1
|
Keskin C, Aslan S, Baran MF, Baran A, Eftekhari A, Adıcan MT, Ahmadian E, Arslan S, Mohamed AJ. Green Synthesis and Characterization of Silver Nanoparticles Using Anchusa Officinalis: Antimicrobial and Cytotoxic Potential. Int J Nanomedicine 2025; 20:4481-4502. [PMID: 40242607 PMCID: PMC12002332 DOI: 10.2147/ijn.s511217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Objective Anchusa officinalis L. (A. officinalis) is a herbaceous traditional medicinal plant used in the treatment of some diseases. The presence of its medicinal properties suggested that A. officinalis (AO) leaf extract could be used as a coating agent for the environmentally friendly production of silver nanoparticles (AgNPs). Methods The synthesized biogenic silver nanoparticles (AO-AgNPs) were characterized using different techniques. The antimicrobial activity of AgNPs against common bacterial pathogenic strains was determined by the minimum inhibitory concentration (MIC) method. The presence of phytochemicals was determined by LSMS/MS. The MTT assay was used to investigate AO-AgNPs' cytotoxic activity in malignant (LnCap, Caco2, MDA-MB2, A549) and healthy (HEK-293) cell lines. Results LC-MS/MS analysis detected the presence of rich phytochemicals that may be responsible for reduction reactions. Biogenic AO-AgNPs exhibited effective inhibition of the growth of pathogenic microorganisms at low concentrations. The most effective antimicrobial activity was measured as 0.5 µg/mL MIC against S. aureus, E. coli, and C. albicans. Moreover, AO-AgNPs showed significant inhibition on the growth of cancerous cell lines, especially at a concentration of 25 μg/mL. On the contrary, it was determined that the inhibition rate decreased in the growth of healthy cell lines due to the increase in concentration. The lowest EC50 values were determined as 15.15 µg/mL in A549 cells. Conclusion The obtained results showed that AO could be an important source for the synthesis of AgNPs. Especially their ability to inhibit the growth of antibiotic-resistant pathogenic bacteria at low concentrations compared to common antibiotics indicates that AO-AgNPs can be used as biomedical agents in various areas. Moreover, their suppressive effect on cancerous cell lines showed that they have the potential to be used as an anticancer agent, but due to their proliferative effect on healthy cell lines, care should be taken in determining the appropriate dose.
Collapse
Affiliation(s)
- Cumali Keskin
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkiye
| | - Seyhan Aslan
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, 47200, Turkiye
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Turkiye
| | - Ayşe Baran
- Department of Plant and Animal Production, Medicinal and Aromatic Plants Program, Kiziltepe Vocational School, Marin Artuklu University, Mardin, Turkiye
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkiye
- Engineered Biomaterials Research Center, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Mehmet Tevfik Adıcan
- Department of Electricity and Energy, Vocational School, Mardin Artuklu University, Mardin, Turkiye
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkiye
| | - Ali Jimale Mohamed
- Department of Pharmacology, Faculty of Medicine, Somali National University, Mogadishu, 801, Somalia
| |
Collapse
|
2
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
List J, Gattringer J, Huszarek S, Marinovic S, Neubauer HA, Kudweis P, Putz EM, Hellinger R, Gotthardt D. Boosting the anti-tumor activity of natural killer cells by caripe 8 - A Carapichea ipecacuanha isolated cyclotide. Biomed Pharmacother 2024; 177:117057. [PMID: 38976957 DOI: 10.1016/j.biopha.2024.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Julia List
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Sonja Marinovic
- Department of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | - Petra Kudweis
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva-M Putz
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
4
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
5
|
Liu L, Kapralov M, Ashton M. Plant-derived compounds as potential leads for new drug development targeting COVID-19. Phytother Res 2024; 38:1522-1554. [PMID: 38281731 DOI: 10.1002/ptr.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.
Collapse
Affiliation(s)
- Lingxiu Liu
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Maxim Kapralov
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mark Ashton
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
6
|
Kim KA, Kang DM, Ko YJ, Ra MJ, Jung SM, Yu JN, Ahn MJ, Kim KH. Chaenomelin, a New Phenolic Glycoside, and Anti- Helicobacter pylori Phenolic Compounds from the Leaves of Salix chaenomeloides. PLANTS (BASEL, SWITZERLAND) 2024; 13:701. [PMID: 38475547 DOI: 10.3390/plants13050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Salix chaenomeloides Kimura, commonly known as pussy willow, is a deciduous shrub and tree belonging to the Salicaceae family. The genus Salix spp. has been known as a healing herb for the treatment of fever, inflammation, and pain relief. The current study aimed to investigate the potential bioactive natural products from S. chaenomeloides leaves and evaluate their antibacterial activity against Helicobacter pylori. A phytochemical investigation of the ethanol (EtOH) extract of S. chaenomeloides leaves led to the isolation of 13 phenolic compounds (1-13) from the ethyl acetate (EtOAc) fraction, which showed antibacterial activity against H. pylori strain 51. The chemical structure of a new phenolic glycoside, chaenomelin (1), was established by a detailed analysis of 1D and 2D (1H-1H correlation spectroscopy (COSY), heteronuclear single-quantum coherence (HSQC), and heteronuclear multiple-bond correlation (HMBC)) nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectroscopy (HR-ESIMS), and chemical reactions. The other known compounds were identified as 5-O-trans-p-coumaroyl quinic acid methyl ester (2), tremulacin (3), citrusin C (4), benzyl 3-O-β-d-glucopyranosyl-7-hydroxybenzoate (5), tremuloidin (6), 1-[O-β-d-glucopyranosyl(1→2)-β-d-glucopyranosyl]oxy-2-phenol (7), arbutin cinnamate (8), tremulacinol (9), catechol (10), 4-hydroxybenzaldehyde (11), kaempferol 3-rutinoside (12), and narcissin (13), based on the comparison of their NMR spectra with the reported data and liquid chromatography/mass spectrometry (LC/MS) analysis. The isolated compounds were evaluated for antibacterial activity against H. pylori strain 51. Among the isolates, 1-[O-β-d-glucopyranosyl(1→2)-β-d-glucopyranosyl]oxy-2-phenol (7) and arbutin cinnamate (8) exhibited antibacterial activity against H. pylori strain 51, with inhibitions of 31.4% and 33.9%, respectively, at a final concentration of 100 μM. These results were comparable to that of quercetin (38.4% inhibition), which served as a positive control. Generally, these findings highlight the potential of the active compounds 7 and 8 as antibacterial agents against H. pylori.
Collapse
Affiliation(s)
- Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Moon-Jin Ra
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun 25142, Republic of Korea
| | - Sang-Mi Jung
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun 25142, Republic of Korea
| | - Jeong-Nam Yu
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
8
|
Köhler A, Förster N, Zander M, Ulrichs C. Inter- and intraspecific diversity of Salix bark phenolic profiles - A resource for the pharmaceutical industry. Fitoterapia 2023; 170:105660. [PMID: 37648031 DOI: 10.1016/j.fitote.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Due to their content of phenolic compounds, willow bark preparations are used as an herbal remedy. The large diversity of phenolic secondary metabolites in Salix still provides a resource for the identification of bioactive compounds in particular species, including species not yet in focus from a phytopharmaceutical perspective. The present study describes the bark phenolic profile of 13 Salix species analyzed by HPLC-MS: Salix alba, Salix babylonica, Salix daphnoides, Salix fragilis, Salix hastata, Salix myrsinifolia, Salix pentandra, Salix purpurea, Salix repens (including subspecies S. repens ssp. arenaria and S. repens ssp. repens), Salix rosmarinifolia, Salix sachalinensis, Salix triandra and Salix viminalis. The analyzed profiles comprised the chemical groups of salicylates, flavonoids, procyanidins, phenolic acid derivatives, and some unclassified phenolics. Particular compounds were detected in species where they have not been previously reported. Apart from interspecific diversity, qualitative variability within species was observed as certain components were detected only in some of the analyzed genotypes. The knowledge on specific phenolic profiles of species and genotypes is the basis for the selection of suitable willow bark material with certain desired bioactive properties. Furthermore, the high inter- and intraspecific variability points out the necessity for product standardization of willow bark raw material.
Collapse
Affiliation(s)
- Angela Köhler
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Nadja Förster
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Matthias Zander
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Christian Ulrichs
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| |
Collapse
|
9
|
Aleman RS, Marcia J, Duque-Soto C, Lozano-Sánchez J, Montero-Fernández I, Ruano JA, Hoskin RT, Moncada M. Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow ( Salix alba) Bark Aqueous and Ethanolic Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2533. [PMID: 37447094 DOI: 10.3390/plants12132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
White willow (Salix alba) is a medicinal plant used in folk medicine. In this study, aqueous and ethanolic willow bark extracts were obtained via ultrasonic-assisted extraction (UAE) and microwave-assisted extraction (MAE), and analyzed regarding their phytochemical (total phenolics, phenolic acids, flavonoids, and tannins) content and in vitro biological properties (antibacterial and antifungal activity, acetylcholinesterase AChE inhibitory activity and anti-inflammatory effects). The highest phenolic, tannin, and flavonoid contents were found for willow bark extracts obtained via microwave-assisted extraction using ethanol as a solvent (SA-ME). The polyphenol load of all MAE and UAE extracts was higher when conventional solid-liquid extraction was applied (ρ < 0.05). The antioxidant capacities were stronger for microwave-assisted ethanolic extracts, with the lowest IC50 values of 12 μg/mL for DPPH• and a value of 16 μg/mL for ABTS•+, whereas the conventional extraction had the highest IC50 values (22 μg/mL and 28 μg/mL, respectively). Willow bark extract showed antibacterial activity against Gram-positive bacteria S. aureus and P. aeruginosa. AChE inhibitory activity was dependent on the extraction method and solvent used, and the highest inhibition among samples was observed for SA-ME. Taken altogether, our findings suggest that willow (Salix alba) bark extract obtained via ethanolic microwave-assisted extraction is a phytochemical-rich resource with in vitro, anti-inflammatory, and AchE inhibitory properties and, therefore, potential multiple medicinal end-uses.
Collapse
Affiliation(s)
- Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA
| | - Jhunior Marcia
- Faculty of Technological Sciences, Universidad Nacional de Agricultura Road to Dulce Nombre de Culmí, Km 215, Barrio El Espino, Catacamas 16201, Honduras
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Ismael Montero-Fernández
- Department of Agricultural and Forestry Engineering, Escuela de Ingenierías Agrarias, Universidad de Extremadura, vda. Adolfo Su'arez s/n, 06007 Badajoz, Spain
| | - Juan A Ruano
- C.I. Nutreo S.A.S., Iluma Alliance, Medellin, Colombia
| | - Roberta Targino Hoskin
- Department of Food, Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
10
|
Le NPK, Altenburger MJ, Lamy E. Development of an Inflammation-Triggered In Vitro "Leaky Gut" Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages. Int J Mol Sci 2023; 24:7427. [PMID: 37108590 PMCID: PMC10139037 DOI: 10.3390/ijms24087427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.
Collapse
Affiliation(s)
- Nguyen Phan Khoi Le
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| |
Collapse
|
11
|
Basha NJ. Small Molecules as Anti‐inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways. ChemistrySelect 2023. [DOI: 10.1002/slct.202204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru Karnataka-560043 India
| |
Collapse
|
12
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
13
|
Molecular Mechanisms of Anti-Inflammatory Phytochemicals. Int J Mol Sci 2022; 23:ijms231911016. [PMID: 36232312 PMCID: PMC9569521 DOI: 10.3390/ijms231911016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
|
14
|
Increased Production of Inflammatory Cytokines after Inoculation with Recombinant Zoster Vaccine in Mice. Vaccines (Basel) 2022; 10:vaccines10081339. [PMID: 36016227 PMCID: PMC9413309 DOI: 10.3390/vaccines10081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing numbers of patients with zoster were reported recently, and recombinant zoster vaccine (Shingrix®) was licensed using the AS01B adjuvant system. Although it induces highly effective protection, a high incidence of local adverse events (regional pain, erythema, and swelling) has been reported with systemic reactions of fever, fatigue, and headache. To investigate the mechanism of local adverse events, cytokine profiles were investigated in mice injected with 0.1 mL of Shingrix®. Muscle tissue and serum samples were obtained on days 0, 1, 3, 5, and 7, and at 2 and 4 weeks after the first dose. The second dose was given 4 weeks after the first dose and samples were obtained on days 1, 3, 5, 7, and 14. IL-6 and G-CSF were detected in muscle tissues on day 1 of the first injection, decreased on day 3 and afterward, and enhanced production was demonstrated on day 1 of the second dose. In sera, the elevated levels of IL-6 were detected on day 1 of the first dose, and IL-10 was detected on day 1 with increased levels on day 3 of the first dose. IL-4 was detected in muscle tissue on day 1 of the second dose and IL-5 on day 1 of both the first and second doses. IFN-γ production was not enhanced in muscle tissue but increased in serum samples on day 1 of the first dose. These results in the mouse model indicate that the induction of inflammatory cytokines is related to the cause of adverse events in humans.
Collapse
|
15
|
Garcia-Valtanen P, Hope CM, Masavuli MG, Yeow AEL, Balachandran H, Mekonnen ZA, Al-Delfi Z, Abayasingam A, Agapiou D, Stella AO, Aggarwal A, Bouras G, Gummow J, Ferguson C, O'Connor S, McCartney EM, Lynn DJ, Maddern G, Gowans EJ, Reddi BAJ, Shaw D, Kok-Lim C, Beard MR, Weiskopf D, Sette A, Turville SG, Bull RA, Barry SC, Grubor-Bauk B. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep Med 2022; 3:100651. [PMID: 35654046 PMCID: PMC9110310 DOI: 10.1016/j.xcrm.2022.100651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs. Most mild COVID-19 convalescents maintain immunity at 12 months after disease onset B.1.1.529 escapes antibodies in convalescents infected with ancestral SARS-CoV-2 SARS-CoV-2 VOCs can partially avoid recognition by antigen-specific T cells Antigenic drift in SARS-CoV-2 VOCs significantly challenges convalescent immunity
Collapse
Affiliation(s)
- Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Christopher M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | | | - David Agapiou
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; The Department of Surgery - Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Erin M McCartney
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Guy Maddern
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric J Gowans
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia; Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Australia, Sydney, NSW, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Health Network, North Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Elzupir AO. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment. Molecules 2021; 26:molecules26247458. [PMID: 34946540 PMCID: PMC8707611 DOI: 10.3390/molecules26247458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics-generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from -4.6 ± 0.14 to -7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP-3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of -25.53 and -7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.
Collapse
Affiliation(s)
- Amin Osman Elzupir
- College of Science, Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
17
|
Gomes JVD, Herz C, Helmig S, Förster N, Mewis I, Lamy E. Drug-Drug Interaction Potential, Cytotoxicity, and Reactive Oxygen Species Production of Salix Cortex Extracts Using Human Hepatocyte-Like HepaRG Cells. Front Pharmacol 2021; 12:779801. [PMID: 34867410 PMCID: PMC8636986 DOI: 10.3389/fphar.2021.779801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Herbal preparations of willow bark (Salix cortex) are available in many countries as non-prescription medicines for pain and inflammation, and also as dietary supplements. Currently only little information on toxicity and drug interaction potential of the extracts is available. This study now evaluated the effects of two Salix cortex extracts on human hepatocyte-like HepaRG cells, in view of clinically relevant CYP450 enzyme activity modulation, cytotoxicity and production of reactive oxygen species (ROS). Drug metabolism via the CYP450 enzyme system is considered an important parameter for the occurrence of drug-drug interactions, which can lead to toxicity, decreased pharmacological activity, and adverse drug reactions. We evaluated two different bark extracts standardized to 10 mg/ml phenolic content. Herein, extract S6 (S. pentandra, containing 8.15 mg/ml total salicylates and 0.08 mg/ml salicin) and extract B (industrial reference, containing 5.35 mg/ml total salicylates and 2.26 mg/ml salicin) were tested. Both Salix cortex extracts showed no relevant reduction in cell viability or increase in ROS production in hepatocyte-like HepaRG cells. However, they reduced CYP1A2 and CYP3A4 enzyme activity after 48 h at ≥25 μg/ml, this was statistically significant only for S6. CYP2C19 activity inhibition (0.5 h) was also observed at ≥25 μg/ml, mRNA expression inhibition by 48 h treatment with S6 at 25 μg/ml. In conclusion, at higher concentrations, the tested Salix cortex extracts showed a drug interaction potential, but with different potency. Given the high prevalence of polypharmacy, particularly in the elderly with chronic pain, further systematic studies of Salix species of medical interest should be conducted in the future to more accurately determine the risk of potential drug interactions.
Collapse
Affiliation(s)
- João Victor Dutra Gomes
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| | - Simone Helmig
- Institute for Occupational and Social Medicine and Department of Anesthesiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Nadja Förster
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Inga Mewis
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine—University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Antoniadou K, Herz C, Le NPK, Mittermeier-Kleßinger VK, Förster N, Zander M, Ulrichs C, Mewis I, Hofmann T, Dawid C, Lamy E. Identification of Salicylates in Willow Bark ( Salix Cortex) for Targeting Peripheral Inflammation. Int J Mol Sci 2021; 22:11138. [PMID: 34681798 PMCID: PMC8540557 DOI: 10.3390/ijms222011138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.
Collapse
Affiliation(s)
- Kyriaki Antoniadou
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Nguyen Phan Khoi Le
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | | | - Nadja Förster
- Urban Plant Ecophysiology, Humboldt University of Berlin, 14195 Berlin, Germany
| | - Matthias Zander
- Urban Plant Ecophysiology, Humboldt University of Berlin, 14195 Berlin, Germany
| | - Christian Ulrichs
- Urban Plant Ecophysiology, Humboldt University of Berlin, 14195 Berlin, Germany
| | - Inga Mewis
- Urban Plant Ecophysiology, Humboldt University of Berlin, 14195 Berlin, Germany
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|