1
|
Schmitz RL, Riendeau JM, Tweed KE, Rehani P, Samimi K, Pham DL, Jones I, Maly EM, Contreras Guzman E, Forsberg MH, Shahi A, Hockerman L, Ayuso JM, Capitini CM, Walsh AJ, Skala MC. Autofluorescence lifetime imaging classifies human B and NK cell activation state. Front Bioeng Biotechnol 2025; 13:1557021. [PMID: 40256783 PMCID: PMC12006760 DOI: 10.3389/fbioe.2025.1557021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
New non-destructive tools with single-cell resolution are needed to reliably assess B cell and NK cell function for applications including adoptive cell therapy and immune profiling. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of the metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we demonstrate that OMI can resolve metabolic changes between primary human quiescent and IL-4/anti-CD40 activated B cells and between quiescent and IL-12/IL-15/IL-18 activated NK cells. We found that stimulated B and NK cells had an increased proportion of free compared to protein-bound NAD(P)H, a reduced redox state, and produced more lactate compared to control cells. The NAD(P)H mean fluorescence lifetime decreased in the stimulated B and NK cells compared to control cells. Random forest models classified B cells and NK cells according to activation state (CD69+) based on OMI variables with an accuracy of 93%. Our results show that autofluorescence lifetime imaging can accurately assess B and NK cell activation in a label-free, non-destructive manner.
Collapse
Affiliation(s)
| | - Jeremiah M. Riendeau
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Peter Rehani
- Morgridge Institute for Research, Madison, WI, United States
| | - Kayvan Samimi
- Morgridge Institute for Research, Madison, WI, United States
| | - Dan L. Pham
- Morgridge Institute for Research, Madison, WI, United States
| | - Isabel Jones
- Morgridge Institute for Research, Madison, WI, United States
| | | | | | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ankita Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lucia Hockerman
- Morgridge Institute for Research, Madison, WI, United States
| | - Jose M. Ayuso
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alex J. Walsh
- Morgridge Institute for Research, Madison, WI, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Habibalahi A, Anwer AG, Knab A, Grey ST, Goldys EM, Campbell JM. Multispectral autofluorescence for label free classification of immune cell type and activation/polarization status. Scand J Immunol 2025; 101:e70004. [PMID: 39924799 PMCID: PMC11808199 DOI: 10.1111/sji.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Evaluating immune status is a challenging and time-consuming process that involves analysing various biomarkers through numerous assays. The sensitive label-free technique of multispectral imaging of cell autofluorescence involves directly assessing the molecular composition of cells to gather biological information. Cells were cultured in RPMI 1640 modified media supplemented with penicillin-streptomycin and 10% foetal bovine serum at 37°C, with 5% CO2 and 95% humidity. Activation and differentiation was confirmed using immunofluorophores against relevant markers. Multispectral microscopy utilized defined spectral regions, which spanned the excitation (345-476 nm) and emission (414-675 nm) wavelength ranges. In total, 56 distinct spectral channels were applied. These channels cover the spectrum of several fluorophores notably NAD(P)H and flavins, whose concentrations depend on cellular metabolism. We identified distinct spectral signatures for characterizing cells from the Jurkat, Ramos, THP-1, and HL-60 immune cell lines. These signatures correspond to four major immune cell types: T cells (Lymphocytes), B cells (Lymphocytes), monocytes and neutrophils. Moreover, our investigation explored the potential identification of both activated and resting forms of these cells, including the discrimination of M0, M1 and M2 polarized macrophages. Classification accuracy ranged from 92% to 100% based on receiver operator characteristic area under the curve (ROC AUC) assessment. These results indicate that the multispectral evaluation of cell autofluorescence is applicable for characterization of immune status. This includes the assessment of cell types and their activation status, all achievable through a single non-invasive assay.
Collapse
Affiliation(s)
- Abbas Habibalahi
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Aline Knab
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Shane T. Grey
- Transplantation Immunology LaboratoryGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- Translation Science PillarGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jared M. Campbell
- Graduate School of Biomedical Engineering, Faculty of EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- ARC Centre of Excellence for Nanoscale BiophotonicsUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Rojas M, Tschumperlin DJ. A Redox-Shifted Fibroblast Subpopulation Emerges in the Fibrotic Lung. Am J Respir Cell Mol Biol 2024; 71:718-729. [PMID: 38959411 PMCID: PMC11622638 DOI: 10.1165/rcmb.2023-0346oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and, thus far, incurable disease characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study, we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen-producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)Hhigh and NAD(P)Hlow subpopulations. NAD(P)Hhigh fibroblasts exhibited elevated profibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)Hlow fibroblasts. The NAD(P)Hhigh population was present in healthy lungs but expanded with time after bleomycin injury, suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)Hhigh cells in freshly dissociated lungs of subjects with IPF relative to control subjects, as well as similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
Affiliation(s)
- Patrick A. Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley Y. Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Victor Peters
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Mauricio Rojas
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | |
Collapse
|
4
|
Banna HU, Slayo M, Armitage JA, Del Rosal B, Vocale L, Spencer SJ. Imaging the eye as a window to brain health: frontier approaches and future directions. J Neuroinflammation 2024; 21:309. [PMID: 39614308 PMCID: PMC11606158 DOI: 10.1186/s12974-024-03304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Recent years have seen significant advances in diagnostic testing of central nervous system (CNS) function and disease. However, there remain challenges in developing a comprehensive suite of non- or minimally invasive assays of neural health and disease progression. Due to the direct connection with the CNS, structural changes in the neural retina, retinal vasculature and morphological changes in retinal immune cells can occur in parallel with disease conditions in the brain. The retina can also, uniquely, be assessed directly and non-invasively. For these reasons, the retina may prove to be an important "window" for revealing and understanding brain disease. In this review, we discuss the gross anatomy of the eye, focusing on the sensory and non-sensory cells of the retina, especially microglia, that lend themselves to diagnosing brain disease by imaging the retina. We include a history of ocular imaging to describe the different imaging approaches undertaken in the past and outline current and emerging technologies including retinal autofluorescence imaging, Raman spectroscopy, and artificial intelligence image analysis. These new technologies show promising potential for retinal imaging to be used as a tool for the diagnosis of brain disorders such as Alzheimer's disease and others and the assessment of treatment success.
Collapse
Affiliation(s)
- Hasan U Banna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - James A Armitage
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | | | - Loretta Vocale
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Liang Y, Khanthaphixay B, Reynolds J, Leigh PJ, Lim ML, Yoon JY. A smartphone-based approach for comprehensive soil microbiome profiling. APPLIED PHYSICS REVIEWS 2024; 11:031412. [PMID: 39221035 PMCID: PMC11307194 DOI: 10.1063/5.0174176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The soil microbiome is crucial for nutrient cycling, health, and plant growth. This study presents a smartphone-based approach as a low-cost and portable alternative to traditional methods for classifying bacterial species and characterizing microbial communities in soil samples. By harnessing bacterial autofluorescence detection and machine learning algorithms, the platform achieved an average accuracy of 88% in distinguishing common soil-related bacterial species despite the lack of biomarkers, nucleic acid amplification, or gene sequencing. Furthermore, it successfully identified dominant species within various bacterial mixtures with an accuracy of 76% and three-level soil health identification at an accuracy of 80%-82%, providing insights into microbial community dynamics. The influence of other soil conditions (pH and moisture) was relatively minor, showcasing the platform's robustness. Various field soil samples were also tested with this platform at 80% accuracy compared with the laboratory analyses, demonstrating the practicality and usability of this approach for on-site soil analysis. This study highlights the potential of the smartphone-based system as a valuable tool for soil assessment, microbial monitoring, and environmental management.
Collapse
Affiliation(s)
- Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | - Bradley Khanthaphixay
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Melissa L. Lim
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
6
|
Abir AH, Weckwerth L, Wilhelm A, Thomas J, Reichardt CM, Munoz L, Völkl S, Appelt U, Mroz M, Niesner R, Hauser A, Sophie Fischer R, Pracht K, Jäck HM, Schett G, Krönke G, Mielenz D. Metabolic profiling of single cells by exploiting NADH and FAD fluorescence via flow cytometry. Mol Metab 2024; 87:101981. [PMID: 38971403 PMCID: PMC11300934 DOI: 10.1016/j.molmet.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.
Collapse
Affiliation(s)
- Ariful Haque Abir
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Clara M Reichardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Uwe Appelt
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Markus Mroz
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum Berlin, Biophysikalische Analytik, Charitéplatz 1, 10117 Berlin, Germany; Freie Universität Berlin, Dynamisches und funktionelles in vivo Imaging, Adresse: Oertzenweg 19b, 14163 Berlin, Germany
| | - Anja Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin, Immundynamik, Charitéplatz 1, 10117 Berlin, Germany
| | - Rebecca Sophie Fischer
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
Liu B, Liu Y, Liu W, Luo T, Chen W, Lin C, Lin L, Zhuo S, Sun Y. Label-free imaging diagnosis and collagen-optical evaluation of endometrioid adenocarcinoma with multiphoton microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202400177. [PMID: 38887864 DOI: 10.1002/jbio.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The assessment of tumor grade and pathological stage plays a pivotal role in determining the treatment strategy and predicting the prognosis of endometrial cancer. In this study, we employed multiphoton microscopy (MPM) to establish distinctive optical pathological signatures specific to endometrioid adenocarcinoma (EAC), while also assessing the diagnostic sensitivity, specificity, and accuracy of MPM for this particular malignancy. The MPM technique exhibits robust capability in discriminating between benign hyperplasia and various grades of cancer tissue, with statistically significant differences observed in nucleocytoplasmic ratio and second harmonic generation/two-photon excited fluorescence intensity. Moreover, by utilizing semi-automated image analysis, we identified notable disparities in six collagen signatures between benign and malignant endometrial stroma. Our study demonstrates that MPM can differentiate between benign endometrial hyperplasia and EAC without labels, while also quantitatively assessing changes in the tumor microenvironment by analyzing collagen signatures in the endometrial stromal tissue.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenju Liu
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Tianyi Luo
- School of Science, Jimei University, Xiamen, Fujian, China
| | - Wei Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Cuibo Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ling Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
9
|
Link PA, Meridew JA, Caporarello N, Gao AY, Peters V, Smith GB, Rojas M, Tschumperlin DJ. A redox-shifted fibroblast subpopulation emerges in the fibrotic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559128. [PMID: 38014129 PMCID: PMC10680805 DOI: 10.1101/2023.09.23.559128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive and thus far incurable disease, characterized by aberrant fibroblast-mediated extracellular matrix deposition. Our understanding of the disease etiology is incomplete; however, there is consensus that a reduction-oxidation (redox) imbalance plays a role. In this study we use the autofluorescent properties of two redox molecules, NAD(P)H and FAD, to quantify changes in their relative abundance in living lung tissue of mice with experimental lung fibrosis, and in freshly isolated cells from mouse lungs and humans with IPF. Our results identify cell population-specific intracellular redox changes in the lungs in experimental and human fibrosis. We focus particularly on redox changes within collagen producing cells, where we identified a bimodal distribution of NAD(P)H concentrations, establishing NAD(P)H high and NAD(P)H low sub-populations. NAD(P)H high fibroblasts exhibited elevated pro-fibrotic gene expression and decreased collagenolytic protease activity relative to NAD(P)H low fibroblasts. The NAD(P)H high population was present in healthy lungs but expanded with time after bleomycin injury suggesting a potential role in fibrosis progression. We identified a similar increased abundance of NAD(P)H high cells in freshly dissociated lungs of subjects with IPF relative to controls, and similar reductions in collagenolytic activity in this cell population. These data highlight the complexity of redox state changes in experimental and human pulmonary fibrosis and the need for selective approaches to restore redox imbalances in the fibrotic lung.
Collapse
|
10
|
Krug SM. Solving the Puzzle: Molecular Research in Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:13389. [PMID: 37686195 PMCID: PMC10487909 DOI: 10.3390/ijms241713389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses chronic idiopathic relapsing and remitting gastrointestinal autoimmune diseases characterized by chronic inflammatory disorders of complex etiology, posing clinical challenges due to their often therapy-refractory nature [...].
Collapse
Affiliation(s)
- Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
11
|
Izosimova AV, Mozherov AM, Shirmanova MV, Shcheslavskiy VI, Sachkova DA, Zagaynova EV, Sharonov GV, Yuzhakova DV. Fluorescence Lifetime Imaging of NAD(P)H T Cells Autofluorescence in the Lymphatic Nodes to Assess the Effectiveness of Anti-CTLA-4 Immunotherapy. Sovrem Tekhnologii Med 2023; 15:5-15. [PMID: 38435479 PMCID: PMC10904361 DOI: 10.17691/stm2023.15.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 03/05/2024] Open
Abstract
The main problem in the field of tumor immunotherapy is the lack of reliable biomarkers that allow pre-determining the susceptibility of individual patients to treatment, as well as insufficient knowledge about the resistance mechanisms. Biomarkers based on the autofluorescence of metabolic coenzymes in immune cells can become a powerful new predictor of early tumor response to treatment, whereas the optical FLIM method can be a tool to predict the effectiveness of immunotherapy, which allows preserving the spatial structure of the sample and obtaining results on the metabolic status of immune cells in real time. The aim of the study is to conduct a metabolic autofluorescence imaging study of the NAD(P)H metabolic coenzyme in immune cells of freshly isolated lymph nodes as a potential marker for assessing the effectiveness of an early response to immunotherapy. Materials and Methods The study was carried out on C57Bl/6 FoxP3-EGFP mice with B16F0 melanoma implanted near the inguinal lymph node. The mice were injected with antibodies to CTLA-4 (Bio X Cell, USA) (250 μg per mouse, intraperitoneally on days 7, 8, 11, and 12 of the tumor growth). FLIM images in the nicotinamide adenine dinucleotide (phosphate) coenzyme (NAD(P)H) channel (excitation - 375 nm, reception - 435-485 nm) were received using an LSM 880 fluorescent confocal laser scanning microscope (Carl Zeiss, Germany) equipped with a FLIM Simple-Tau module 152 TCSPC (Becker & Hickl GmbH, Germany). Flow cytometry was conducted using a BD FACSAria III cell sorter (BD Biosciences, USA). Results Immunotherapy with checkpoint inhibitors resulted in marked metabolic rearrangements in T cells of freshly isolated lymph nodes in responder mice, with inhibition of the tumor growth. Fluorescence lifetime imaging data on NAD(P)H indicated an increase in the free fraction of NADH α1, a form associated with glycolysis to meet high demands of the activated T cells and pro-inflammatory cytokine synthesis. In contrast, non-responder mice with advanced tumors showed low values of the ratio of free fraction to bound α1/α2, which may be related to mechanisms of resistance to therapy.The response to immunotherapy was verified by data on the expression of activation and proliferation markers by means of flow cytometry. The authors observed an increase in the production of the pro-inflammatory cytokine IFN-γ in effector T cells in responder mice compared to untreated controls and non-responders. In addition, an increase in the expression of the surface activation markers CD25 and CD69 was registered compared to untreated controls. Conclusion Use of the FLIM method allowed to demonstrate that autofluorescence of the NAD(P)H coenzyme is sensitive to the response to checkpoint immunotherapy and can be used as a reliable marker of the effectiveness of response to treatment.
Collapse
Affiliation(s)
- A V Izosimova
- Laboratory Assistant, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; PhD Student, Department of Biophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - A M Mozherov
- Junior Researcher, Laboratory of Optical Spectroscopy and Microscopy, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M V Shirmanova
- Deputy Director for Science, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V I Shcheslavskiy
- Head of the Laboratory of Optical Spectroscopy and Microscopy, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D A Sachkova
- Master Student, Department of Biophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia; Laboratory Assistant, Laboratory of Fluorescent Bioimaging, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E V Zagaynova
- Professor, Corresponding Member of the Russian Academy of Science, Leading Researcher, Laboratory of Optical Coherence Tomography, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - G V Sharonov
- Senior Researcher, Institute of Translational Medicine; Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia Senior Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D V Yuzhakova
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
12
|
Shah VS, Hou J, Vinarsky V, Xu J, Surve MV, Lin CP, Rajagopal J. Autofluorescence imaging permits label-free cell type assignment and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs). eLife 2023; 12:e84375. [PMID: 36994985 PMCID: PMC10154029 DOI: 10.7554/elife.84375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Manalee V Surve
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jayaraj Rajagopal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Klarman Cell Observatory, Broad InstituteCambridgeUnited States
| |
Collapse
|
13
|
Galli R, Siciliano T, Aust D, Korn S, Kirsche K, Baretton GB, Weitz J, Koch E, Riediger C. Label-free multiphoton microscopy enables histopathological assessment of colorectal liver metastases and supports automated classification of neoplastic tissue. Sci Rep 2023; 13:4274. [PMID: 36922643 PMCID: PMC10017791 DOI: 10.1038/s41598-023-31401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
As the state of resection margins is an important prognostic factor after extirpation of colorectal liver metastases, surgeons aim to obtain negative margins, sometimes elaborated by resections of the positive resection plane after intraoperative frozen sections. However, this is time consuming and results sometimes remain unclear during surgery. Label-free multimodal multiphoton microscopy (MPM) is an optical technique that retrieves morpho-chemical information avoiding all staining and that can potentially be performed in real-time. Here, we investigated colorectal liver metastases and hepatic tissue using a combination of three endogenous nonlinear signals, namely: coherent anti-Stokes Raman scattering (CARS) to visualize lipids, two-photon excited fluorescence (TPEF) to visualize cellular patterns, and second harmonic generation (SHG) to visualize collagen fibers. We acquired and analyzed over forty thousand MPM images of metastatic and normal liver tissue of 106 patients. The morphological information with biochemical specificity produced by MPM allowed discriminating normal liver from metastatic tissue and discerning the tumor borders on cryosections as well as formalin-fixed bulk tissue. Furthermore, automated tissue type classification with a correct rate close to 95% was possible using a simple approach based on discriminant analysis of texture parameters. Therefore, MPM has the potential to increase the precision of resection margins in hepatic surgery of metastases without prolonging surgical intervention.
Collapse
Affiliation(s)
- Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Tiziana Siciliano
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sandra Korn
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jürgen Weitz
- National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Carina Riediger
- National Center for Tumor Diseases (NCT/UCC), Partner Site Dresden: German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
14
|
Gillette AA, Pham DL, Skala MC. Touch-free optical technologies to streamline the production of T cell therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100434. [PMID: 36642996 PMCID: PMC9837746 DOI: 10.1016/j.cobme.2022.100434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently approved adoptive T cell therapy relies on autologous (obtained from the same patient) T cells, which often suffer from poor quality that diminishes treatment efficacy. Due to the heterogeneous nature of T cell quality between and within patients, significant efforts are aimed at optimizing cell manipulation and growth conditions for potent T cell products. We believe that touch-free imaging and sensing technologies are critical to monitor single-cell features during T cell manufacturing to ensure consistent and optimally timed methods for cell manipulation and growth. Here, we discuss emerging label-free optical imaging and sensing methods, along with machine learning techniques that could enable in-line feedback to optimize T cell quality at multiple stages during manufacturing. These methods have the potential to streamline current workflow, accelerate the manufacture of safe high-quality T cell therapies, and improve our understanding of the dynamic, heterogeneous processes of T cell manufacturing.
Collapse
Affiliation(s)
| | - Dan L Pham
- Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison
| |
Collapse
|
15
|
Schmitz RL, Tweed KE, Rehani P, Samimi K, Riendeau J, Jones I, Maly EM, Guzman EC, Forsberg MH, Shahi A, Capitini CM, Walsh AJ, Skala MC. Autofluorescence lifetime imaging classifies human lymphocyte activation and subtype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525260. [PMID: 36747690 PMCID: PMC9900834 DOI: 10.1101/2023.01.23.525260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
New non-destructive tools are needed to reliably assess lymphocyte function for immune profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve metabolic changes between human quiescent versus IL4/CD40 activated B cells and IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK cells compared to quiescent cells. Machine learning classified B cells and NK cells according to activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy, respectively. Leveraging our previously published OMI data from activated and quiescent T cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to T cells, and further increased in B cells compared to NK cells. Random forest models based on OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0% accuracy. Our results show that autofluorescence lifetime imaging can accurately assess lymphocyte activation and subtype in a label-free, non-destructive manner.
Collapse
Affiliation(s)
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Peter Rehani
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Isabel Jones
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ankita Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
16
|
FLIM of NAD(P)H in Lymphatic Nodes Resolves T-Cell Immune Response to the Tumor. Int J Mol Sci 2022; 23:ijms232415829. [PMID: 36555468 PMCID: PMC9779489 DOI: 10.3390/ijms232415829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells. The purpose of this work was to test whether FLIM can resolve metabolic alterations that accompany T-cell reactivation to the tumors. The study was carried out on C57Bl/6 FoxP3-EGFP mice bearing B16F0 melanoma. Autofluorescence of the immune cells in fresh lymphatic nodes (LNs) was investigated. It was found that fluorescence lifetime parameters of nicotinamide adenine dinucleotide (phosphate) NAD(P)H are sensitive to tumor development. Effector T-cells in the LNs displayed higher contribution of free NADH, the form associated with glycolysis, in all tumors and the presence of protein-bound NADPH, associated with biosynthetic processes, in the tumors of large size. Flow cytometry showed that the changes in the NADH fraction of the effector T-cells correlated with their activation, while changes in NADPH correlated with cell proliferation. In conclusion, FLIM of NAD(P)H in fresh lymphoid tissue is a powerful tool for assessing the immune response to tumor development.
Collapse
|
17
|
Kreiss L, Ganzleben I, Mühlberg A, Ritter P, Schneidereit D, Becker C, Neurath MF, Friedrich O, Schürmann S, Waldner M. Label-free analysis of inflammatory tissue remodeling in murine lung tissue based on multiphoton microscopy, Raman spectroscopy and machine learning. JOURNAL OF BIOPHOTONICS 2022; 15:e202200073. [PMID: 35611635 DOI: 10.1002/jbio.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory fibrotic tissue remodeling can lead to severe morbidity. Histopathology grading requires extraction of biopsies and elaborate tissue processing. Label-free optical technologies can provide diagnostic readout without preparation and artificial stainings and show potential for in vivo applications. Here, we present an integration of Raman spectroscopy (RS) and multiphoton microscopy for joint investigation of the bio-chemical composition and morphological features related to cellular components and connective tissue. Both modalities show that collagen signatures were significantly increased in a murine fibrosis model. Furthermore, autofluorescence signatures assigned to immune cells show high correlation with disease severity. RS indicates increased levels of elastin and lipids. Further, we investigated the effect of joint data sets on prediction performance in machine learning models. Although binary classification did not benefit from adding more features, multi-class classification was improved by integrated data sets.
Collapse
Affiliation(s)
- Lucas Kreiss
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Kreiss L, Thoma OM, Lemire S, Lechner K, Carlé B, Dilipkumar A, Kunert T, Scheibe K, Heichler C, Merten AL, Weigmann B, Neufert C, Hildner K, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free Characterization and Quantification of Mucosal Inflammation in Common Murine Colitis Models With Multiphoton Imaging. Inflamm Bowel Dis 2022; 28:1637-1646. [PMID: 35699622 PMCID: PMC9629455 DOI: 10.1093/ibd/izac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.
Collapse
Affiliation(s)
- Lucas Kreiss
- Address correspondence to: Lucas Kreiss, Dr.-Ing, Institute of Medical Biotechnology, Paul-Gordan-Str 3, 91052 Erlangen, Germany ()
| | | | - Sarah Lemire
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|