction - A preliminary study. Int J Cardiol 2024; 398:131606. [PMID: 37996014 DOI: 10.1016/j.ijcard.2023.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Platelet activation and thrombus formation play critical roles in the pathogenesis of myocardial infarction (MI). In addition to their role in energy production, platelet mitochondria also regulate cellular functions related to apoptosis, oxidative stress, and inflammation. Epigenetic modifications of platelet mitochondrial DNA (mtDNA) may influence platelet function and are believed to be an important factor in MI. Therefore, the aim of this study was to investigate the differences in platelet mtDNA methylation levels between MI patients and controls. METHODS The present study utilized propensity score matching to generate 45 multivariate matched apparently healthy controls for 45 patients with newly-onset acute MI. Platelet mtDNA methylation levels were assessed through bisulfite-PCR pyrosequencing and compared between the two groups, with further adjustments made in the sensitivity analysis. RESULTS Among the measured mitochondrial genes (MT-COX1, MT-COX2, MT-COX3, MT-ND5, MT-ATP6 and tRNA_Leu), patients with MI exhibited statistically significant differences in mtDNA methylation levels as compared to matched controls. Specifically, higher levels of mtDNA methylation were observed in MT-COX1, MT-COX3, and tRNA_Leu, while a lower level was observed in MT-ATP6 (all p < 0.0001). These results remained robust in the sensitivity analysis. CONCLUSION Our study demonstrated significant variations in platelet mtDNA methylation levels between patients with MI and controls. Platelet mtDNA methylation may serve as a novel biomarker for MI. This observation also provided some insights into the etiology of MI.
Collapse
Affiliation(s)
- Ningxin Peng
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kun Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weihong Zhou
- Health Management Centre, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shoujun Cheng
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Songjiang Yin
- The first College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
45
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
46
|
Stoccoro A, Smith AR, Mosca L, Marocchi A, Gerardi F, Lunetta C, Lunnon K, Migliore L, Coppedè F. Mitochondrial D-loop methylation levels inversely correlate with disease duration in amyotrophic lateral sclerosis. Epigenomics 2024; 16:203-214. [PMID: 38312023 DOI: 10.2217/epi-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Aim: To correlate mitochondrial D-loop region methylation levels and mtDNA copy number with disease duration in familial amyotrophic lateral sclerosis (ALS) patients. Patients & methods: The study population included 12 ALS patients with a mutation in SOD1 and 13 ALS patients with the C9orf72 hexanucleotide repeat expansion. Methylation levels of the D-loop region and mtDNA copy number were quantified using pyrosequencing and quantitative PCR, respectively. Results: We observed that D-loop methylation levels inversely correlated while mtDNA copy number positively correlated with disease duration. Conclusion: Considering the central role played by mitochondria in ALS, this preliminary study provides new knowledge for future studies aimed at identifying biomarkers of disease progression and new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, Laboratory of Medical Genetics, University of Pisa, Medical School, Via Roma 55, Pisa, 56126, Italy
| | - Adam R Smith
- Department of Clinical & Biomedical Sciences, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Lorena Mosca
- Medical Genetics Unit, Department of Medical Services, ASST Grande Ospedale Metropolitano Niguarda, Milan, 20162, Italy
| | - Alessandro Marocchi
- Medical Genetics Unit, Department of Medical Services, ASST Grande Ospedale Metropolitano Niguarda, Milan, 20162, Italy
| | | | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, Milan, 20138, Italy
| | - Katie Lunnon
- Department of Clinical & Biomedical Sciences, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Lucia Migliore
- Department of Translational Research & of New Surgical & Medical Technologies, Laboratory of Medical Genetics, University of Pisa, Medical School, Via Roma 55, Pisa, 56126, Italy
| | - Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, Laboratory of Medical Genetics, University of Pisa, Medical School, Via Roma 55, Pisa, 56126, Italy
- Interdepartmental Research Center of Biology & Pathology of Aging, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
47
|
Pearce WJ. Mitochondrial influences on smooth muscle phenotype. Am J Physiol Cell Physiol 2024; 326:C442-C448. [PMID: 38009196 PMCID: PMC11932527 DOI: 10.1152/ajpcell.00354.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.
Collapse
Affiliation(s)
- William J Pearce
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
48
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
50
|
de Lima CB, Martin H, Pecora Milazzotto M, Sirard MA. Genome-wide methylation profile of mitochondrial DNA across bovine preimplantation development. Epigenetics 2023; 18:2241010. [PMID: 37523633 PMCID: PMC10392754 DOI: 10.1080/15592294.2023.2241010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
This study characterized variations in the methylation profile of mitochondrial DNA (mtDNA) during initial bovine embryo development and correlated the presence of methylation with mtDNA transcription. Bovine oocytes were obtained from abattoir ovaries and submitted to in vitro culture procedures. Oocytes and embryos were collected at various stages (immature oocyte, IM; mature oocyte, MII; zygote, ZY; 4-cells, 4C; 16-cells, 16C and blastocysts, BL). Total DNA (including mtDNA) was used for Whole Genome Enzymatic Methyl Sequencing and for quantification of mtDNA copy number. Extracted RNA was used for quantification of mitochondrial transcripts using Droplet Digital PCR. We selected ND6, CYTB, tRNA-Phe and tRNA-Gln based on their location in the mitochondrial genome, functionality and/or previous literature associating these regions with cytosine methylation. The number of mtDNA copies per oocyte/embryo was found to be similar, while methylation levels in mtDNA varied among stages. Higher total methylation levels were found mainly at 4C and 16C. In specific gene regions, higher methylation levels were also observed at 4C and 16C (ND6, CYTB and tRNA-Phe), as well as an inverse correlation with the quantity of transcripts for these regions. This is a first description of epigenetic changes occurring in mtDNA during early embryonic development. Our results indicate that methylation might regulate the mtDNA transcription at a local level, particularly around the time of embryonic genome activation.
Collapse
Affiliation(s)
- Camila Bruna de Lima
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Universidade Federal Do ABC, Centro de Ciências Naturais E Humanas, Santo André, SP, Brazil
| | - Hélène Martin
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Marcella Pecora Milazzotto
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Universidade Federal Do ABC, Centro de Ciências Naturais E Humanas, Santo André, SP, Brazil
| | - Marc-André Sirard
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
| |
Collapse
|