1
|
Wang Z, Yu X, Ma H, Yao S, Li Z, Zhang R, Liang H, Jiao J. Proprotein convertase subtilisin/kexin type 9 contributes to cisplatin-induced acute kidney injury by interacting with cyclase-associated protein 1 to promote megalin lysosomal degradation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119984. [PMID: 40339661 DOI: 10.1016/j.bbamcr.2025.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Cisplatin-induced acute kidney injury (AKI) is associated with a considerable risk of mortality, highlighting the critical need for effective preventive and therapeutic strategies to mitigate its impact on patients' outcomes. Mounting evidence suggests that administration of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor evolocumab significantly reduces the risk of AKI, however, the underlying mechanisms remain poorly understood. Megalin is an endocytic receptor that plays a crucial role in tubular cells. In this study, elevated PCSK9 expression, accompanied by decreased megalin expression, was observed in cellular and murine models of cisplatin-induced AKI. Further experiments revealed that PCSK9 overexpression downregulated megalin expression and promoted tubular injury. Additionally, the PCSK9 inhibitor evolocumab inhibited megalin loss and protected against increases in urinary protein levels, blood urea nitrogen, serum creatinine, and the kidney injury markers neutrophil gelatinase-associated lipocalin and kidney injury molecule 1. Mechanistically, PCSK9 binds to megalin and facilitates its lysosomal degradation through the coordinated actions of cyclase-associated protein 1 (CAP1) and human leukocyte antigen C (HLA-C). Similar to evolocumab, CAP1 deletion significantly protected against megalin loss and mitigated tubular injury both in vitro and in vivo. Collectively, these findings suggest that PCSK9 and CAP1 are potential therapeutic targets for patients with cisplatin-induced AKI.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Xinying Yu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Huimin Ma
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Shuang Yao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Zongda Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China
| | - Haihai Liang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China; College of Pharmacy, Harbin Medical University, 150086 Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, 150086 Harbin, China.
| |
Collapse
|
2
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Wang X, Sun L. The Potential Role of Cardiokines in Heart and Kidney Diseases. Curr Med Chem 2025; 32:720-728. [PMID: 37855343 DOI: 10.2174/0109298673261760231011114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
As the engine that maintains blood circulation, the heart is also an endocrine organ that regulates the function of distant target organs by secreting a series of cardiokines. As endocrine factors, cardiokines play an indispensable role in maintaining the homeostasis of the heart and other organs. Here, we summarize some of the cardiokines that have been defined thus far and explore their roles in heart and kidney diseases. Finally, we propose that cardiokines may be a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Ming Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinfei Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liyu He
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
do Carmo JM, Hall JE, Furukawa LNS, Woronik V, Dai X, Ladnier E, Wang Z, Omoto ACM, Mouton A, Li X, Luna-Suarez EM, da Silva AA. Chronic central nervous system leptin administration attenuates kidney dysfunction and injury in a model of ischemia/reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F957-F966. [PMID: 39361725 PMCID: PMC11687842 DOI: 10.1152/ajprenal.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
In the present study, we examined whether chronic intracerebroventricular (ICV) leptin administration protects against ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Twelve-week-old male rats were implanted with an ICV cannula into the right lateral ventricle, and 8-10 days after surgery, leptin (0.021 µg/h, n = 8) or saline vehicle (0.5 µL/h, n = 8) was infused via osmotic minipump connected to the ICV cannula for 12 days. On day 8 of leptin or vehicle infusion, rats were submitted to unilateral ischemia/reperfusion (UIR) by clamping the left pedicle for 30 min. To control for leptin-induced reductions in food intake, the vehicle-treated group was pair-fed (UIR-PF) to match the same amount of food consumed by leptin-treated (UIR-Leptin) rats. On the 12th day of leptin or vehicle infusion (fourth day after AKI), single-left kidney glomerular filtration rate (GFR) was measured, blood samples were collected to quantify white blood cells, and kidneys were collected for histological assessment of injury. UIR-Leptin-treated rats showed reduced right and left kidney weights (right: 1,040 ± 24 vs. 1,281 ± 36 mg; left: 1,127 ± 71 vs. 1,707 ± 45 mg, for UIR-Leptin and UIR-PF, respectively). ICV leptin infusion improved GFR (0.50 ± 0.06 vs. 0.13 ± 0.03 mL/min/g kidney wt) and reduced kidney injury scores. ICV leptin treatment also attenuated the reduction in circulating adiponectin levels that was observed in UIR-PF rats and increased the circulating white blood cells count compared with UIR-PF rats (16.3 ± 1.3 vs. 9.8 ± 0.6 k/µL). Therefore, we show that leptin, via its actions on the central nervous system, confers significant protection against major kidney dysfunction and injury in a model of ischemia/reperfusion-induced AKI.NEW & NOTEWORTHY A major new finding of this study is that chronic activation of leptin receptors in the CNS markedly attenuates acute kidney injury and protects against severe renal dysfunction after ischemia/reperfusion, independently of leptin's anorexic effects.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - John E Hall
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Luzia N S Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Viktoria Woronik
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Xuemei Dai
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Ladnier
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ana C M Omoto
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alan Mouton
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Xuan Li
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emilio M Luna-Suarez
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Luo Y, Yuan L, Liu Z, Dong W, Huang L, Liao A, Xie Y, Liu R, Lan W, Cai Y, Zhu W. Inhibition of PCSK9 Protects against Cerebral Ischemia‒Reperfusion Injury via Attenuating Microcirculatory Dysfunction. Neurochem Res 2024; 50:10. [PMID: 39548030 DOI: 10.1007/s11064-024-04272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Proprotein convertase substilin/kexin type 9 (PCSK9), a pivotal protein regulating lipid metabolism, has been implicated in promoting microthrombotic formation and inflammatory cascades, thereby contributing to cardiovascular ischemia/reperfusion (I/R) injury. However, its involvement in cerebral I/R injury and its potential role in microcirculation protection remain unexplored. In this investigation, we utilized a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate ischemic stroke. Different concentrations of evolocumab (1, 5, 10 mg/kg, i.v.), a PCSK9 inhibitor, were administered to assess its impact. Immunofluorescence staining was employed to analyze changes in the expression of occludin, claudin-5, thrombocyte, ICAM-1, VCAM-1, and CD45, providing insights into blood-brain barrier integrity, platelet adhesion, and immune cell infiltration. Moreover, the Morris water maze and elevated plus maze were utilized to evaluate neurological and behavioral functions in MCAO/R mice, shedding light on the effects of PCSK9 inhibition. Our findings revealed a surge in plasma PCSK9 levels post-MCAO/R, peaking at 24 h post-reperfusion. Evolocumab (10 mg/kg) treatment significantly mitigated brain infarction and neurological deficits, evidenced by enhanced locomotor function and reduced post-stroke anxiety. However, it did not ameliorate cognitive impairment following MCAO/R. Additionally, evolocumab administration led to diminished leakage of evans blue solution and upregulated expression of occludin and claudin-5. Thrombocyte, ICAM-1, VCAM-1, and CD45 levels were notably reduced in the penumbral area post-evolocumab treatment. These protective effects are speculated to be mediated through the inhibition of the ERK/NF-κB pathway. The PCSK9 inhibitor evolocumab holds promise as a therapeutic agent during the acute phase of stroke, exerting its beneficial effects by modulating the ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuanfei Luo
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Linying Yuan
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihui Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weichen Dong
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Huang
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Anyu Liao
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Xie
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenya Lan
- Department of Cerebrovascular Disease Treatment Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yulong Cai
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Wusheng Zhu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Oliveira FRMB, Sousa Soares E, Pillmann Ramos H, Lättig-Tünnemann G, Harms C, Cimarosti H, Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem Pharmacol 2024; 227:116425. [PMID: 39004233 DOI: 10.1016/j.bcp.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.
Collapse
Affiliation(s)
- Filipe Rodolfo Moreira Borges Oliveira
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Ericks Sousa Soares
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Hanna Pillmann Ramos
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil
| | - Gisela Lättig-Tünnemann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Centre for Stroke Research, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany; Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena Cimarosti
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil; Graduate Program in Neuroscience, UFSC, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil.
| |
Collapse
|
6
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
7
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zhang Y, Wang Z, Jia C, Yu W, Li X, Xia N, Nie H, Wikana LP, Chen M, Ni Y, Han S, Pu L. Blockade of Hepatocyte PCSK9 Ameliorates Hepatic Ischemia-Reperfusion Injury by Promoting Pink1-Parkin-Mediated Mitophagy. Cell Mol Gastroenterol Hepatol 2023; 17:149-169. [PMID: 37717824 PMCID: PMC10696400 DOI: 10.1016/j.jcmgh.2023.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury. METHODS We first examined the expression of PCSK9 in mouse warm ischemia-reperfusion models and AML12 cells subjected to hypoxia/reoxygenation. Subsequently, we explored the impact of PCSK9 on liver ischemia-reperfusion injury by assessing mitochondrial damage and the resulting inflammatory response. RESULTS Our findings reveal that PCSK9 is up-regulated in response to ischemia-reperfusion injury and exacerbates hepatic ischemia-reperfusion injury. Blocking PCSK9 can alleviate hepatocyte mitochondrial damage and the consequent inflammatory response mediated by ischemia-reperfusion. Mechanistically, this protective effect is dependent on mitophagy. CONCLUSIONS Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Huiling Nie
- Affiliated Eye Hospital and Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Likalamu Pascalia Wikana
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
9
|
Ortona S, Barisione C, Ferrari PF, Palombo D, Pratesi G. PCSK9 and Other Metabolic Targets to Counteract Ischemia/Reperfusion Injury in Acute Myocardial Infarction and Visceral Vascular Surgery. J Clin Med 2022; 11:jcm11133638. [PMID: 35806921 PMCID: PMC9267902 DOI: 10.3390/jcm11133638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury complicates both unpredictable events (myocardial infarction and stroke) as well as surgically-induced ones when transient clampage of major vessels is needed. Although the main cause of damage is attributed to mitochondrial dysfunction and oxidative stress, the use of antioxidant compounds for protection gave poor results when challenged in clinics. More recently, there is an assumption that, in humans, profound metabolic changes may prevail in driving I/R injury. In the present work, we narrowed the field of search to I/R injury in the heart/brain/kidney axis in acute myocardial infarction, major vascular surgery, and to the current practice of protection in both settings; then, to help the definition of novel strategies to be translated clinically, the most promising metabolic targets with their modulatory compounds—when available—and new preclinical strategies against I/R injury are described. The consideration arisen from the broad range of studies we have reviewed will help to define novel therapeutic approaches to ensure mitochondrial protection, when I/R events are predictable, and to cope with I/R injury, when it occurs unexpectedly.
Collapse
Affiliation(s)
- Silvia Ortona
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
| | - Chiara Barisione
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-010-555-7881
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145 Genoa, Italy;
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, Via Montallegro, 1, 16145 Genoa, Italy
| | - Giovanni Pratesi
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
10
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|