1
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
2
|
Cassari L, Balducci C, Messina GML, Iucci G, Battocchio C, Bertelà F, Lucchetta G, Coward T, Di Silvio L, Marletta G, Zamuner A, Brun P, Dettin M. Polyetheretherketone Double Functionalization with Bioactive Peptides Improves Human Osteoblast Response. Biomimetics (Basel) 2024; 9:767. [PMID: 39727771 DOI: 10.3390/biomimetics9120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue. This study explores the functionalization of sandblasted 3D-printed PEEK disks with the bioactive peptides Aoa-GBMP1α and Aoa-EAK to enhance human osteoblast response. Aoa-GBMP1α reproduces 48-69 trait of Bone Morphogenetic Protein 2 (BMP-2), whereas Aoa-EAK is a self-assembling peptide mimicking extracellular matrix (ECM) fibrous structure. Superficial characterization included X-ray photoelectron spectroscopy (XPS), white light interferometer analysis, static water contact angle (S-WCA), and force spectroscopy (AFM-FS). Biological assays demonstrated a significant increase in human osteoblast (HOB) proliferation, calcium deposition, and expression of osteogenic genes (RUNX2, SPP1, and VTN) on functionalized PEEK compared to non-functionalized controls. The findings suggest that dual peptide-functionalized PEEK holds significant potential for advancing orthopedic implant technology.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Cristian Balducci
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Grazia M L Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Federica Bertelà
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanni Lucchetta
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Trevor Coward
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Giovanni Marletta
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
3
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Vesel A, Zaplotnik R, Primc G, Mozetič M. Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma. Polymers (Basel) 2024; 16:1381. [PMID: 38794574 PMCID: PMC11125687 DOI: 10.3390/polym16101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The wettability of polymers is usually inadequate to ensure the appropriate spreading of polar liquids and thus enable the required adhesion of coatings. A standard ecologically benign method for increasing the polymer wettability is a brief treatment with a non-equilibrium plasma rich in reactive oxygen species and predominantly neutral oxygen atoms in the ground electronic state. The evolution of the surface wettability of selected aromatic polymers was investigated by water droplet contact angles deposited immediately after exposing polymer samples to fluxes of oxygen atoms between 3 × 1020 and 1 × 1023 m-2s-1. The treatment time varied between 0.01 and 1000 s. The wettability evolution versus the O-atom fluence for all aromatic polymers followed similar behavior regardless of the flux of O atoms or the type of polymer. In the range of fluences between approximately 5 × 1020 and 5 × 1023 m-2, the water contact angle decreased exponentially with increasing fluence and dropped to 1/e of the initial value after receiving the fluence close to 5 × 1022 m-2.
Collapse
Affiliation(s)
| | | | | | - Miran Mozetič
- Jozef Stefan Institute, Department of Surface Engineering, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Chen J, Xiao J, Han X, Sima X, Guo W. An HA/PEEK scaffold with modified crystallinity via 3D-bioprinting for multiple applications in hard tissue engineering. Biomed Mater 2023; 18:065021. [PMID: 37852224 DOI: 10.1088/1748-605x/ad0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Hard tissues, especially teeth and bones, are highly mineralized and the large-scale defect or total loss of them is irreversible. There is still no ideal strategy for the reconstruction of various hard tissue defects that can achieve the balance between biological and mechanical properties. Polyether ether ketone (PEEK) has the potential to substitute for natural hard tissue in defect areas but is limited by its biological inertness. The addition of hydroxyapatite (HA) can significantly improve the osteogenic properties and osteointegration of PEEK materials. But the mechanical properties of HA/PEEK scaffolds are far from satisfaction making scaffolds easy to fracture. We put forward a strategy to balance the mechanical and biological properties of HA/PEEK scaffolds via the regulation of the inner crystallinity and HA mixing ratio and we systematically evaluated the modified HA/PEEK scaffolds through material characterization,in vitroandin vivoexperiments. And we found that the 20%HA/PEEK scaffolds with low crystallinity achieved the required strength and elasticity, and exhibited the characteristics of promoting the proliferation, migration and osteogenic differentiation of bone marrow mesenchymal stem cells. The results of the implantation of beagles' teeth, mandible and rib showed that the 20%HA/PEEK scaffold with low crystallinity could well withstand the local complex force in the defect area and combine well with natural bone tissue, which made it a candidate for a practical versatile hard tissue engineering scaffold.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jingyi Xiao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xue Han
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
6
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
7
|
Maillet C, Klein FM, Le Bras F, Velard F, Guillaume C, Gangloff SC, Gelle MP. Cytocompatibility of titanium and poly(etheretherketone) surfaces after O2 non-thermal plasma sterilization. PLoS One 2023; 18:e0290820. [PMID: 37647324 PMCID: PMC10468041 DOI: 10.1371/journal.pone.0290820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The sterilization of medical devices is paramount to achieve an acceptable level of sterility assurance and to prevent hospital-acquired infections. However, some medical devices cannot be sterilized by usual processes such as autoclave (AC) and gamma-ray irradiation (GI). A new non-thermal plasma (NTP) process using sealed bag that preserves the sterile state of the devices could be used as an alternative sterilization method. The aim of the study was to assess the cytocompatibility of titanium and poly(etheretherketone) (PEEK) surfaces after O2-NTP sterilization compared to GI and AC. MG-63 osteoblast-like cells were seeded on titanium (TA6V) and PEEK disks sterilized by AC, GI and O2-NTP. The cells' viability and proliferation, determined by WST-1 and DNA quantification respectively, were enhanced whatever the material types from 3 to 10 days. When seeded on titanium, MG-63 cells showed a higher viability and proliferation after GI and O2-NTP treatment compared to AC treatment. When cultured on PEEK, MG-63 cells showed a higher viability after O2-NTP treatment. No difference of proliferation was observed whatever the sterilization processes. The cell colonization of the materials' surface was confirmed by scanning electron microscopy. Lactate dehydrogenase (LDH) assay revealed no cytotoxicity. Thus, O2-NTP led to similar cell responses to AC and GI and could be a cost-effective alternative process to the usual sterilization methods for fragile medical devices.
Collapse
Affiliation(s)
- Christina Maillet
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
- UFR Odontologie, Université de Reims Champagne Ardenne, Reims, France
- Pôle de Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Reims, Reims, France
| | | | - Florian Le Bras
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
| | - Frederic Velard
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
| | - Christine Guillaume
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
| | - Sophie C. Gangloff
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
- UFR Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - Marie-Paule Gelle
- BIOS EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP Santé, FED 4231, Université de Reims Champagne Ardenne, Reims, France
- UFR Odontologie, Université de Reims Champagne Ardenne, Reims, France
- Pôle de Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Reims, Reims, France
| |
Collapse
|
8
|
Zhang R, Jo JI, Kanda R, Nishiura A, Hashimoto Y, Matsumoto N. Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation. Int J Mol Sci 2023; 24:12741. [PMID: 37628923 PMCID: PMC10454083 DOI: 10.3390/ijms241612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Polyetheretherketone (PEEK) is one of the most promising implant materials for hard tissues due to its similar elastic modulus; however, usage of PEEK is still limited owing to its biological inertness and low osteoconductivity. The objective of the study was to provide PEEK with the ability to sustain the release of growth factors and the osteogenic differentiation of stem cells. The PEEK surface was sandblasted and modified with polydopamine (PDA). Moreover, successful sandblasting and PDA modification of the PEEK surface was confirmed through physicochemical characterization. The gelatin hydrogel was then chemically bound to the PEEK by adding a solution of glutaraldehyde and gelatin to the surface of the PDA-modified PEEK. The binding and degradation of the gelatin hydrogel with PEEK (GPEEK) were confirmed, and the GPEEK mineralization was observed in simulated body fluid. Sustained release of bone morphogenetic protein (BMP)-2 was observed in GPEEK. When cultured on GPEEK with BMP-2, human mesenchymal stem cells (hMSCs) exhibited osteogenic differentiation. We conclude that PEEK with a gelatin hydrogel incorporating BMP-2 is a promising substrate for bone tissue engineering.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Ryuhei Kanda
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| |
Collapse
|
9
|
Surface Treatments of PEEK for Osseointegration to Bone. Biomolecules 2023; 13:biom13030464. [PMID: 36979399 PMCID: PMC10046336 DOI: 10.3390/biom13030464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. However, PEEK has a highly hydrophobic and bioinert surface that attenuates the differentiation and proliferation of osteoblasts and leads to implant failure. Several improvements have been made to the osseointegration potential of PEEK, which can be classified into three main categories: (1) surface functionalization with bioactive agents by physical or chemical means; (2) incorporation of bioactive materials either as surface coatings or as composites; and (3) construction of three-dimensionally porous structures on its surfaces. The physical treatments, such as plasma treatments of various elements, accelerated neutron beams, or conventional techniques like sandblasting and laser or ultraviolet radiation, change the micro-geometry of the implant surface. The chemical treatments change the surface composition of PEEK and should be titrated at the time of exposure. The implant surface can be incorporated with a bioactive material that should be selected following the desired use, loading condition, and antimicrobial load around the implant. For optimal results, a combination of the methods above is utilized to compensate for the limitations of individual methods. This review summarizes these methods and their combinations for optimizing the surface of PEEK for utilization as an implanted biomaterial.
Collapse
|
10
|
Strategies for Improved Wettability of Polyetheretherketone (PEEK) Polymers by Non-Equilibrium Plasma Treatment. Polymers (Basel) 2022; 14:polym14235319. [PMID: 36501716 PMCID: PMC9739015 DOI: 10.3390/polym14235319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Polyetheretherketone (PEEK) is the material of choice in several applications ranging from the automotive industry to medicine, but the surface properties are usually not adequate. A standard method for tailoring surface properties is the application of gaseous plasma. The surface finish depends enormously on the processing parameters. This article presents a review of strategies adapted for improved wettability and adhesion of PEEK. The kinetics of positively charged ions, neutral reactive plasma species, and vacuum ultraviolet radiation on the surface finish are analyzed, and synergies are stressed where appropriate. The reviewed articles are critically assessed regarding the plasma and surface kinetics, and the surface mechanisms are illustrated. The directions for obtaining optimal surface finish are provided together with the scientific explanation of the limitations of various approaches. Super-hydrophilic surface finish is achievable by treatment with a large dose of vacuum ultraviolet radiation in the presence of oxidizing gas. Bombardment with positively charged ions of kinetic energy between about 100 and 1000 eV also enable high wettability, but one should be aware of excessive heating when using the ions.
Collapse
|
11
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
12
|
Qi D, Wang N, Cheng Y, Zhao Y, Meng L, Yue X, She P, Gao H. Application of Porous Polyetheretherketone Scaffold/ Vancomycin-Loaded Thermosensitive Hydrogel Composites for Antibacterial Therapy in Bone Repair. Macromol Biosci 2022; 22:e2200114. [PMID: 35850169 DOI: 10.1002/mabi.202200114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Polyetheretherketone (PEEK) has been widely used in bone repair, but it often fails due to bacterial infection. Herein, a high-strength porous polyetheretherketone scaffold (ps-PK) loaded with antibacterial drug-loaded hydrogel strategy is proposed. The prepared ps-PK possesses high porosity (30.8%-64.7%) and the compression modulus is between 0.4-0.98 GPa. The interconnected pore-type structure endows it with a drug loading capacity. Poly(D,L -lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L -lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermoresponsive hydrogels loaded with vancomycin are used as the drug sustained-release system. The vancomycin-loaded hydrogels in the solution state at a low temperature were filled into a porous polyetheretherketone scaffold (ps-PK-VGel) and formed a gel state after implantation in vivo. The antibacterial rate of ps-PK-VGel against methicillin-resistant staphylococcus aureus (MRSA) in vitro was 99.7% and histological observation in vivo demonstrates that the ps-PK-VGel shows obvious antibacterial activity. Given its excellent antibacterial ability and mechanical properties, the porous PEEK scaffold composite drug-loaded thermosensitive hydrogel has great potential in bone repair surgery applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Desheng Qi
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Ningning Wang
- Department of Prosthetic Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yuanqiang Cheng
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Lingcheng Meng
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Xigui Yue
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Peng She
- Department of orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 528406, China
| | - Hang Gao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|