1
|
Yang Y, Li L, Dai F, Deng L, Yang K, He C, Chen Y, Yang X, Song L. Fibroblast-derived versican exacerbates periodontitis progression by regulating macrophage migration and inflammatory cytokine secretion. Cell Signal 2025; 131:111755. [PMID: 40112905 DOI: 10.1016/j.cellsig.2025.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Versican (VCAN), a prominent extracellular matrix component upregulated in inflammatory diseases, demonstrates context-specific regulatory mechanisms. Periodontitis, a chronic inflammatory disease leading to periodontal tissue destruction and tooth loss, the pathological role of it remains poorly defined. Our study aims to examine VCAN-mediated mechanisms in periodontitis. METHODS We conducted a comprehensive analysis of bulk RNA sequencing and single-cell RNA sequencing data to examine VCAN expression level and source in periodontitis. Functional and correlation analyses were used to explore its biological functions. We then validated VCAN expression using quantitative real-time polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining in animal models and investigated its biological functions in inflammation through in vitro experiments. RESULTS Our findings reveal that VCAN is mainly generated by fibroblast in periodontitis, and its expression significantly upregulated at both mRNA and protein levels. Using VCAN-overexpressing L929 cells, we demonstrated enhanced proliferative capacity and inflammatory potential. Co-culture experiments with RAW264.7 cells showed promoted migration, adhesion, M1 polarization, and mitogen-activated protein kinase (MAPK) pathway activation. CONCLUSION VCAN enhances fibroblast proliferation and migration, and upregulates inflammatory cytokines expression. Furthermore, fibroblast-derived VCAN not only induces macrophage chemotaxis, migration, adhesion, and polarization toward the proinflammatory M1 phenotype, but also activates MAPK signaling of macrophage, which may amplify inflammatory cascades to exacerbate periodontal tissue destruction. Targeted regulation of VCAN expression may become a promising precision treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China
| | - Libin Deng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Kaiqiang Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Chenjiang He
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Yeke Chen
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Xinbo Yang
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China; The Second Clinical Medical School, NanchangUniversity, Nanchang, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; JXHC Key Laboratory of Periodontology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; The institute of Periodontal Disease, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Bounaama A, Djerdjouri B. Matrix metalloproteinase 9 implication during colorectal carcinogenesis. Effect of doxycycline. Fundam Clin Pharmacol 2025; 39:e70012. [PMID: 40273927 DOI: 10.1111/fcp.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), including MMP9, play a significant role in colorectal cancer (CRC) progression, mainly by extracellular matrix remodeling. However, little is known about MMP9 role in aberrant crypt foci (ACF) cluster formation, the earliest colon preneoplastic lesions. AIMS AND METHODS We conducted a bioinformatics analysis of MMPs expression in CRC using Gene Expression Profiling Interactive Analysis2 (GEPIA2). Subsequently, we investigated MMP9 expression during the early stage of colon carcinogenesis in mice and assessed the effect of doxycycline (DOX), a global inhibitor of MMPs, on ACF cluster formation. Thus, NMRI mice received two weekly injections of 1,2-Dimethylhydrazine (DMH, 20 mg/kg, subcutaneously), followed or not by DOX (100 mg/kg, orally, from the 4th to the 6th week). RESULTS GEPIA2 analysis indicated that among the 28 identified MMPs with collagenase and doxycycline-sensitive activities, MMPs 1, 3, 7, 9, and 13 were overexpressed in CRC tissues. Moreover, only MMP1 and MMP9 correlated well with collagen expression in colorectal tumors. In vivo, methylene blue-stained DMH-treated colons revealed multiple ACF clusters at week 6, associated with mucosa remodeling and sustained nitrosative stress as attested by enhanced collagen fibers, malondialdehyde level, and nitrotyrosine deposits. Pyrosequencing showed increased methylation at the tenth CpG site of the MMP9 promoter, which was associated with increased MMP9 expression. Interestingly, DOX attenuated the number and size of ACF clusters and mucosa remodeling without rebalancing nitrosative stress. CONCLUSION Overexpression of MMP9 occurs early during colorectal carcinogenesis, and doxycycline may control the pathological remodeling of colon mucosa into ACF clusters by attenuating MMP9 activity.
Collapse
Affiliation(s)
- Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
3
|
Huang Y, Li G, Li D, Liu C, Chen M, Cai L, Sun M, Xu Q. Ethyl caffeate alleviates inflammatory response and promotes recovery in septic-acute lung injury via the TNF-α/NF-κB/MMP9 Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156700. [PMID: 40220405 DOI: 10.1016/j.phymed.2025.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Septic acute lung injury (Septic-ALI, SA) is a severe complication of sepsis with limited clinical treatment options. Ethyl Caffeate (EC) is a phenolic compound isolated from Ilex latifolia Thunb (I. latifolia) of the Aquifoliaceae family. PURPOSE This study aimed to investigate the potential mechanisms of EC in treating SA by integrating network pharmacology and transcriptomics. METHODS We used network pharmacology to predict the potential pathways and targets of EC and validated these predictions using the GEO database, molecular docking and MDS. Subsequently, LPS-induced inflammation models in RAW cells and a mouse model of SA were established to evaluate the therapeutic effects of EC. Cell transcriptomic sequencing, along with ELISA, qRT-PCR, and Western blot analyses, were performed on both cellular and animal models to validate the key pathways and targets. RESULTS EC targeted TNF-α and MMP9, significantly alleviating LPS-induced SA through the TNF-α/NF-κB/MMP9 axis. Specifically, network pharmacology and molecular docking suggested that EC may target TNF, MMP9, EGFR, PRKACA, and MAPK3. Transcriptomic analyses, MDS and in vitro and in vivo experiments showed that EC primarily reduced the expression of p-p65 and p-IκBα in the TNF pathway by inhibiting TNF-α, thereby downregulating the expression of downstream effector molecules MMP9 and MMP14, and improving lung tissue damage, cell apoptosis, and inflammation levels in mice. CONCLUSION This study was the first to integrate network pharmacology and transcriptomic results, revealing the mechanism by which EC ameliorated SA through the TNF-α/NF-κB/MMP9 axis. Furthermore, experimental validation identified TNF-α and MMP9 as two core targets of EC, providing a valuable reference for the clinical treatment of SA.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China.
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Chang Liu
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Linli Cai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, PR China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, PR China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai 200433, PR China.
| |
Collapse
|
4
|
Dera AA, Al Fayi M. CEG-0598, a novel dual inhibitor of EGFR and C5aR demonstrates in vitro anticancer and antimetastatic activity in prostate cancer cells. Discov Oncol 2025; 16:710. [PMID: 40343625 PMCID: PMC12064535 DOI: 10.1007/s12672-025-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The EGFR is abundantly expressed in prostate cancer (PC). The anaphylatoxin C5a induces leukocyte migration via the C5a receptor (C5aR) by releasing matrix metalloproteinases (MMP) to favor metastasis in the tumor microenvironment. This work aims to selectively inhibit the EGFR and C5aR in PC cells to abort cell growth/ proliferation and metastasis. METHODS For lead identification, high-throughput virtual screening (HTVS) of the ChemBridge library was followed by protein-ligand interaction profilers, GROMACS, and GMX-MMPBSA techniques. LNCaP and PC3 cells were used to validate in vitro efficacy. RESULTS HTVS identified CEG-0598 with favorable binding affinities of - 10.2 kcal/mol and - 13.5 kcal/mol towards EGFR and C5aR respectively. Molecular dynamic simulations demonstrated stable binding interactions for CEG-0598 with Root Mean Square Deviation values around 0.06 nm. The ΔG binding calculation was - 50.29, and - 51.64 for EGFR and C5aR respectively. ADME supported favorable small molecule characteristics and selective inhibition profiles. Kinome-wide off-target virtual screening predicted EGFR to have above-average docking scores. CEG-0598 inhibited EGFR and C5aR activities with IC50 values of 145.8 nM and 55.51 nM respectively. The compound effectively controlled the proliferation of LNCaP and PC3cells with GI50 values of 156.1 nM, and 112.2 nM respectively. CEG-0598 prompted dose-responsive apoptosis in the PC cells and decreased the tarns endothelial migration of both PC cells. Treatment with CEG-0598 reduced the C5a-induced MMP activity in the LNCaP and PC3cells. CONCLUSION CEG-0598 is a selective EGFR/C5a dual inhibitor that downregulates MMP activity to control proliferation, migration and induce apoptosis, in PC cells warranting further preclinical developments.
Collapse
Affiliation(s)
- Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Wang J, Deng Q, Qi L. Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus erythematosus. Sci Rep 2025; 15:15787. [PMID: 40328806 PMCID: PMC12055969 DOI: 10.1038/s41598-025-00620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Evidence indicates a connection between periodontitis (PD) and systemic lupus erythematosus (SLE), though the underlying co-morbid mechanisms remain unclear. This study sought to identify the genetic factors and potential therapeutic agents involved in the interaction between PD and SLE. We employed multi-omics methodologies, encompassing differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment (GO/KEGG), LASSO regression, diagnostic model construction, protein-protein interaction (PPI) networks, immune infiltration profiling, computational drug prediction, molecular docking, and disease subtyping, to analyze PD and SLE expression datasets from the Gene Expression Omnibus (GEO) database (GSE10334, GSE16134, GSE50772, and GSE81622). Cross-analysis identified 32 crosstalk genes (CGs) common to both PD and SLE. LASSO analysis pinpointed three key diagnostic genes (TAGLN, MMP9, TNFAIP6) for both conditions. The resulting diagnostic models demonstrated robust efficacy in both training and validation datasets. Four topological algorithms in Cytoscape highlighted four central crosstalk genes (TAGLN, MMP9, TNFAIP6, IL1B). Additionally, hesperidin, doxycycline, and cytochalasin D emerged as potential therapeutic agents. Two subtypes (C1 and C2) of PD and SLE were delineated based on CG expression profiles. The development of diagnostic models, potential drug identification, and disease subtype classification are poised to enhance diagnosis and treatment. These findings aim to deepen the understanding of PD and SLE complexities.
Collapse
Affiliation(s)
- Junjie Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Qingao Deng
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lu Qi
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
- Department of Stomatology, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, No. 38, North Second Lane, Nanhu East Road, Urumqi, 830000, China.
| |
Collapse
|
6
|
Umeizudike KA, Aji NRAS, Niskanen K, Rantala I, Sakellari D, Grigoriadis A, Pätilä T, Gupta S, Sorsa T, Räisänen IT. Prediabetes Associates with Matrix Metalloproteinase-8 Activation and Contributes to the Rapid Destruction of Periodontal Tissues. Eur J Dent 2025; 19:305-314. [PMID: 39353614 PMCID: PMC12020604 DOI: 10.1055/s-0044-1788797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE The aim of this cross-sectional study was to investigate the relationship between periodontitis, potential periodontitis oral fluid biomarkers, and prediabetes. MATERIALS AND METHODS This study included 150 Greek adults aged 25 to 78 years who were tested with an Hemoglobin A1C (HBA1c) diagnostic system, an active-matrix metalloproteinase-8 (aMMP-8) point-of-care (PoC) test, and several salivary biomarkers enzyme-linked immunosorbent assay tests and gelatin zymography. A full-mouth clinical examination was performed to assess their periodontal and oral health status. STATISTICAL ANALYSIS The Kruskal-Wallis test was used to determine the statistically significant difference in the levels of periodontal oral fluid biomarkers between the different periodontitis stages, periodontitis grades, and the stages and grades of periodontitis combined. Spearman's rank correlation was performed to assess the strength and direction of the association between aMMP-8 and HbA1c levels (<5.7 and ≥5.7%) and with the other oral fluid biomarkers among patients with severe periodontitis. A two-sided p-value below 0.05 was considered statistically significant in this study. RESULTS aMMP-8, but not total MMP-8 or other biomarkers, associated significantly with the stage and grade of periodontitis combined (p < 0.001, Kruskal-Wallis test). Among stage III grade C periodontitis patients, aMMP-8 levels were significantly positively correlated with prediabetes (Spearman's rho = 0.646, p = 0.044), total MMP-8 (rho = 0.636, p = 0.048), PMN Elastase (rho = 0.729, p = 0.017), total MMP-9 (rho = 0.721, p = 0.019), and total MMP-8/TIMP-1 molar ratio (rho = 0.879, p < 0.001). CONCLUSION Prediabetic disease development can upregulate MMP-8 expression (total MMP-8) in rapidly progressing, severe periodontitis, where MMP-8 latent species are further activated into their active forms (aMMP-8). Simultaneously, several proinflammatory biomarker levels are elevated in this tissue-destructive biomarker cascade. This development is easily detectable online/in real-time within 5 minutes by aMMP-8 PoC testing at the dentist's office.
Collapse
Affiliation(s)
- Kehinde Adesola Umeizudike
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Preventive Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Nur Rahman Ahmad Seno Aji
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Katariina Niskanen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iina Rantala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Grigoriadis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tommi Pätilä
- Department of Pediatric Surgery, Children's Hospital University, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shipra Gupta
- Unit of Periodontology, Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Alarcón-Sánchez MA, Rodríguez-Montaño R, Mosaddad SA, Heboyan A. Levels of IL-1β, MMP-8, and MMP-9 in the Saliva of Subjects With Periodontitis: A Systematic Review and Meta-Analysis. J Clin Lab Anal 2025:e70040. [PMID: 40289477 DOI: 10.1002/jcla.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/23/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Proinflammatory cytokines and enzymes responsible for tissue destruction are important in the development of periodontitis. This study compared salivary concentrations of interleukin-1 beta (IL-1β), matrix metalloproteinases (MMP-8), and (MMP-9) in individuals with and without periodontitis to evaluate their diagnostic utility as potential biomarkers. MATERIALS AND METHODS A comprehensive search was performed across PubMed, Scopus, ScienceDirect, and Google Scholar, supplemented by manual searches in relevant journals up to January 2024. Eligibility criteria focused on human studies with defined diagnostic criteria for periodontitis and saliva samples analyzed for IL-1β, MMP-8, and MMP-9. Data were extracted to compare salivary levels of these markers between periodontitis patients and healthy controls. The Joanna Briggs Institute tool was used to evaluate the risk of bias and quality of the included studies. Statistical analysis employed a random effects model to calculate standardized mean differences and assess heterogeneity and publication bias. RESULTS The search yielded 122 articles, with 27 meeting the inclusion criteria. Fifteen percent of these studies presented a moderate risk of bias, while the remaining 85% exhibited a low risk of bias. The meta-analyses indicated significantly higher levels of IL-1β, MMP-8, and MMP-9 in the saliva of subjects with periodontitis compared to healthy individuals: IL-1β: Standardized Mean Difference (SMD) = 163.29 (95% CI = 104.64-221.95), p < 0.001; MMP-8: SMD = 282.22 (95% CI = 209.68-354.77), p < 0.001; MMP-9: SMD = 311.85 (95% CI = 179.64-444.05), p < 0.001. CONCLUSION Elevated salivary levels of IL-1β, MMP-8, and MMP-9 are linked to periodontitis.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Doctor of Science in Molecular Biology in Medicine Program, University Center of Health Sciences, University of Guadalajara (CUCS-UdeG), Guadalajara, Jalisco, Mexico
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, University of Guadalajara (CUCS-UdeG), Guadalajara, Jalisco, Mexico
| | - Ruth Rodríguez-Montaño
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, University of Guadalajara (CUCS-UdeG), Guadalajara, Jalisco, Mexico
- Department of Health and Illness as an Individual and Collective Process, University Center of Tlajomulco, University of Guadalajara (CUTLAJO-UdeG), Tlajomulco de Zuñiga, Jalisco, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| |
Collapse
|
8
|
Umeizudike KA, Nwhator SO, Olaoye OI, Ogundana AC, Räisänen IT, Fasanmade OA, Ogundana O, Ajie O, Sorsa T. Effects of Non-Surgical Periodontal Therapy on Glycemic Control in Prediabetes and Diabetes Patients with Stage II-IV Periodontitis as Monitored by Active-Matrix Metalloproteinase-8 Levels. Biomedicines 2025; 13:969. [PMID: 40299548 PMCID: PMC12025252 DOI: 10.3390/biomedicines13040969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Previous research indicates that non-surgical periodontal therapy (NSPT) improves glycemic control in individuals with prediabetes and diabetes who have periodontitis. Few studies have demonstrated its effects on mouthrinse active-matrix metalloproteinase-8 (aMMP-8) levels as it relates to glycemic control. We assessed the periodontal treatment response of stage II-IV periodontitis patients with prediabetes, diabetes, and normoglycemia, regarding glycated hemoglobin (HbA1c) and mouthrinse aMMP-8 levels using point-of-care kits (PoC). Materials and Methods: Eighty-eight adults (11 normoglycemic, 32 prediabetic, 45 with type 2 diabetes), aged 25-78, with stage II-IV periodontitis were included. Full-mouth clinical examinations were used to evaluate their periodontal parameters. HbA1c and mouthrinse aMMP-8 levels were assessed using PoC kits before and approximately three months after scaling and root planing. Results: There were positive treatment effects of non-surgical periodontal therapy on periodontal clinical parameters, aMMP-8 and HbA1c levels in the prediabetes and diabetes groups. The aMMP-8 reduction was significant (p < 0.001) in the prediabetes and prediabetes + diabetes groups, while HbA1c decreased significantly in the diabetes and prediabetes + diabetes (p < 0.001) groups. In contrast, a non-significant increase in mean aMMP-8 levels, HbA1c, and CAL was observed in normoglycemia (p > 0.05). Stage III + IV periodontitis showed significant treatment effects for aMMP-8 (p < 0.001) and HbA1c (p < 0.01) compared to stage II, regardless of glycemic status. Conclusions: Non-surgical periodontal therapy significantly improves periodontal health as well as HbA1c and aMMP-8 levels in people living with prediabetes and diabetes.
Collapse
Grants
- CRC 2021/11 University of Lagos Research Grant (KAU)
- Y1014SULE1, Y1014SL018, Y1014SL017, TYH2019319, TYH2018229, TYH2017251, TYH2016251, and TYH2022225 (TS). the Finnish Dental Society Apollonia, Finland (TS); the Karolinska Institutet, Stockholm, Sweden (TS); the Helsinki and Uusimaa Hospital District (HUS)
Collapse
Affiliation(s)
- Kehinde Adesola Umeizudike
- Department of Preventive Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos P.M.B. 12003, Nigeria;
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (I.T.R.); (T.S.)
| | - Solomon Olusegun Nwhator
- Department of Preventive and Community Dentistry, Faculty of Dentistry, College of Health Sciences, Obafemi Awolowo University, Ile-Ife 220005, Nigeria;
| | - Olayiwola Ibrahim Olaoye
- Department of Preventive Dentistry, Lagos State University Teaching Hospital, Ikeja, Lagos 100271, Nigeria;
| | - Ayodele Charles Ogundana
- Department of Preventive Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos P.M.B. 12003, Nigeria;
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (I.T.R.); (T.S.)
| | - Olufemi Adetola Fasanmade
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos P.M.B. 12003, Nigeria;
| | - Oladunni Ogundana
- Department of Oral and Maxillofacial Pathology and Oral Biology, Faculty of Dental Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos P.M.B. 12003, Nigeria;
| | - Obiefuna Ajie
- Department of Clinical Pathology, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos P.M.B. 12003, Nigeria;
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (I.T.R.); (T.S.)
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
9
|
Subba A, Rai R, Prasad RK, Shilall I, Tamang AM. Network pharmacology and molecular docking of Fraxinus floribunda: validating ethnomedicinal applications in T2DM. In Silico Pharmacol 2025; 13:60. [PMID: 40255262 PMCID: PMC12003244 DOI: 10.1007/s40203-025-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/29/2025] [Indexed: 04/22/2025] Open
Abstract
The current study investigates the network pharmacology, molecular docking, and molecular dynamics (MD) simulation of Fraxinus floribunda Wall. (Oleaceae) to validate its ethnomedicinal applications in Type 2 Diabetes Mellitus (T2DM). Five major bioactive compounds were identified using IMPPAT and TCMSP databases, based on pharmacokinetic properties (OB > 20%, DL > 0.18). Target genes for these compounds were predicted using Swiss Target Prediction, focusing on human targets with a high confidence score. A protein-protein interaction (PPI) network was constructed using the STRING database, revealing significant interactions among 143 nodes and 1300 edges. Molecular docking analysis revealed strong binding affinities of quercetin (- 10.4 kcal/mol), tamarixetin (- 10.4 kcal/mol), and isorhamnetin (- 9.5 kcal/mol) with MMP9, forming hydrogen bonds with key residues such as ALA189, GLN227, and TYR248. Molecular dynamics (MD) simulations confirmed the stability of the quercetin-MMP9 and tamarixetin-MMP9 complexes, with low RMSD values (~ 0.151 nm). Further, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations revealed favorable binding free energies, with quercetin exhibiting the highest binding affinity (- 6.82 kJ/mol), followed by tamarixetin (4.60 kJ/mol) and isorhamnetin (10.16 kJ/mol), reinforcing their potential role as MMP9 inhibitors. The findings highlight the potential of F. floribunda's bioactive compounds in managing T2DM, bridging traditional medicinal knowledge with modern computational tools to accelerate drug discovery and development. This integrative approach underscores the multifaceted pharmacological properties of F. floribunda, including antioxidant, anti-inflammatory, and potentially anti-obesity effects, aligning with broader health benefits beyond diabetes management. Further research and clinical validation are warranted to harness these natural compounds effectively for therapeutic development against T2DM and related metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00348-y.
Collapse
Affiliation(s)
- Arunika Subba
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Rohit Rai
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Ranjan Kumar Prasad
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Isaac Shilall
- Department of Botany, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| | - Aditya Moktan Tamang
- Department of Zoology, Sikkim Alpine University, Main Campus, Kamrang, Namchi, 737126 Sikkim India
| |
Collapse
|
10
|
Soe ZC, Nan DN, Wahyudi R, Vongsutilers V, Kamolratanakul P, Everts V, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Asiaticoside-Loaded Nanosponges Hydrogel Has an Anti-inflammatory Effect and Promotes Human Dental Pulp Regeneration. J Endod 2025:S0099-2399(25)00190-6. [PMID: 40246141 DOI: 10.1016/j.joen.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Asiaticoside (AS) demonstrated potential in wound healing and anti-inflammation. However, its therapeutic applications are limited due to poor solubility and low bioavailability, which make it difficult to use as dental pulp capping agent. The nanosponges (Ns) are nanosized carriers capable of carrying small drug molecules. We proposed a method to encapsulate AS in Ns (asiaticoside-loaded nanosponges) and incorporate it into hydrogel (asiaticoside-loaded nanosponges hydrogel [AS/Ns-gel]). METHODS Using different concentrations of polymer and carbopol four different fractions of asiaticoside-loaded nanosponges (N1-N4) and AS/Ns-gel (G1-G4) were prepared. The optimal fraction was determined by characterizing physiochemical properties and in vitro release kinetics. An in vitro model of inflammatory human dental pulp cells (hDPCs) was induced using a cytokine cocktail and/or lipopolysaccharide prior to application of AS/Ns-gel. Messenger ribonucleic acid (mRNA) and protein expression of inflammatory cytokines were measured. To assess the wound healing potential of AS/Ns-gel, an in vitro scratch test was performed. RESULTS N1/G3 AS/Ns-gel exhibited the most optimized and uniform particle size distribution, with good solubility, sustained AS release, and effective encapsulation. In an in vitro study of hDPCs pretreated with lipopolysaccharide or cytokine cocktail, the AS/Ns-gel downregulated interleukin 6 and interleukin 8 mRNA expression while upregulating interleukin 10 expression. Reverse transcription quantitative polymerase chain reaction and western blot analysis revealed a time-dependent increase in transforming growth factor β1, collagen type 1 and matrix metalloproteinase 9 mRNA/protein levels. Additionally, AS/Ns-gel accelerated hDPCs migration. CONCLUSIONS We successfully developed an AS/Ns-gel that reduced the expression of inflammatory cytokines in an inflamed pulp model in vitro. AS-loaded hydrogels have sustained release properties, promote cell proliferation and cell migration, thus suggesting its potential to be used in regenerative endodontic therapy.
Collapse
Affiliation(s)
- Zar Chi Soe
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, Thailand
| | - Daneeya Na Nan
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Rahman Wahyudi
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, Thailand
| | - Vorasit Vongsutilers
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Pharmaceutical Technology Service Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands; Office of Research Affairs, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | | |
Collapse
|
11
|
Ioannou P, Katsoulieris E, Afratis NA. Matrix Dynamics and Microbiome Crosstalk: Matrix Metalloproteinases as Key Players in Disease and Therapy. Int J Mol Sci 2025; 26:3621. [PMID: 40332093 PMCID: PMC12027064 DOI: 10.3390/ijms26083621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix (ECM) remodeling, regulating a wide range of cellular and immune processes in both homeostatic and pathological conditions. Host-microbiota interactions play a critical role in maintaining ECM balance; however, during dysbiosis, this regulation is disrupted, leading to compromised barrier integrity, pathogen translocation into circulation, and the development of systemic diseases and cancer. This review highlights the bidirectional relationship between MMP expression/activity and microbiota dysbiosis, emphasizing tissue-specific alterations in MMP activity that contribute to disease progression. In addition, it integrates interdisciplinary evidence to illustrate the MMP-dependent mechanisms underlying various pathologies associated with oral and gut microbiome dysbiosis, including long-range effects through the gut-skin and gut-brain axes. Thus, this review introduces the emerging field of MatrixBiome, which explores the complex interactions between the ECM, microbiota, and host tissues. Finally, it also outlines therapeutic strategies to modulate MMP levels, either indirectly through microbiome-targeted approaches (e.g., prebiotics, probiotics, and postbiotics) or directly using MMP inhibitors, offering promising avenues for future clinical interventions.
Collapse
Affiliation(s)
- Paraskevi Ioannou
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Elias Katsoulieris
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
| | - Nikolaos A. Afratis
- Laboratory of Biotechnology and Molecular Analysis, Department of Agricultural Development, Agri-Food & Management of Natural Resources, National and Kapodistrian University of Athens, Evripos Campus, 34400 Psachna, Evia, Greece (E.K.)
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Popovici IA, Orasanu CI, Cozaru GC, Ionescu AC, Kajanto L, Cimpineanu B, Chisoi A, Mitroi AN, Poinareanu I, Voda RI, Ursica OA, Pundiche MB. An Overview of the Etiopathogenic Mechanisms Involved in the Expression of the Oral Microbiota. Clin Pract 2025; 15:80. [PMID: 40310312 PMCID: PMC12026067 DOI: 10.3390/clinpract15040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: The diversity of the oral microbiota exerts its effects in maintaining dental and overall health. The unique genetic profile of each individual influences the composition of the oral microbiota, determining susceptibility to certain diseases. The aim is to observe its role by highlighting the pathogenic mechanisms involved in oral dysbiosis and identify genetic determinism's influence in maintaining balance. Methods: This study was designed as a narrative review of the oral microbiota, utilizing some of the principles and guidelines of systematic review to increase methodological rigor. We examined 121 articles such as reviews, meta-analyses, editorials, and observational studies, which met the inclusion and exclusion criteria. The inclusion criteria for studies were as follows: (1) studies that evaluated the impact of the microbiota in oral or/and systemic diseases; (2) studies that observed pathogenic mechanisms in the oral microbiota; (3) studies that evaluated the interaction of the microbiota with the immune system (4); studies that evaluated genetic implications in the microbiota. Results: Host genes regulate inflammatory and immunological reactions that play a role in microbiological balance. This explains the increased resistance of some to diseases, including gingivitis or periodontitis. Also, the implications of oral dysbiosis are reflected not only locally, but also generally, being associated with various systemic conditions. Conclusions: Understanding the pathogenic mechanisms and genetic determinants involved in oral dysbiosis may help create individualized therapies for preventing and managing oral and systemic disorders. A healthy lifestyle and adequate oral hygiene can facilitate a diverse and balanced microbiome, crucial for overall health.
Collapse
Affiliation(s)
- Ion Alexandru Popovici
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Cristian Ionut Orasanu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Georgeta-Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Anita-Cristina Ionescu
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania; (A.-C.I.); (L.K.)
| | - Lidia Kajanto
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania; (A.-C.I.); (L.K.)
| | - Bogdan Cimpineanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Adrian Nelutu Mitroi
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- Railway Clinical Hospital, 900123 Constanta, Romania
| | - Ionut Poinareanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Raluca Ioana Voda
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Oana Andreea Ursica
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| |
Collapse
|
13
|
Chen YP, Li M, Liu Z, Wu J, Chen F, Zhang S. Inhibition of Tyrosinase and Melanogenesis by Carboxylic Acids: Mechanistic Insights and Safety Evaluation. Molecules 2025; 30:1642. [PMID: 40286213 PMCID: PMC11990924 DOI: 10.3390/molecules30071642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
It is well established that certain carboxylic acid compounds can effectively inhibit tyrosinase activity. This study investigated the mechanisms by which four carboxylic acid compounds-3-phenyllactic acid, lactic acid, L-pyroglutamic acid, and malic acid-inhibit tyrosinase and melanogenesis. IC50 values for mushroom tyrosinase inhibition ranged from 3.38 to 5.42 mM, with 3-phenyllactic acid (3.50 mM), lactic acid (5.42 mM), and malic acid (3.91 mM) exhibiting mixed-type inhibition, while L-pyroglutamic acid (3.38 mM) showed competitive inhibition, as determined by enzymatic kinetic analysis. Additionally, the acidification effects of lactic acid, L-pyroglutamic acid, and malic acid contributed to the reduction in tyrosinase activity. Furthermore, all four carboxylic acid compounds effectively inhibited DOPA auto-oxidation (IC50 = 0.38-0.66 mM), ranking in potency as follows: malic acid (0.38 mM) > lactic acid (0.57 mM) > 3-phenyllactic acid (0.63 mM) > L-pyroglutamic acid (0.66 mM). These compounds also demonstrated a dose-dependent reduction in melanin production in B16-F10 cells. Proteomic analysis further revealed that these compounds not only inhibit key proteins involved in melanin synthesis, such as tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, but also potentially modulate other genes associated with melanogenesis and metabolism, including Pmel, Slc45a2, Ctns, Oca2, and Bace2. Network toxicology analysis indicated that these four compounds exhibit a low risk of inducing dermatitis. These findings suggest that these compounds may indirectly regulate melanin-related pathways through multiple mechanisms, highlighting their potential for further applications in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Yu-Pei Chen
- The School of Public Health, Fujian Medical University, Fuzhou 350122, China;
- The School of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; (Z.L.); (J.W.); (F.C.); (S.Z.)
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China
| | - Mingyu Li
- The School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Zirong Liu
- The School of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; (Z.L.); (J.W.); (F.C.); (S.Z.)
| | - Jinxiong Wu
- The School of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; (Z.L.); (J.W.); (F.C.); (S.Z.)
| | - Fangfang Chen
- The School of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; (Z.L.); (J.W.); (F.C.); (S.Z.)
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China
| | - Shudi Zhang
- The School of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; (Z.L.); (J.W.); (F.C.); (S.Z.)
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
14
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Mahapatra A, Panda S, Tumedei M, Panda S, Das AC, Kumar M, Del Fabbro M. Clinical and Microbiological Evaluation of 0.2% Tea Tree Oil Mouthwash in Prevention of Dental Biofilm-Induced Gingivitis. Dent J (Basel) 2025; 13:149. [PMID: 40277479 PMCID: PMC12025935 DOI: 10.3390/dj13040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Dental biofilm-induced gingivitis is a prevalent condition caused by dental plaque accumulation. Chlorhexidine mouthwash is a gold standard for plaque control but is associated with adverse effects such as tooth staining and altered taste. This study aimed to evaluate the clinical and antimicrobial effectiveness of 0.2% tea tree oil mouthwash as a natural alternative to 0.2% chlorhexidine mouthwash. Methods: A comparative study was conducted on 60 participants aged 18-60 years, divided into two groups: Group T (tea tree oil) and Group C (chlorhexidine), each comprising 30 participants. Clinical outcomes assessed included Plaque Index (PI), Gingival Index (GI), Bleeding on Probing (BOP), and microbiological Colony Forming Units (CFUs). Parameters were recorded at baseline, 7 days, and 28 days. Results: Group T exhibited significantly lower PI and BOP scores at 7 and 28 days compared to Group C (p < 0.05). Both groups showed comparable reductions in CFU counts, indicating similar antimicrobial efficacy. Importantly, tea tree oil had fewer adverse effects, with no reports of tooth staining or altered taste, unlike chlorhexidine. Conclusion: Tea tree oil mouthwash demonstrated equivalent or superior clinical outcomes compared to chlorhexidine, with fewer side effects. It is a viable and well-tolerated alternative for managing plaque-induced gingivitis, supporting further research into its long-term use and efficacy.
Collapse
Affiliation(s)
- Adarsha Mahapatra
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India; (A.M.); (S.P.)
| | - Saurav Panda
- Department of Periodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India; (S.P.); (A.C.D.); (M.K.)
| | - Margherita Tumedei
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy;
- UOC Maxillofacial Surgery and Dentistry, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sital Panda
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India; (A.M.); (S.P.)
| | - Abhaya Chandra Das
- Department of Periodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India; (S.P.); (A.C.D.); (M.K.)
| | - Manoj Kumar
- Department of Periodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India; (S.P.); (A.C.D.); (M.K.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy;
- UOC Maxillofacial Surgery and Dentistry, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
16
|
Tero-Vescan A, Slevin M, Pușcaș A, Sita D, Ștefănescu R. Targeting Epigenetic Plasticity to Reduce Periodontitis-Related Inflammation in Diabetes: CBD, Metformin, and Other Natural Products as Potential Synergistic Candidates for Regulation? A Narrative Review. Int J Mol Sci 2025; 26:2853. [PMID: 40243433 PMCID: PMC11988922 DOI: 10.3390/ijms26072853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Periodontitis is unanimously accepted to be the sixth complication of diabetes mellitus (DM), while the inverse relationship of causality is still to be deciphered. Among the proposed mechanisms is gut dysbiosis, which is responsible for the systemic release of proinflammatory mediators. In this process, Gram-negative bacteria from the oral cavity enter the general circulation, leading to the emergence of bi-hormonal beta-pancreatic cells that lack the ability to secrete insulin. Additionally, epigenetic and adaptive mechanisms in affected cells may play a role in reducing inflammation. The release of reactive oxygen species, proinflammatory cytokines, and adipokines, such as interleukins, tumor necrosis factor alpha, leptin, prostaglandin E2, C-reactive protein, or matrix metalloproteinases, determine epigenetic changes, such as the methylation of DNA nucleotides or changes in the activity of histone acetylases/deacetylases. The management of periodontitis involves targeting inflammation, and its potential connection to epigenetic modulation observed in other chronic conditions may help to explain its role in preventing DM in affected patients. This review focuses on the key epigenetic changes in periodontitis that might contribute to DM development, and explores the mechanisms and novel multi-drug therapies that could help to prevent these effects.
Collapse
Affiliation(s)
- Amelia Tero-Vescan
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureş, Romania;
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureş, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of the Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureş, Romania;
| | - Dragoș Sita
- Department of Odontology and Oral Pathology, Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureş, Romania;
| | - Ruxandra Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureş, Romania;
| |
Collapse
|
17
|
Nalkiran I, Sevim Nalkiran H. Repurposing ProTAME for Bladder Cancer: A Combined Therapeutic Approach Targeting Cell Migration and MMP Regulation. BIOLOGY 2025; 14:263. [PMID: 40136519 PMCID: PMC11939954 DOI: 10.3390/biology14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Bladder cancer, the fourth most common cancer type among men, remains a therapeutic challenge due to its heterogeneity and frequent development of chemoresistance. Cisplatin-based chemotherapy, often combined with gemcitabine, is the standard treatment, yet resistance and off-target effects in non-cancerous tissues limit its efficacy. This study evaluated the effects of cisplatin, gemcitabine, and the APC/C inhibitor proTAME, both individually and in combination, on cell migration and MMP2/MMP9 expression in RT4 bladder cancer and ARPE-19 normal epithelial cells. Molecular docking analyses were conducted to investigate the interactions of these compounds with MMP2 and MMP9. IC20 values for gemcitabine, cisplatin, and proTAME were applied in scratch-wound healing and quantitative real-time PCR (qRT-PCR) assays. Docking results predicted that proTAME may interact favorably with MMP2 (-9.2 kcal/mol) and MMP9 (-8.7 kcal/mol), showing high computational binding affinities and potential key hydrogen bonds; however, these interactions require further experimental validation. Scratch-wound healing and qRT-PCR assays demonstrated that proTAME-containing combinations were associated with reduced cell migration and decreased MMP2 and MMP9 expression in RT4 cells. Cisplatin combined with proTAME showed the most pronounced reduction in MMP expression and cell migration, with proTAME alone also exhibiting notable inhibitory effects. In ARPE-19 cells, gemcitabine and cisplatin upregulated MMP2 and MMP9 expression, suggesting a potential stress response, whereas proTAME mitigated this effect. These differential effects show the importance of tumor-specific responses in RT4 cells, where proTAME shows promise in enhancing the efficacy of chemotherapy by modulating MMP-related pathways involved in tumor migration and invasion. In conclusion, this study highlights the potential of proTAME as a repurposed agent in bladder cancer treatment due to its association with reduced cell migration and MMP downregulation. While these in vitro and in silico findings suggest a promising role for proTAME in combination therapies, further validation in advanced preclinical models is necessary to assess its therapeutic applicability and safety.
Collapse
Affiliation(s)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye;
| |
Collapse
|
18
|
Botezatu IC, Martu MA, Stoica L, Botez AE, Onofrei P, Dimitriu CD, Grecu BV, Grigoriu IDG, Ciurcanu O, Solcan C, Sin AI, Cotrutz EC. Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II. Diagnostics (Basel) 2025; 15:609. [PMID: 40075856 PMCID: PMC11899478 DOI: 10.3390/diagnostics15050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Diabetes mellitus (DM) is a major risk factor for the development of periodontal disease and aggravates the severity of periodontal conditions. Matrix metalloproteinases (MMPs) are known to degrade periodontal ligament attachment and bone matrix proteins. Increased expression of CD147 is associated with increased synthesis of several MMPs, being a modulator of MMP expression, including that of MMP-14. The purpose of this study was to quantify and compare the expressions of MMP-14 and CD147 in gingival tissues of patients with and without type 2 diabetes mellitus. Material and Methods: In this histological study, we included 33 subjects with periodontal disease: 16 patients with type 2 DM (test group) and 17 systemically healthy patients (control group). Tissue fragments were processed using an immunohistochemistry technique to determine immunoreactivity (IR) intensity of MMP-14 and CD147. Results: In the group of diabetes patients with periodontitis, 56.2% showed weak positive expressions (+), while 43.8% had intensely positive expressions (+++) of MMP-14. Statistically significant differences between test and control groups (p = 0.004, p = 0.883, and p = 0.002) were found for the membranous IR intensity of MMP-14. In the group of diabetes patients with periodontitis, 56.2% had moderate positive expressions (++) of CD 147, while 43.8% showed intensely positive expressions (+++). Statistically significant differences between the test and control groups were found (p = 0.001, p = 0.002, and p = 0.003) for the membranous IR intensity of CD147. Conclusions: The significantly higher membranous IR intensity for MMP-14 and CD 147 demonstrates the role of these biomarkers in the development of periodontal pathology in diabetes patients. It can be assumed that MMP-14 and CD147 could be further investigated as potential predictive biomarkers.
Collapse
Affiliation(s)
- Ionut Catalin Botezatu
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Maria-Alexandra Martu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Laura Stoica
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Ana Emanuela Botez
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Pavel Onofrei
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Cristina Daniela Dimitriu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
| | - Bogdan Vasile Grecu
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Ionut Daniel Gafincu Grigoriu
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Oana Ciurcanu
- Department of Dento-Alveolar Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
| | - Carmen Solcan
- Department of Cell and Molecular Biology, University of Agricultural Science and Veterinary Medicine “Ion Ionescu de la Brad”, 700490 Iași, Romania;
| | - Anca Ileana Sin
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| | - Elena-Carmen Cotrutz
- Department of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (I.C.B.); (L.S.); (A.E.B.); (P.O.); (B.V.G.); (I.D.G.G.); (A.I.S.); (E.-C.C.)
| |
Collapse
|
19
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
20
|
Phuc VTD, Kang MG, Kim H, Ko YK, Acharya S, Kim EB, Park JY, Chang SH, Kim HJ, Yoon HJ, Choi Y. Induction of Oral Lichen Planus-like Histopathology in Mice. J Dent Res 2025; 104:320-329. [PMID: 39711157 DOI: 10.1177/00220345241304760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory mucosal disease of unknown etiology. The lack of suitable animal models has hampered understanding of its etiopathogenesis. This study aimed to clarify the contribution of bacterial infection and zinc deficiency (ZD) in OLP pathogenesis by developing a murine model. Infection of human oral keratinocytes with OLP-isolated Escherichia coli 7.2 in the presence of a zinc chelator increased the intracellular survival of E. coli, likely due to the mitigation of zinc poisoning. C57BL/6 female mice were subjected to either a standard diet or a zinc-deficient diet for 1 mo. Their labial mucosa was then microdamaged through scratching, followed by oral administration of E. coli 7.2. Scratching alone triggered bacterial translocation to the epithelium and lamina propria, upregulated Mmp9, increased immune responses in the cervical lymph nodes, and amplified CD4+ T-cell recruitment to labial mucosae. All these responses were intensified by E. coli infection, showing a strong synergism with ZD that shifted the Th cells infiltrating the labial mucosa in response to E. coli infection from Th1 to Th17 dominance. Repeated scratching plus E. coli infection amplified T-cell recruitment, even without ZD, leading to patchy lymphocytic infiltration, characterized by the presence of colloid bodies and disrupted basement membranes. Interestingly, Th1 blockade with anti-IFNγ and anti-IL-12 antibodies during E. coli infection hindered bacterial clearance in the epithelium and caused intense T-cell infiltration, epithelial degeneration and necrosis with colloid bodies, basement membrane destruction, and epithelial detachment, similar to erosive OLP lesions. This suggests that the Th1/IFNγ pathway may not be a suitable therapeutic target for OLP. In conclusion, OLP-like histopathology in the oral mucosa was induced through E. coli infection when combined with ZD, repeated epithelial microdamage, or Th1 blockade. This animal model provides a valuable platform for exploring specific hypotheses related to OLP pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- V T-D Phuc
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - M G Kang
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - H Kim
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Y K Ko
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - S Acharya
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - E B Kim
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - J-Y Park
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - S-H Chang
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - H-J Kim
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Chayon Laboratories, Inc., Seoul, Republic of Korea
| | - H-J Yoon
- Department of Oral Pathology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Y Choi
- Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
21
|
Ranbhise JS, Ju S, Singh MK, Han S, Akter S, Ha J, Choe W, Kim SS, Kang I. Chronic Inflammation and Glycemic Control: Exploring the Bidirectional Link Between Periodontitis and Diabetes. Dent J (Basel) 2025; 13:100. [PMID: 40136728 PMCID: PMC11940948 DOI: 10.3390/dj13030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Periodontitis and diabetes mellitus are two highly prevalent chronic conditions that share a bidirectional relationship, significantly impacting public health. Periodontitis, a gum inflammation caused by microbial dysbiosis, aggravates glycemic control in diabetics, while uncontrolled diabetes heightens periodontitis severity. These conditions create a vicious cycle, where inflammation and microbial dysbiosis mutually drive disease progression, exacerbating systemic health. The underlying mechanisms involve inflammation, immune dysfunction, and microbial dysbiosis, with both diseases contributing to a chain of chronic inflammation that exacerbates systemic health. This relationship is significant because managing one condition can significantly impact the other. In diabetic individuals, interventions such as periodontal therapy have shown effectiveness in improving glycemic control, underscoring the potential of integrated strategies for managing these conditions simultaneously. In this review, we highlight the importance of a deeper understanding of the molecular and immunological interactions between these diseases is essential for developing integrated therapeutic approaches, with the potential to enhance the quality of life of the patient significantly.
Collapse
Affiliation(s)
- Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
Malcangi G, Inchingolo AM, Casamassima L, Trilli I, Ferrante L, Inchingolo F, Palermo A, Inchingolo AD, Dipalma G. Effectiveness of Herbal Medicines with Anti-Inflammatory, Antimicrobial, and Antioxidant Properties in Improving Oral Health and Treating Gingivitis and Periodontitis: A Systematic Review. Nutrients 2025; 17:762. [PMID: 40077632 PMCID: PMC11901544 DOI: 10.3390/nu17050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES This systematic review investigates the effectiveness of natural extracts with anti-inflammatory properties for improving oral health, particularly in managing gingivitis and periodontal disease (PD). With PD being a major global health issue, exacerbated by microbial dysbiosis and oxidative stress, the integration of phytochemicals and herbal formulations into periodontal therapy offers a promising avenue for adjunctive treatments. METHODS A systematic review was conducted following PRISMA guidelines and registered under the International Prospective Register of Systematic Reviews (ID: 641944). Databases, including PubMed, Scopus, and Web of Science, were searched between 18-24 December 2024, using Boolean keywords combining terms such as "herbal medicine", "plant extracts", "anti-inflammatory", and "periodontal therapy". Studies involving animal models, in vitro data, or non-peer-reviewed articles were excluded. RESULTS Seventeen studies met inclusion criteria. Polyherbal formulations and single-component extracts (e.g., Camellia sinensis, Punica granatum, Zingiber officinale, and Rosmarinus officinalis) demonstrated comparable efficacy to conventional agents like chlorhexidine (CHX). Polyherbal rinses, camellia sinensis gels, and extracts like Punica granatum reduced inflammation, improved gingival health, and showed antimicrobial properties, offering effective natural alternatives. CONCLUSIONS Natural products, including single extracts and polyherbal formulations, provide effective and safe alternatives for managing gingivitis and PD. Their anti-inflammatory, antimicrobial, and antioxidant properties support their adjunctive role alongside with scaling and root planning therapy (SRP) in periodontal therapy. However, further large-scale, long-term studies are needed to standardize formulations and establish optimal protocols.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Lucia Casamassima
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.M.); (L.C.); (I.T.); (L.F.); (A.D.I.); (G.D.)
| |
Collapse
|
23
|
Ramos-López C, García-Rodrigo L, Sánchez-Tirado E, González-Cortés A, Agüí L, Yáñez-Sedeño P, Pingarrón JM. Nanocellulose-modified electrodes for simultaneous biosensing of microbiome-related oral diseases biomarkers. Mikrochim Acta 2025; 192:141. [PMID: 39932508 DOI: 10.1007/s00604-025-07011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
The preparation of a dual immunosensor for the simultaneous determination of two important microbiome-related oral disease biomarker matrix metalloproteinases MMP-9 and MMP-13 is reported. Screen-printed dual carbon electrodes (SPdCEs) modified with reduced graphene oxide and crystalline nanocellulose (rGO/CNC) were used for the immobilization of specific capture antibodies and the implementation of sandwich-type immunoassays using biotinylated secondary antibodies. Amperometric detection through the hydroquinone HQ/H2O2 system was employed. The limits of detection (LOD) achieved were 0.25 and 0.30 ng mL-1 for MMP-9 and MMP-13, respectively. The developed immunosensor proved to be useful for the determination of both MMPs in saliva from healthy individuals and patients of periodontitis as well as in serum from patients diagnosed with rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD). The obtained results agreed with those provided by commercial ELISA kits, and the developed dual immunosensor proved to be competitive versus this methodology, requiring less than 2 h for the simultaneous determination of both biomarkers.
Collapse
Affiliation(s)
- C Ramos-López
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - L García-Rodrigo
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - L Agüí
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
24
|
Hashim NT, Babiker R, Chaitanya NCSK, Mohammed R, Priya SP, Padmanabhan V, Ahmed A, Dasnadi SP, Islam MS, Gismalla BG, Rahman MM. New Insights in Natural Bioactive Compounds for Periodontal Disease: Advanced Molecular Mechanisms and Therapeutic Potential. Molecules 2025; 30:807. [PMID: 40005119 PMCID: PMC11858609 DOI: 10.3390/molecules30040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontal disease is a chronic inflammatory condition that destroys the tooth-supporting structures due to the host's immune response to microbial biofilms. Traditional periodontal treatments, such as scaling and root planing, pharmacological interventions, and surgical procedures, have significant limitations, including difficulty accessing deep periodontal pockets, biofilm recolonization, and the development of antibiotic resistance. In light of these challenges, natural bioactive compounds derived from plants, herbs, and other natural sources offer a promising alternative due to their anti-inflammatory, antioxidant, antimicrobial, and tissue-regenerative properties. This review focuses on the molecular mechanisms through which bioactive compounds, such as curcumin, resveratrol, epigallocatechin gallate (EGCG), baicalin, carvacrol, berberine, essential oils, and Gum Arabic, exert therapeutic effects in periodontal disease. Bioactive compounds inhibit critical inflammatory pathways like NF-κB, JAK/STAT, and MAPK while activating protective pathways such as Nrf2/ARE, reducing cytokine production and oxidative stress. They also inhibit the activity of matrix metalloproteinases (MMPs), preventing tissue degradation and promoting healing. In addition, these compounds have demonstrated the potential to disrupt bacterial biofilms by interfering with quorum sensing, targeting bacterial cell membranes, and enhancing antibiotic efficacy.Bioactive compounds also modulate the immune system by shifting the balance from pro-inflammatory to anti-inflammatory responses and promoting efferocytosis, which helps resolve inflammation and supports tissue regeneration. However, despite the promising potential of these compounds, challenges related to their poor bioavailability, stability in the oral cavity, and the absence of large-scale clinical trials need to be addressed. Future strategies should prioritize the development of advanced delivery systems like nanoparticles and hydrogels to enhance bioavailability and sustain release, alongside long-term studies to assess the effects of these compounds in human populations. Furthermore, combining bioactive compounds with traditional treatments could provide synergistic benefits in managing periodontal disease. This review aims to explore the therapeutic potential of natural bioactive compounds in managing periodontal disease, emphasizing their molecular mechanisms of action and offering insights into their integration with conventional therapies for a more comprehensive approach to periodontal health.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Science University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Oral Pathology Department, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 1847, Sudan;
| | - Shahista Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
25
|
Corcelli M, Sagar R, Petzendorfer E, Hasan MM, van Dijk FS, David AL, Guillot PV. Pleiotropic effects of a recessive Col1a2 mutation occurring in a mouse model of severe osteogenesis imperfecta. PLoS One 2025; 20:e0309801. [PMID: 39908220 PMCID: PMC11798436 DOI: 10.1371/journal.pone.0309801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/19/2024] [Indexed: 02/07/2025] Open
Abstract
In Europe, approximately 85-90% of individuals with Osteogenesis Imperfecta (OI) have dominant pathogenic variants in the Col1a1 or Col1a2 genes whilst for Asian, especially Indian and Chinese cohorts, this ratio is much lower. This leads to decreased or abnormal Collagen type I production. Subsequently, bone formation is strongly reduced, causing bone fragility and liability to fractures throughout life. OI is clinically heterogeneous, with the severity ranging from mild to lethal depending on the gene and the type and location of the OI-causative variant and the subsequent effect on (pro) collagen type I synthesis. However, the specific effects on the phenotype and function of osteoblasts are not fully understood. To investigate this, one of the OI murine models was used, i.e. the oim/oim (OIM) mice, which closest resembling severely deforming OI in humans. We showed that in OIM, the Col1a2 mutation results in a multifactorial inhibition of the osteogenic differentiation and maturation as well as inhibition of osteoclastogenesis. The phenotype of differentiated OIM osteoblasts also differs from that of wild type mature osteoblasts, with upregulated oxidative cell stress and autophagy pathways. The extracellular accumulation of defective type I collagen fibres contributes to activation of the TGF-β signalling pathway and activates the inflammatory pathway. These effects combine to destabilise the balance of bone turnover, increasing bone fragility. Together, these findings identify the complex mechanisms underlying OI bone fragility in the OIM model of severe OI and can potentially enable identification of clinically relevant endpoints to assess the efficacy of innovative pro-osteogenic treatment for patients with OI.
Collapse
Affiliation(s)
- Michelangelo Corcelli
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Rachel Sagar
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Ellen Petzendorfer
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Mohammad Mehedi Hasan
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Fleur S. van Dijk
- Northwest Thames Regional Genetics Service, London Northwest University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genomics and Genetics, Imperial College London, London, United Kingdom
| | - Anna L. David
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pascale V. Guillot
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
26
|
Kustiati U, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. Lung cancer: Animal model of lung cancer, molecular carcinogenesis of lung cancer, and antitumor effect of Ocimum sanctum against lung cancer. Open Vet J 2025; 15:482-503. [PMID: 40201854 PMCID: PMC11974298 DOI: 10.5455/ovj.2025.v15.i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025] Open
Abstract
Lung cancer is the leading cause of fatalities related to cancer globally. There are numerous ways to treat lung cancer, including surgery, chemotherapy, and radiation. Since these treatments have not yet shown satisfactory results, more research into the underlying mechanisms and different approaches to therapy and prevention are needed. Animal models are essential to the study of lung cancer because they offer priceless information about the etiology, course, and possible treatments for the illness. The therapeutic application of phytochemicals and medicinal plants to treat cancer-related compounds has gained attention subsequently. In addition to discussing the molecular carcinogenic and antitumor effects of the herbal treatment Ocimum sanctum (OS) in connection to lung cancer, this review will address the current awareness regarding lung cancer in animal models. The multitude of animal models used in lung cancer research-such as genetically modified mice, carcinogen-induced models, and xenograft induction-provides a solid foundation for understanding the illness. By easing the examination of the environmental and genetic factors involved and enhancing the analysis of possibilities for treatment, these models eventually assist in the further development of lung cancer therapy. Additionally, using the herb plant OS is essential for both treating and preventing lung cancer. Standardizing dosages and enforcing laws on the use of herbal medications require more in-depth investigation.
Collapse
Affiliation(s)
- Ulayatul Kustiati
- Post-Graduate School of Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
27
|
Lu T, Li W. Neutrophil Engulfment in Cancer: Friend or Foe? Cancers (Basel) 2025; 17:384. [PMID: 39941753 PMCID: PMC11816126 DOI: 10.3390/cancers17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
28
|
Ambagaspitiya SS, Appuhamillage GA, Wimalawansa SJ. Impact of Vitamin D on Skin Aging, and Age-Related Dermatological Conditions. FRONT BIOSCI-LANDMRK 2025; 30:25463. [PMID: 39862075 DOI: 10.31083/fbl25463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025]
Abstract
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases. Intrinsic factors associated with advanced age gradually degrade the dermal collagen matrix, resulting in fine wrinkles and reduced elasticity; this is accelerated in post-menopausal women due to estrogen deficiency. In contrast, extrinsic factors associated with advanced age, primarily caused by exposure to ultraviolet (UV) radiation, lead to coarse wrinkles, solar elastosis, hyperkeratosis, irregular pigmentation, and skin cancers. UVB radiation, while contributing to skin photo-aging, also induces the cutaneous synthesis of vitamin D. Vitamin D, in turn, protects the skin from oxidative stress, inflammation, and DNA damage, thereby delaying both chronological and photo-aging. Moreover, research has demonstrated an association between lower vitamin D levels and a higher prevalence of certain cutaneous diseases. This review explores and summarizes the critical role of vitamin D in skin aging and age-related skin diseases. The data presented highlight the importance of maintaining vitamin D adequacy throughout life.
Collapse
Affiliation(s)
- Sankalya S Ambagaspitiya
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | - Gayan A Appuhamillage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | | |
Collapse
|
29
|
Dai X, Liang B, Sun Y. Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation. BMC Complement Med Ther 2025; 25:14. [PMID: 39833877 PMCID: PMC11744851 DOI: 10.1186/s12906-025-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury. METHODS Forty male albino Wistar rats were divided into 5 groups randomly as controls, MetS, and MetS animals treated with luteolin (25, 50, 100 mg/kg ip). The animal's weight, blood pressure, lipid profile, tolerance to glucose and insulin, and cardiac histopathology were evaluated. Moreover, troponin T, creatine kinase-myocardial band (CK-MB), inflammatory profile (IL-6, IL-1β, TNF-α), transforming growth factor-β1 (TGF-β1), oxidative stress, and matrix metalloproteinase-9 (MMP-9) were analyzed to determine the cardiac state. Cardiac NR4A2 and p53, as well as apoptotic (B-cell leukemia/lymphoma 2 [BCL-2], Caspase [CASP]-3, and CASP-9) and autophagic mediators (Sequestosome-1/p62, Microtubule-associated protein 1 A/1B-light chain 3 [LC3], and Beclin-1) were measured by RT-qPCR and ELISA. RESULTS Luteolin remarkably restored MetS-induced biochemical derangements and related cardiac injury via the suppression of apoptosis, inflammation, and stress but promotion of autophagy (p-value < 0.001). CONCLUSION Current findings revealed the promising therapeutical properties of luteolin against MetS-associated cardiovascular risks.
Collapse
Affiliation(s)
- Xiyan Dai
- Department of Comprehensive, Maoming People's Hospital, Maoming, 525000, China
| | - Bo Liang
- Department of MRI, Maoming People's Hospital, Maoming, 525000, China
| | - Yaolin Sun
- Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
| |
Collapse
|
30
|
Cai X, Chen Y, Wu J, Wang A, Wang X. Amelogenin-Derived Peptide-Modified Poly(amidoamine) Dendrimers for Root Caries Prevention. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3106-3115. [PMID: 39743779 DOI: 10.1021/acsami.4c20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Root caries present a significant challenge in dentistry. The unsatisfactory prognosis of restorative treatments requires novel, noninvasive preventive strategies. Here, we developed an amelogenin-derived peptide-modified poly(amidoamine), PAMAM-C11, to prevent demineralization in caries lesions and control periodontal destruction. PAMAM can induce dentin remineralization, whereas the C11 peptide strongly binds hydroxyapatite. When C11 is modified on the surface groups of PAMAM, it anchors the entire molecule on demineralized dentin surfaces, thereby resisting washout and enhancing the mineralization efficiency, especially in the presence of collagenase in the cariogenic environment. PAMAM-C11 also inhibits matrix metalloproteinases in dentin and periodontal tissues, protecting the necessary mineralization templates and controlling periodontal destruction. Furthermore, PAMAM-C11 can promote the proliferation and osteogenic differentiation of periodontal ligament stem cells, indicating its potential use in periodontal regeneration. These findings were ultimately validated in an in vivo rat caries model. It can be concluded that PAMAM-C11 has great potential for clinical applications on root caries prevention.
Collapse
Affiliation(s)
- Xue Cai
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuxing Chen
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Aijing Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
31
|
Zhang X, Li G, Tan F, Yu T, Xu C, Li K, Zhang F, Zhang M, Wang J. MARCHF8-mediated ubiquitination via TGFBI regulates NF-κB dependent inflammatory responses and ECM degradation in intervertebral disc degeneration. PLoS One 2025; 20:e0314021. [PMID: 39752341 PMCID: PMC11698339 DOI: 10.1371/journal.pone.0314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/05/2024] [Indexed: 01/06/2025] Open
Abstract
AIM To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8). BACKGROUND IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored. OBJECTIVE Identify key modules associated with IDD and understand the impact of TGFBI on nucleus pulposus (NP) cell behavior, extracellular matrix (ECM)-related proteins, and the Nuclear Factor kappa-light-chain-enhancer of Activated B cells (NF-κB) signaling pathway. METHODS The GSE146904 dataset underwent Weighted Gene Co-Expression Network Analysis (WGCNA) for key module identification and Differentially Expressed Genes (DEGs) screening. Intersection analysis, network analysis, and co-expression identified TGFBI as a hub gene. In vitro experiments delved into the interplay between TGFBI and MARCHF8 and their effects on NP cells. RESULTS WGCNA linked the MEturquoise module with IDD samples, revealing 145 shared genes among DEGs. In vitro findings indicated that MARCHF8 determines TGFBI expression. TGFBI boosts apoptosis and ECM breakdown in Lipopolysaccharide-stimulated (LPS-stimulated) NP cells. Altering TGFBI levels modulated these effects and the NF-κB signaling pathway, influencing inflammatory cytokine concentrations. Moreover, MARCHF8 ubiquitination controlled TGFBI expression. CONCLUSION TGFBI, modulated by MARCHF8, significantly influences IDD progression by affecting NP cell apoptosis, ECM degradation, and inflammation through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingpeng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Guang Li
- Department of Traumatic Surgery, Emergency Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Tan
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Tao Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Chengping Xu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Kai Li
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Feng Zhang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Meiyan Zhang
- Shanghai Circle Harmony Xinyong Clinic, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
32
|
Bayırlı AB, Gürhan C, Saruhan E. Evaluation of salivary melatonin and MMP-9 levels in periodontal diseases. Arch Oral Biol 2025; 169:106116. [PMID: 39461024 DOI: 10.1016/j.archoralbio.2024.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate salivary matrix metalloproteinase-9 (MMP-9) and melatonin levels in individuals with periodontal health, gingivitis, and periodontitis. DESIGN A total of 170 participants were enrolled in this study. They included 57 periodontally healthy individuals, 58 gingivitis patients, and 55 periodontitis patients. Saliva samples were collected by passive drool technique. The levels of MMP-9 and melatonin in saliva were measured biochemically using the ELISA method. RESULTS Salivary MMP-9 levels in the periodontitis group were significantly higher than those in the gingivitis and periodontally healthy groups, while salivary melatonin levels were significantly lower (p<0.001). A positive correlation was observed between clinical periodontal parameters and salivary MMP-9 levels, while salivary melatonin levels were negatively correlated (p<0.001). A negative correlation was also observed between salivary MMP-9 levels and salivary melatonin levels (p<0.001). CONCLUSION This study shows that the level of melatonin in saliva is associated with periodontal disease and with the level of MMP-9 in saliva, which plays a role in this disease.
Collapse
Affiliation(s)
- Ali Batuhan Bayırlı
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Department of Periodontology, Muğla 48000, Turkey.
| | - Ceyda Gürhan
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Muğla 48000, Turkey
| | - Ercan Saruhan
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Medical Biochemistry, Muğla 48000, Turkey
| |
Collapse
|
33
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Li R, Xu S, Guo Y, Cao C, Xu J, Hao L, Luo S, Chen X, Du Y, Li Y, Xie Y, Gao W, Li J, Xu B. Application of collagen in bone regeneration. J Orthop Translat 2025; 50:129-143. [PMID: 40171103 PMCID: PMC11960539 DOI: 10.1016/j.jot.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 04/03/2025] Open
Abstract
At present, there is a significant population of individuals experiencing bone deficiencies caused by injuries, ailments affecting the bones, congenital abnormalities, and cancer. The management of substantial bone defects a significant global orthopedic challenge due to the intricacies involved in promoting and restoring the growth of fresh osseous tissue. Autografts are widely regarded as the "gold standard" for repairing bone defects because of their superior tissue acceptance and ability to control osteogenesis. However, patients undergoing autografts may encounter various challenges, including but not limited to hernia, bleeding, nerve impairment, tissue death. Therefore, researchers in regenerative medicine are striving to find alternatives. Collagen is the most abundant protein in the human body, and its triple helix structure gives it unique characteristics that contribute to its strength and functionality in various tissues. Collagen is commonly processed into various forms such as scaffolds, sponges, membranes, hydrogels, and composite materials, due to its unique compatibility with the human body, affinity for water, minimal potential for immune reactions, adaptability, and ability to transport nutrients or drugs. As an alternative material in the field of bone regeneration, collagen is becoming increasingly important. The objective of this review is to provide a comprehensive analysis of the primary types and sources of collagen, their processes of synthesis and degradation, as well as the advancements made in bone regeneration research and its potential applications. A comprehensive investigation into the role of collagen in bone regeneration is undertaken, providing valuable points of reference for a more profound comprehension of collagen applications in this field. The concluding section provides a comprehensive overview of the prospective avenues for collagen research, underscoring their promising future and highlighting their significant potential in the field of bone regeneration. The Translational Potential of this Article. The comprehensive exploration into the diverse functions and translational potential of collagen in bone regeneration, as demonstrated in this review, these findings underscore their promising potential as a treatment option with significant clinical implications, thus paving the way for innovative and efficacious therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Rou Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Yanning Guo
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Cong Cao
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Jingchen Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Lijun Hao
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou 510515, PR China
| | - Yong Xie
- Department of Cardiac Surgery, The First Affiliated Hospital of Tsinghua University, Beijing 100036, PR China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Jing Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Baohua Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
35
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
36
|
Huang Y, Tang Y, Zhang R, Wu X, Yan L, Chen X, Wu Q, Chen Y, Lv Y, Su Y. Role of periodontal ligament fibroblasts in periodontitis: pathological mechanisms and therapeutic potential. J Transl Med 2024; 22:1136. [PMID: 39709490 PMCID: PMC11663348 DOI: 10.1186/s12967-024-05944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Periodontal ligament fibroblasts (PDLFs) play a crucial role in the etiology of periodontitis and periodontal tissue regeneration. In healthy periodontal tissues, PDLFs maintain the homeostasis of periodontal soft and hard tissues as well as the local immune microenvironment. PDLFs also have the potential for multidirectional transdifferentiation and are involved in periodontal tissue regeneration. On the other hand, PDLFs can become dysfunctional and acquire an inflammatory phenotype to secret various inflammatory cytokines when affected by pathological factors. These cytokines further trigger immune and inflammatory events, and lead to destruction of periodontal soft and hard tissues as well as damage to the regenerative potential of PDLFs. This review summarizes the physiological functions of PDLFs. Meanwhile, this review also highlights recent insights into the pathological mechanisms driving the development of periodontitis through dysfunctional PDLFs and the negative impact on periodontal tissue regeneration. Additionally, this paper summarizes strategies for targeting PDLFs to treat periodontitis, involving blocking multiple stages of the inflammatory response induced by PDLFs and promoting the multidirectional transdifferentiation of PDLFs. Future research directions are proposed to address important questions that have not yet been answered in this field. This article provides a reference for understanding the important role of PDLFs in the pathological mechanisms of periodontitis and for developing new strategies for targeting PDLFs in periodontitis treatment.
Collapse
Affiliation(s)
- Yijie Huang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ying Tang
- Department of Prosthodontics, Huangpu District Dental Disease Prevention and Treatment Institute, Shanghai, 200001, China
| | - Ruiqi Zhang
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiling Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yingtao Lv
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
38
|
Bud A, Lazăr L, Mârțu MA, Dakó T, Suciu M, Vlasiu A, Lazăr AP. Challenges and Perspectives Regarding the Determination of Gingival Crevicular Fluid Biomarkers During Orthodontic Treatment: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2004. [PMID: 39768884 PMCID: PMC11728204 DOI: 10.3390/medicina60122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Background: Changes in the positions of teeth occur during orthodontic treatment due to the application of forces that cause restructuring of the periodontal tissue. In the last decade, substantial research has been conducted to detect different biomarkers in the gingival crevicular fluid (GCF) to obtain a better assessment of the periodontal status. Aim: The purpose of this review is to describe how the levels of certain biomarkers from the gingival fluid change during tissue remodeling throughout orthodontic treatment. Materials and methods: To carry out the purpose of this research, electronic databases were searched using specific keywords, leading to 387 articles, out of which 19 were used in writing this narrative review. A sampling period of the last 10 years was used in selecting the articles. Results: The results highlight that the origin of the gingival crevicular fluid is at the gingival blood vessels' plexus. GCF has a complex composition with differences depending on the periodontal status and the tissue restructuring which takes place in the periodontium. The levels of inflammatory mediators, enzymes, and metabolic products of tissue remodeling in GCF change during orthodontic treatment. Being aware of their specific role, they can provide valuable information about bone remodeling during orthodontic tooth movement. Conclusions: By determining the biomarkers in GCF, as an investigative method, clinicians could easily monitor the orthodontic tooth movement, and, subsequently, the treatment period could be shortened and the adverse effects associated with it could be avoided.
Collapse
Affiliation(s)
- Anamaria Bud
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Luminița Lazăr
- Department of Periodontology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Timea Dakó
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania;
| | - Mircea Suciu
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| | - Andreea Vlasiu
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Ana-Petra Lazăr
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| |
Collapse
|
39
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
40
|
Zhang Y, Dong X, Zhang Y, Chen Z, Zhou G, Chen N, Shen W, Yang K, Pei P. Biomaterials to regulate tumor extracellular matrix in immunotherapy. J Control Release 2024; 376:149-166. [PMID: 39389365 DOI: 10.1016/j.jconrel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The tumor extracellular matrix (ECM) provides physical support and influences tumor development, metastasis, and the tumor microenvironment, creating barriers to immune drug delivery and cell infiltration. Therefore, modulating or degrading the ECM is of significant importance to enhance the efficacy of tumor immunotherapy. This manuscript initially summarizes the main strategies and mechanisms of biomaterials in modulating various components of the ECM, including collagen, fibronectin, hyaluronic acid, and in remodeling the ECM. Subsequently, it discusses the benefits of biomaterials for immunotherapy following ECM modulation, such as promoting the infiltration of drugs and immune cells, regulating immune cell function, and alleviating the immunosuppressive microenvironment. The manuscript also briefly introduces the application of biomaterials that utilize and mimic the ECM for tumor immunotherapy. Finally, it addresses the current challenges and future directions in this field, providing a comprehensive overview of the potential and innovation in leveraging biomaterials to enhance cancer treatment outcomes. Our work will offer a comprehensive overview of ECM modulation strategies and their application in biomaterials to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuexue Dong
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zetong Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
41
|
Saremi L, Shahbazi S, Ghaffari ME, Esmaeili S, Lotfipanah S, Amid R, Kadkhodazadeh M. The Association of Matrix Metalloproteinase-1, -2, -3, -7, and -13 Gene Polymorphisms With Peri-Implantitis in an Iranian Population: A Case-Control Study. Clin Exp Dent Res 2024; 10:e70049. [PMID: 39610026 PMCID: PMC11604597 DOI: 10.1002/cre2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Peri-implantitis (PI) is the most common biological issue surrounding dental implants. According to current knowledge, the aforementioned complication is not equally distributed across different populations, and gene polymorphisms might be one contributing factor. The current study aimed to examine the association between gene polymorphisms of matrix metalloproteinase- (MMP-) 1, -2, -3, -7, and -13 with PI in an Iranian demographic. MATERIAL AND METHODS The study's sample included 50 subjects suffering from PI and 89 healthy controls. From each participant, a venous blood sample of 5 cc was obtained, and DNA was extracted. Gene polymorphisms were investigated using restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) combined with electrophoresis. Statistical analyses were done using the Pearson chi-square test, odds ratio, and t-test via SPSS version 28. RESULTS The MMP-3 (-1171 5A/6A) and MMP-7 (-181 A/G) gene polymorphisms were significantly different between the patients with PI and healthy controls (PV < 0.001 and =0.025, respectively). MMP-1 (-1607 1G/2G), MMP-2 (-1306 C/T), and MMP-13 (-77 A/G) gene polymorphisms did not, however, differ in terms of prevalence between the two groups (PV > 0.05). Moreover, the presence of the 6 A allele in the MMP-3 (-1171 5A/6A) genotype resulted in a significant decrease in PI risk (PV < 0.001). CONCLUSIONS Gene polymorphisms in the genotypes of MMP-3 (-1171 5A/6A) and MMP-7 (-181 A/G) were differential when comparing PI patients and healthy controls of the studied population.
Collapse
Affiliation(s)
- Leila Saremi
- Dental Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Soheil Shahbazi
- Dentofacial Deformities Research Center, Research, Institute of Dental SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Ebrahim Ghaffari
- Department of Epidemiology and Biostatistics, Faculty of HealthQom university of Medical SciencesQomIran
| | - Saharnaz Esmaeili
- Dental Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Reza Amid
- Dental Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Iranian Center for Endodontic Research, Research, Institute for Dental Sciences, Dental SchoolShahid Beheshti University of Medical SciencesTehranIran
| | - Mahdi Kadkhodazadeh
- Dental Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Iranian Center for Endodontic Research, Research, Institute for Dental Sciences, Dental SchoolShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
42
|
Hsu YT, Chang AM, Daubert D, Roberts F, Chen D, Trivedi HM, Gomez J, Darveau RP. Inflammation and tissue remodeling mediator expression during gingivitis: A comparison between experimental, naturally occurring gingivitis, and periodontal health. J Periodontol 2024; 95:1139-1149. [PMID: 38708772 DOI: 10.1002/jper.23-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The aim of this study is to evaluate the immune regulation and tissue remodeling responses during experimental gingivitis (EG) and naturally occurring gingivitis (NG) to provide a comprehensive analysis of host responses. Gingival crevicular fluid (GCF) was obtained from 2 human studies conducted in university settings. METHODS The EG study enrolling 26 volunteers provided controls for the baseline (Day 0) from healthy disease-free participants, while Day 21 (the end of EG induction of the same group) was used to represent EG. Twenty-six NG participants age-matched with those of the EG group were recruited. GCF samples were analyzed for 39 mediators of inflammatory/immune responses and tissue remodeling using commercially available bead-based multiplex immunoassays. The differences in GI and mediator expression among groups were determined at a 95% confidence level (p ≤ 0.05) by a 2-way analysis of variance (ANOVA) with a post-hoc Tukey's test. RESULTS Our findings showed that EG had a greater gingival index than NG and was healthy (p < 0.01 of all comparisons). Furthermore, EG showed significantly higher levels of MPO (p < 0.001), CCL3 (p < 0.05), and IL-1B (p < 0.001) than NG. In contrast, NG had increased levels of MIF (p < 0.05), Fractalkine (p < 0.001), angiogenin (p < 0.05), C3a (p < 0.001), BMP-2 (p < 0.001), OPN (p < 0.05), RANKL (p < 0.001), and MMP-13 (p < 0.001) than EG. CONCLUSIONS Consistent with the findings from chronic (NG) versus acute (EG) inflammatory lesions, these data reveal that NG displays greater immune regulation, angiogenesis, and bone remodeling compared to EG.
Collapse
Affiliation(s)
- Yung-Ting Hsu
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Ana M Chang
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, Washington, USA
| | - Diane Daubert
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Frank Roberts
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Dandan Chen
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Harsh M Trivedi
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Juliana Gomez
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| | - Rich P Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, Washington, USA
| |
Collapse
|
43
|
Domokos Z, Simon F, Uhrin E, Szabó B, Váncsa S, Varga G, Hegyi P, Kerémi B, Németh O. Evaluating salivary MMP-8 as a biomarker for periodontal diseases: A systematic review and meta-analysis. Heliyon 2024; 10:e40402. [PMID: 39641024 PMCID: PMC11617734 DOI: 10.1016/j.heliyon.2024.e40402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Periodontitis is the irreversible destructive process of the periodontium and is the major cause of tooth loss in adults worldwide. Diagnosis of early-stage periodontal disease is crucial for improving outcomes, and to this end, the application of indicator biomarkers is gaining interest. One such method involves measuring the level of matrix metalloproteinase-8 (MMP-8). This systematic review and meta-analysis aims to evaluate the salivary MMP-8 level of periodontitis and gingivitis cases compared to healthy controls. Data We evaluated all studies that compared different laboratory techniques for measuring salivary MMP-8 levels in periodontitis and gingivitis patients, alongside healthy controls. Sources The systematic search was performed on 10 October 2022 in three electronic databases. Study selection results Pooled mean differences (MD) were calculated with 95 % confidence intervals (CIs) between the researched groups. In addition, the correlation coefficient results between MMP-8 values and other clinical parameters were narratively summarized.Based on 20 eligible studies (n = 1725), patients with periodontitis presented significantly higher MMP-8 levels (MD = 273.26 ng/ml, CI: 194.42; 352.10). Similarly, patients with gingivitis presented significantly higher salivary MMP-8 levels than healthy individuals (MD = 122.82 ng/ml, CI: 64.19; 181.45) based on the results of 10 eligible studies (n = 704). Additionally, we found higher MMP-8 levels in periodontitis compared to gingivitis (MD = 112.04 ng/ml, CI: 56.15; 167.92). The correlation results suggest that salivary MMP-8 is associated with different clinical periodontal parameters. Conclusion Salivary MMP-8 level measurement may be a reliable method to distinguish between periodontal health and periodontal disease and also to distinguish between gingivitis and periodontitis. Clinical significance The measurement of salivary MMP-8 levels may have the potential to differentiate between periodontal health and disease reliably. Accordingly, it can be considered for integration into routine dental examinations as a quick and convenient method for the early detection and prevention of periodontitis, pending further validation.
Collapse
Affiliation(s)
- Zsuzsanna Domokos
- Department of Community Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fanni Simon
- Department of Community Dentistry, Semmelweis University, Budapest, Hungary
| | - Eszter Uhrin
- Department of Community Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Szilárd Váncsa
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Beáta Kerémi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Restorative Dentistry and Endodontics, Semmelweis University, Budapest, Hungary
| | - Orsolya Németh
- Department of Community Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
44
|
Dolińska E, Wiśniewski P, Pietruska M. Periodontal Molecular Diagnostics: State of Knowledge and Future Prospects for Clinical Application. Int J Mol Sci 2024; 25:12624. [PMID: 39684335 DOI: 10.3390/ijms252312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis leads to immunologically mediated loss of periodontium and, if untreated, can result in tooth loss. Periodontal diseases are the most prevalent in the world and have a very strong impact on patients' well-being and general health. Their treatment generates enormous costs. Given the above, precise, prompt, and predictive diagnosis of periodontal disease is of paramount importance for clinicians. The aim of the study was to summarize the state-of-the-art knowledge of molecular periodontal diagnostics and the utility of its clinical application. There is a great need to have diagnostic tests that not only describe the periodontal destruction that has occurred in the tissues but also allow clinicians to detect disease at a subclinical level before the changes occur. A test that would enable clinicians to follow the course of the disease and detect areas prone to exacerbation could be used to evaluate the effectiveness of ongoing periodontal therapies. Unfortunately, there is no such diagnostic method yet. A hopeful prospect is molecular diagnostics. There are numerous studies on biomarkers of periodontal disease. Point-of-care tests are also emerging. There are possibilities for processing large biological datasets (omics data). However, all of the above have a minor role in the overall single-patient diagnostics process. Despite advances in microbiological, molecular, and genetic research, the basis of periodontal diagnosis is still clinical examination enriched by the evaluation of radiological images.
Collapse
Affiliation(s)
- Ewa Dolińska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Patryk Wiśniewski
- Student's Research Group at the Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| |
Collapse
|
45
|
Amereh M, Shojaei S, Seyfoori A, Walsh T, Dogra P, Cristini V, Nadler B, Akbari M. Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion. COMMUNICATIONS ENGINEERING 2024; 3:176. [PMID: 39587319 PMCID: PMC11589919 DOI: 10.1038/s44172-024-00319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies.
Collapse
Affiliation(s)
- Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Shahla Shojaei
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Department of Anatomy and Cell Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, R3B 2E9, MB, Canada
| | - Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Tavia Walsh
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, 10065, NY, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Neal Cancer Center, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, 77030, TX, USA
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave., New York, 10065, NY, USA
| | - Ben Nadler
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, 2329 West Mall, Vancouver, V6T 1Z4, BC, Canada.
| |
Collapse
|
46
|
Ye JR, Park SH, Kang SW, Kwack KH, Chae YK, Lee HS, Choi SC, Nam OH. Effect of oxyresveratrol under in vitro lipopolysaccharide-induced periodontitis environment. BMC Oral Health 2024; 24:1382. [PMID: 39548434 PMCID: PMC11566898 DOI: 10.1186/s12903-024-05128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Oxyresveratrol is the main constituent of mulberries and has many bioactive properties beneficial to human health. The purpose of this study was to assess the anti-inflammatory effects of oxyresveratrol on in vitro periodontitis model. METHODS Human periodontal ligament cells were treated with oxyresveratrol (0, 10, and 20 µg/mL) for 72 h. Cell viability and flow cytometry assays were performed. To investigate anti-inflammatory effect of oxyresveratrol on periodontal inflammation, nitric oxide production under lipopolysaccharide stimulation was assessed. Next, expression of biomarkers associated periodontal inflammation was evaluated. Scratch wound assay was performed to evaluate cell migration/proliferation potential of oxyresveratrol under lipopolysaccharide stimulation. RESULTS Periodontal ligament cell toxicity was not observed in oxyresveratrol treatment. Oxyresveratrol treatment significantly inhibited nitric oxide production and reduced MMP-2, MMP-9, TNF-α, IL-6, and IL-8 expressions after lipopolysaccharide stimulation. Regarding cell migration/proliferation, open wound area in oxyresveratrol (33.28 ± 6.80%) was the lowest (p < 0.05). CONCLUSIONS Within the limits of this study, oxyresveratrol inhibited lipopolysaccharide-induced inflammation in periodontal ligament cells and promoted periodontal ligament cell migration/proliferation. These findings suggest that oxyresveratrol could be valuable for the management of periodontal diseases.
Collapse
Affiliation(s)
- Ju Ri Ye
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seung Hwan Park
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Sang Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Kyungheedae-Ro 26, Dongdaemoon-Gu, Seoul, 02447, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Kyungheedae-Ro 26, Dongdaemoon-Gu, Seoul, 02447, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea.
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Kyungheedae-Ro 26, Dongdaemoon-Gu, Seoul, 02447, Korea.
| |
Collapse
|
47
|
Wang Y, Han B, Tian H, Liu K, Wang X. Role of DDR1 in Regulating MMPs in External Root Resorption. Int J Mol Sci 2024; 25:12111. [PMID: 39596178 PMCID: PMC11594854 DOI: 10.3390/ijms252212111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Human periodontal ligament cells (hPDLCs) express matrix metalloproteinases (MMPs), a group of enzymes responsible for the destruction of most extracellular matrix proteins in dental tissues, especially MMP-1, MMP-2, and MMP-13. Exploring the regulatory mechanism of MMPs is crucial for understanding external root resorption (ERR), one of the most severe complications, along with substantial loss of dental tissue, induced by trauma, pulpal infection, tooth bleaching, and orthodontic treatment, etc. Discoidin domain receptor 1 (DDR1), a cell surface receptor binding to collagen, has the potential to regulate the expression of MMP-1, MMP-2, and MMP-13, but the mechanism remains unclear. Thus, the present study aimed to investigate the connection and underlying mechanism between MMP-1, MMP-2, MMP-13, and DDR1 in hPDLCs. Our post-replantation ERR model revealed that Mmp-1, Mmp-2, Mmp-13, and Ddr1 all increased in the sites of ERR. hPDLCs with DDR1 knockdown exhibited a substantial reduction in MMP-1, MMP-2, and MMP-13 expression. To further confirm the underlying mechanism, we conducted further in vitro experiments, including RNA sequencing, RNA interference, RT-qPCR, Western blotting, and ELISA. Based on our results, MMP-1 was positively regulated by the Smad2/3 and MEK-ERK1/2 pathways and negatively regulated by the PI3K-Akt pathway through CCN2. MMP-2 and MMP-13 were positively regulated by the Smad2/3 pathway. MMP-13 was positively regulated by the MEK-ERK1/2 and PI3K/Akt signaling pathways. Collectively, DDR1 is a potent regulator of MMP-1, MMP-2, and MMP-13 expression through the Smad2/3, MEK-ERK1/2, and PI3K/Akt signaling pathways. Clarifying the significance and underlying mechanism by which DDR1 is involved in ERR might bring the chances to hinder the pathogenic process of ERR, hence reducing its incidence rate.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.W.); (B.H.)
| | - Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.W.); (B.H.)
| | - Hongyan Tian
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.W.); (B.H.)
| |
Collapse
|
48
|
Kim I, Min SH, Lee HW, An JN, Lee HS, Kim SG, Kim JK. Impact of Peritoneal Neutrophil Extracellular Traps on Peritoneal Characteristics and Technical Failure in Patients Undergoing Peritoneal Dialysis. Am J Nephrol 2024; 56:136-147. [PMID: 39510040 DOI: 10.1159/000542427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Peritoneal dialysis (PD) is an effective home therapy for end-stage kidney disease. However, continuous exposure to PD fluids with high glucose concentration and recurrent peritonitis may lead to the activation of cellular and molecular processes of peritoneal damage, including inflammation and fibrosis. In particular, recent studies have highlighted the role of neutrophils in chronic inflammation. This study explores how neutrophil extracellular traps (NETs) affect peritoneal membrane function and contribute to technical failures in PD patients. METHODS We conducted a prospective observational study involving 250 noninfectious and 30 acute peritonitis patients. NETs were measured using nucleosome and myeloperoxidase DNA levels in PD fluids. Monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-8 (MMP-8) were also measured to assess peritoneal inflammation and damage. RESULTS A significant increase in peritoneal NETs, as determined by nucleosome and myeloperoxidase DNA levels, was observed in patients with acute peritonitis compared to patients without peritonitis. Even in noninfectious samples, NET levels were widely distributed and closely correlated with levels of MCP-1 and MMP-8. Higher levels of peritoneal NETs were closely associated with increased 4-h dialyzate/peritoneal (D/P) creatinine ratio and 1-h D/P sodium levels, indicating a higher prevalence of fast transport and limited free water transport. These factors were associated with a higher risk of technical failure. During a mean follow-up of 34 months, 39.2% (98 patients) switched from PD to hemodialysis, with higher NET levels significantly increasing the risk by 1.9 times (95% confidence interval: 1.27-2.83, p = 0.020). CONCLUSION This study suggests the importance of peritoneal NETs not only as markers of acute inflammation but also as significant immunological predictors of chronic peritoneal membrane inflammation and dysfunction and as potential risk factors for technical failure.
Collapse
Affiliation(s)
- Insoo Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sei Hong Min
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hoi Woul Lee
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hyung Seok Lee
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sung Gyun Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jwa-Kyung Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
49
|
Ou Y, Fan L, Wang X, Xia H, Cheng M, Huang J, Liang Y, Wang Y, Zhou Y. Leukemia inhibitory factor protects against experimental periodontitis through immuno-modulations of both macrophages and periodontal ligament fibroblasts. J Periodontol 2024; 95:1073-1085. [PMID: 38488753 DOI: 10.1002/jper.23-0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 12/05/2024]
Abstract
BACKGROUND To explore the role of leukemia inhibitory factor (LIF) in periodontitis via in vivo and in vitro experiments. METHODS The second upper molar of LIF knockout mice and their wild-type littermates were ligated for 8 days. Micro-computed tomography (micro-CT), histological analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The expression levels of proinflammatory cytokines were examined in mouse bone marrow derived macrophages and human periodontal ligament fibroblasts (HPDLFs) after lipopolysaccharide (LPS) treatment. RESULTS LIF deficiency promoted alveolar bone loss, inflammatory cells infiltration, osteoclasts formation and collagen fiber degradation in ligature-induced mouse, along with higher expressions of proinflammatory cytokines, including interleukin-6 (IL6), IL-1β (IL1B), tumor necrosis factor-α (TNFA), matrix metalloproteinase 13 (MMP13), and RANKL/OPG ratio. Additionally, LIF deletion led to higher expression levels of these proinflammatory cytokines in mouse bone marrow-derived macrophages from both femur and alveolar bone and HPDLFs when treated with LPS. Administration of recombined LIF attenuated TNFA, IL1B, and RANKL/OPG ratio in HPDLFs. CONCLUSIONS These findings indicate that LIF deficiency promotes the progress of periodontitis via modulating immuno-inflammatory responses of macrophages and periodontal ligament fibroblasts, and the application of LIF may be an adjunctive treatment for periodontitis to resolute inflammation.
Collapse
Affiliation(s)
- Yanjing Ou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
- Postdoctoral Workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| | - Le Fan
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiaoqi Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Mengwen Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Youde Liang
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, Guangdong, PR China
| | - Yining Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
50
|
Liu Y, Wei X, Yang T, Wang X, Li T, Sun M, Jiao K, Jia W, Yang Y, Yan Y, Wang S, Wang C, Liu L, Dai Z, Jiang Z, Jiang X, Li C, Liu G, Cheng Z, Luo Y. Hyaluronic acid methacrylate/Pluronic F127 hydrogel enhanced with spermidine-modified mesoporous polydopamine nanoparticles for efficient synergistic periodontitis treatment. Int J Biol Macromol 2024; 281:136085. [PMID: 39353520 DOI: 10.1016/j.ijbiomac.2024.136085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bacterial infection, reactive oxygen species (ROS) accumulation, and persistent inflammation pose significant challenges in the treatment of periodontitis. However, the current single-modal strategy makes achieving the best treatment effect difficult. Herein, we developed a double-network hydrogel composed of Pluronic F127 (PF-127) and hyaluronic acid methacrylate (HAMA) loaded with spermidine-modified mesoporous polydopamine nanoparticles (M@S NPs). The PF-127/HAMA/M@S (PH/M@S) hydrogel was injectable and exhibited thermosensitivity and photocrosslinking capabilities, which enable it to adapt to the irregular shape of periodontal pockets. In vitro, the PH/M@S displayed multiple therapeutic effects, such as photothermal antibacterial activity, a high ROS scavenging capacity, and anti-inflammatory effects, which are beneficial for the multimodal treatment of periodontitis. The underlying anti-inflammatory mechanism of this hydrogel involves suppression of the extracellular regulated protein kinase 1/2 and nuclear factor kappa-B signalling pathways. Furthermore, in lipopolysaccharide-stimulated macrophage conditioned media, the PH/M@S effectively restored the osteogenic differentiation potential. In a rat model of periodontitis, the PH/M@S effectively reduced the bacterial load, relieved local inflammation and inhibited alveolar bone resorption. Collectively, these findings highlight the versatile functions of the PH/M@S, including photothermal antibacterial activity, ROS scavenging, and anti-inflammatory effects, indicating that this hydrogel is a promising multifunctional filling material for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yun Liu
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Xue Wei
- Ultrasound Diagnostic Center (Doctor of excellence program), The First Hospital of Jilin University, Changchun 130021, China
| | - Tao Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Stomatology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kun Jiao
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Wenyuan Jia
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yuheng Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yongzheng Yan
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shaoru Wang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chang Wang
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Liping Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhihui Dai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xuanzuo Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chiyu Li
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guomin Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; College of Resources and Environment, Jilin Agriculture University, Changchun 130118, China
| | - Yungang Luo
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China.
| |
Collapse
|