1
|
Shah FH, Bang JY, Nam YS, Hwang IS, Kim DH, Ki M, Salman S, Lee HW. Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled. Cell Biochem Biophys 2025; 83:221-227. [PMID: 39312156 DOI: 10.1007/s12013-024-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - In Seo Hwang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
2
|
Tieu KV, Espey M, Narayanan A, Heise RL, Alem F, Conway DE. SARS-CoV-2 S-protein expression drives syncytia formation in endothelial cells. Sci Rep 2025; 15:3549. [PMID: 39875448 PMCID: PMC11775288 DOI: 10.1038/s41598-025-86242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells. S-protein expression in endothelial cells was sufficient to induce the formation of multi-nucleated cells, with an average of 10% of all cells forming syncytia with an average of 6 nuclei per syncytia after 72 h of S-protein expression. Formation of syncytia was associated with the formation of gaps between cells, suggesting the potential for syncytia formation to compromise barrier function. Inhibition of myosin light chain kinase (MLCK), but not Rho-associated protein kinase, inhibited the formation of syncytia, suggesting a role for MLCK in syncytia formation. Further supporting the role of cellular contractility in syncytia formation, we also observed a reduction in the occurrence of syncytia for endothelial cells grown on substrates with reduced stiffness. Because endothelial cells are exposed to physiological forces due to blood flow, we examined the effects of cyclic biaxial stretch and fluid shear stress. While biaxial stretch did not affect syncytia formation, endothelial cells exposed to fluid shear stress were more resistant to syncytia formation. Finally, we observed that endothelial cells are suitable host cells for SARS-CoV-2 viral infection and replication, and that viral infection also causes syncytia formation. Our studies indicate that endothelial cells, in addition to epithelial cells, should also be considered a target for SARS-CoV-2 infection and a driver of COVID-19-associated pathology.
Collapse
Affiliation(s)
- Katie V Tieu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Madaline Espey
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Manassas, VA, USA
- Biomedical Research Laboratory, George Mason University, Manassas, VA, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Biomedical Research Laboratory, George Mason University, Manassas, VA, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Baldassarro VA, Alastra G, Cescatti M, Quadalti C, Lorenzini L, Giardino L, Calzà L. SARS-CoV-2-related peptides induce endothelial-to-mesenchymal transition in endothelial capillary cells derived from different body districts: focus on membrane (M) protein. Cell Tissue Res 2024; 397:241-262. [PMID: 38953987 DOI: 10.1007/s00441-024-03900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19, may lead to multiple organ dysfunctions and long-term complications. The induction of microvascular dysfunction is regarded as a main player in these pathological processes. To investigate the possible impact of SARS-CoV-2-induced endothelial-to-mesenchymal transition (EndMT) on fibrosis in "long-COVID" syndrome, we used primary cultures of human microvascular cells derived from the lungs, as the main infection target, compared to cells derived from different organs (dermis, heart, kidney, liver, brain) and to the HUVEC cell line. To mimic the virus action, we used mixed SARS-CoV-2 peptide fragments (PepTivator®) of spike (S), nucleocapsid (N), and membrane (M) proteins. TGFβ2 and cytokine mix (IL-1β, IL-6, TNFα) were used as positive controls. The percentage of cells positive to mesenchymal and endothelial markers was quantified by high content screening. We demonstrated that S+N+M mix induces irreversible EndMT in all analyzed endothelial cells via the TGFβ pathway, as demonstrated by ApoA1 treatment. We then tested the contribution of single peptides in lung and brain cells, demonstrating that EndMT is triggered by M peptide. This was confirmed by transfection experiment, inducing the endogenous expression of the glycoprotein M in lung-derived cells. In conclusion, we demonstrated that SARS-CoV-2 peptides induce EndMT in microvascular endothelial cells from multiple body districts. The different peptides play different roles in the induction and maintenance of the virus-mediated effects, which are organ-specific. These results corroborate the hypothesis of the SARS-CoV-2-mediated microvascular damage underlying the multiple organ dysfunctions and the long-COVID syndrome.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | | | - Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy.
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Tsiatsiou P, Kouirouxis K, Tsaireli V, Lanta A, Kassomenaki A, Papaioannou M, Protonotariou E, Skoura L. Angiopoietins as Predictor Indexes in COVID-19 Patients in Delta and Omicron Waves. Curr Issues Mol Biol 2024; 46:3975-3989. [PMID: 38785513 PMCID: PMC11120536 DOI: 10.3390/cimb46050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to explore the correlation between Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) concentrations and the Angiopoietin-2/Angiopoietin-1 ratio (Ang-2/Ang-1) with clinical outcomes, potentially serving as disease severity and survival biomarkers. A study at AHEPA University Hospital involved 90 Coronavirus Disease 2019 (COVID-19) adult patients, 30 hospitalized intensive care units (ICU), 30 inward units (non-ICU), and 30 asymptomatic non-hospitalized individuals as controls. Estimated endothelial dysfunction markers related to angiogenesis were measured. There was a statistically significant difference only between outpatient and hospitalized patients (non-ICU-ICU groups) for the Ang-1 and Ang-2 indices. The Ang-2/Ang-1 ratio has differed significantly among the individual patient groups. An ROC analysis was conducted to find an optimal threshold for distinguishing between (outpatients-non-ICU) and (non-ICU-ICU) groups. It was based on Youden's index of 0.1122 and 0.3825, respectively. The Ang-1, Ang-2 levels, and Ang-2/Ang-1 ratio were analyzed as severity indicators in COVID-19 patients. The Ang-2/Ang-1 ratio demonstrated better prognostic and diagnostic utility than individual biomarker levels. Monitoring the Ang-2/Ang-1 ratio can identify COVID-19 patients at risk and assist clinicians in tailoring treatment strategies to improve outcomes.
Collapse
Affiliation(s)
- Panagiota Tsiatsiou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Kyriakos Kouirouxis
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Vasiliki Tsaireli
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Antonia Lanta
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Angeliki Kassomenaki
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Maria Papaioannou
- Division of Hematology, First Department of Internal Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.K.); (V.T.); (A.L.); (A.K.); (E.P.); (L.S.)
| |
Collapse
|
6
|
Kikinis Z, Castañeyra-Perdomo A, González-Mora JL, Rushmore RJ, Toppa PH, Haggerty K, Papadimitriou G, Rathi Y, Kubicki M, Kikinis R, Heller C, Yeterian E, Besteher B, Pallanti S, Makris N. Investigating the structural network underlying brain-immune interactions using combined histopathology and neuroimaging: a critical review for its relevance in acute and long COVID-19. Front Psychiatry 2024; 15:1337888. [PMID: 38590789 PMCID: PMC11000670 DOI: 10.3389/fpsyt.2024.1337888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Agustin Castañeyra-Perdomo
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - José Luis González-Mora
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - Richard Jarrett Rushmore
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Poliana Hartung Toppa
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayley Haggerty
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Edward Yeterian
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefano Pallanti
- Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, Bronx, NY, United States
- Istituto di Neuroscienze, Florence, Italy
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Giedraitiene A, Tatarunas V, Kaminskaite K, Meskauskaite U, Boieva S, Ajima Y, Ciapiene I, Veikutiene A, Zvikas V, Kupstyte-Kristapone N, Jakstas V, Luksiene D, Tamosiunas A, Lesauskaite V. Enterobacterales Biofilm-Specific Genes and Antimicrobial and Anti-Inflammatory Biomarkers in the Blood of Patients with Ischemic Heart Disease. Diagnostics (Basel) 2024; 14:546. [PMID: 38473018 DOI: 10.3390/diagnostics14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) is the most prevalent type of cardiovascular disease. The main cause of IHD is atherosclerosis, which is a multifactorial inflammatory disease of blood vessels. Studies show that bacteria might have a significant impact on the pathogenesis of atherosclerosis and plaque rupture. This study aimed to evaluate the complexity of interactions between bacteria and the human body concerning metabolites and bacterial genes in patients with ischemic heart disease. METHODS Bacterial 16S rDNA and wcaF, papC, and sdhC genes were detected in whole blood using a real-time PCR methodology. An enzyme-linked immunosorbent assay was used to measure the concentration of the LL-37 protein. An analysis of ARA in blood plasma was performed. RESULTS Bacterial 16S rDNA was detected in 31% of the study patients, and the genes wcaF and sdhC in 20%. Enterobacterales genes were detected more frequently in patients younger than 65 years than in patients aged 65 years and older (p = 0.018) and in patients with type 2 diabetes (p = 0.048). Concentrations of the human antimicrobial peptide LL-37 and 12S-HETE concentrations were determined to be higher if patients had 16S rDNA and biofilm-specific genes. CONCLUSIONS The results of this study enhance the understanding that Enterobacterales bacteria may participate in the pathogenesis of atherosclerosis and IHD. Bacterial DNA and host metabolites in higher concentrations appear to be detected.
Collapse
Affiliation(s)
- Agne Giedraitiene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Kornelija Kaminskaite
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Ugne Meskauskaite
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Svitlana Boieva
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Yu Ajima
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
- School of Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ieva Ciapiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Audrone Veikutiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu 13, LT 50161 Kaunas, Lithuania
| | - Nora Kupstyte-Kristapone
- Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT 44307 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu 13, LT 50161 Kaunas, Lithuania
| | - Dalia Luksiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Abdonas Tamosiunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania
| |
Collapse
|
8
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
9
|
Srivastava P, Nabeel PM, Raj KV, Soneja M, Chandran DS, Joseph J, Wig N, Jaryal AK, Thijssen D, Deepak KK. Baroreflex sensitivity is impaired in survivors of mild COVID-19 at 3-6 months of clinical recovery; association with carotid artery stiffness. Physiol Rep 2023; 11:e15845. [PMID: 37907363 PMCID: PMC10618071 DOI: 10.14814/phy2.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
The association between the stiffening of barosensitive regions of central arteries and the derangements in baroreflex functions remains unexplored in COVID-19 survivors. Fifty-seven survivors of mild COVID-19 (defined as presence of upper respiratory tract symptoms and/or fever without shortness of breath or hypoxia; SpO2 > 93%), with an age range of 22-66 years (27 females) participated at 3-6 months of recovering from the acute phase of RT-PCR positive COVID-19. Healthy volunteers whose baroreflex sensitivity (BRS) and arterial stiffness data were acquired prior to the onset of the pandemic constituted the control group. BRS was found to be significantly lower in the COVID survivor group for the systolic blood pressure-based sequences (BRSSBP ) [9.78 (7.16-17.74) ms/mmHg vs 16.5 (11.25-23.78) ms/mmHg; p = 0.0253]. The COVID survivor group showed significantly higher carotid β stiffness index [7.16 (5.75-8.18) vs 5.64 (4.34-6.96); (p = 0.0004)], and pulse wave velocity β (PWVβ ) [5.67 (4.96-6.32) m/s vs 5.12 (4.37-5.41) m/s; p = 0.0002]. BRS quantified by both the sequence and spectral methods showed an inverse correlation with PWVβ in the male survivors. Impairment of BRS in the male survivors of mild COVID-19 at 3-6 months of clinical recovery shows association with carotid artery stiffness.
Collapse
Affiliation(s)
- Prachi Srivastava
- Department of PhysiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - P. M. Nabeel
- Healthcare Technology Innovation CenterIndian Institute of TechnologyMadrasIndia
| | - Kiran V. Raj
- Department of Electrical EngineeringIndian Institute of TechnologyMadrasIndia
| | - Manish Soneja
- Department of MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Dinu S. Chandran
- Department of PhysiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Jayaraj Joseph
- Healthcare Technology Innovation CenterIndian Institute of TechnologyMadrasIndia
- Department of Electrical EngineeringIndian Institute of TechnologyMadrasIndia
| | - Naveet Wig
- Department of MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Ashok Kumar Jaryal
- Department of PhysiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Dick Thijssen
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
10
|
Greistorfer T, Jud P. Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases. Thromb Haemost 2023; 123:931-944. [PMID: 37172941 DOI: 10.1055/s-0043-1768969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.
Collapse
Affiliation(s)
- Thiemo Greistorfer
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Santoro L, Zaccone V, Falsetti L, Ruggieri V, Danese M, Miro C, Di Giorgio A, Nesci A, D’Alessandro A, Moroncini G, Santoliquido A. Role of Endothelium in Cardiovascular Sequelae of Long COVID. Biomedicines 2023; 11:2239. [PMID: 37626735 PMCID: PMC10452509 DOI: 10.3390/biomedicines11082239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The global action against coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, shed light on endothelial dysfunction. Although SARS-CoV-2 primarily affects the pulmonary system, multiple studies have documented pan-vascular involvement in COVID-19. The virus is able to penetrate the endothelial barrier, damaging it directly or indirectly and causing endotheliitis and multi-organ injury. Several mechanisms cooperate to development of endothelial dysfunction, including endothelial cell injury and pyroptosis, hyperinflammation and cytokine storm syndrome, oxidative stress and reduced nitric oxide bioavailability, glycocalyx disruption, hypercoagulability, and thrombosis. After acute-phase infection, some patients reported signs and symptoms of a systemic disorder known as long COVID, in which a broad range of cardiovascular (CV) disorders emerged. To date, the exact pathophysiology of long COVID remains unclear: in addition to the persistence of acute-phase infection mechanisms, specific pathways of CV damage have been postulated, such as persistent viral reservoirs in the heart or an autoimmune response to cardiac antigens through molecular mimicry. The aim of this review is to provide an overview of the main molecular patterns of enduring endothelial activation following SARS-CoV-2 infection and to offer the latest summary of CV complications in long COVID.
Collapse
Affiliation(s)
- Luca Santoro
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Vincenzo Zaccone
- Department of Emergency Medicine, Internal and Sub-Intensive Medicine, Azienda Ospedaliero-Universitaria delle Marche, 60126 Ancona, Italy
| | - Lorenzo Falsetti
- Clinica Medica, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.); (G.M.)
| | - Vittorio Ruggieri
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Martina Danese
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Chiara Miro
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.R.); (M.D.); (C.M.)
| | - Angela Di Giorgio
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Antonio Nesci
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Alessia D’Alessandro
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.); (G.M.)
| | - Angelo Santoliquido
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (L.S.); (A.D.G.); (A.N.); (A.D.); (A.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
12
|
Ghotbi Z, Estakhr M, Hosseini M, Shahripour RB. Cerebral Vasomotor Reactivity in COVID-19: A Narrative Review. Life (Basel) 2023; 13:1614. [PMID: 37511989 PMCID: PMC10381148 DOI: 10.3390/life13071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the respiratory system but can also lead to neurological complications. Among COVID-19 patients, the endothelium is considered the Achilles heel. A variety of endothelial dysfunctions may result from SARS-CoV-2 infection and subsequent endotheliitis, such as altered vascular tone, oxidative stress, and cytokine storms. The cerebral hemodynamic impairment that is caused is associated with a higher probability of severe disease and poor outcomes in patients with COVID-19. This review summarizes the most relevant literature on the role of vasomotor reactivity (VMR) in COVID-19 patients. An overview of the research articles is presented. Most of the studies have supported the hypothesis that endothelial dysfunction and cerebral VMR impairment occur in COVID-19 patients. Researchers believe these alterations may be due to direct viral invasion of the brain or indirect effects, such as inflammation and cytokines. Recently, researchers have concluded that viruses such as the Human Herpes Virus 8 and the Hantavirus predominantly affect endothelial cells and, therefore, affect cerebral hemodynamics. Especially in COVID-19 patients, impaired VMR is associated with a higher risk of severe disease and poor outcomes. Using VMR, one can gain valuable insight into a patient's disease progression and make more informed decisions regarding appropriate treatment options. A new pandemic may develop with the COVID-19 virus or other viruses, making it essential that healthcare providers and researchers remain focused on developing new strategies for improving survival in such patients, particularly those with cerebrovascular risk factors.
Collapse
Affiliation(s)
- Zahra Ghotbi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Mehrdad Estakhr
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Melika Hosseini
- Comprehensive Stroke Center, Department of Neurosciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Reza Bavarsad Shahripour
- Comprehensive Stroke Center, Department of Neurosciences, Loma Linda University, Loma Linda, CA 92354, USA
- UCSD Comprehensive Stroke Center, Department of Neurosciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Griffee MJ, Bozza PT, Reyes LF, Eddington DP, Rosenberger D, Merson L, Citarella BW, Fanning JP, Alexander PM, Fraser J, Dalton H, Cho SM. Thrombotic and hemorrhagic complications of COVID-19 in adults hospitalized in high-income countries compared with those in adults hospitalized in low- and middle-income countries in an international registry. Res Pract Thromb Haemost 2023; 7:102142. [PMID: 37601011 PMCID: PMC10439444 DOI: 10.1016/j.rpth.2023.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND COVID-19 has been associated with a broad range of thromboembolic, ischemic, and hemorrhagic complications (coagulopathy complications). Most studies have focused on patients with severe disease from high-income countries (HICs). OBJECTIVES The main aims were to compare the frequency of coagulopathy complications in developing countries (low- and middle-income countries [LMICs]) with those in HICs, delineate the frequency across a range of treatment levels, and determine associations with in-hospital mortality. METHODS Adult patients enrolled in an observational, multinational registry, the International Severe Acute Respiratory and Emerging Infections COVID-19 study, between January 1, 2020, and September 15, 2021, met inclusion criteria, including admission to a hospital for laboratory-confirmed, acute COVID-19 and data on complications and survival. The advanced-treatment cohort received care, such as admission to the intensive care unit, mechanical ventilation, or inotropes or vasopressors; the basic-treatment cohort did not receive any of these interventions. RESULTS The study population included 495,682 patients from 52 countries, with 63% from LMICs and 85% in the basic treatment cohort. The frequency of coagulopathy complications was higher in HICs (0.76%-3.4%) than in LMICs (0.09%-1.22%). Complications were more frequent in the advanced-treatment cohort than in the basic-treatment cohort. Coagulopathy complications were associated with increased in-hospital mortality (odds ratio, 1.58; 95% CI, 1.52-1.64). The increased mortality associated with these complications was higher in LMICs (58.5%) than in HICs (35.4%). After controlling for coagulopathy complications, treatment intensity, and multiple other factors, the mortality was higher among patients in LMICs than among patients in HICs (odds ratio, 1.45; 95% CI, 1.39-1.51). CONCLUSION In a large, international registry of patients hospitalized for COVID-19, coagulopathy complications were more frequent in HICs than in LMICs (developing countries). Increased mortality associated with coagulopathy complications was of a greater magnitude among patients in LMICs. Additional research is needed regarding timely diagnosis of and intervention for coagulation derangements associated with COVID-19, particularly for limited-resource settings.
Collapse
Affiliation(s)
- Matthew J. Griffee
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, USA
- ISARIC, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Institutio Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
| | - Devin P. Eddington
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | - Laura Merson
- ISARIC, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Peta M.A. Alexander
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Brisbane, Australia
| | - Heidi Dalton
- Pediatric Critical Care Medicine, Heart and Vascular Institute, Inova Fairfax Hospital, Annandale, Virginia, USA
| | - Sung-Min Cho
- Divisions of Neuroscience Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Jacob V, Lambour A, Swinyard B, Zerbib Y, Diouf M, Soudet S, Brochot E, Six I, Maizel J, Slama M, Guillaume N. Annexin-V positive extracellular vesicles level is increased in severe COVID-19 disease. Front Med (Lausanne) 2023; 10:1186122. [PMID: 37332749 PMCID: PMC10272544 DOI: 10.3389/fmed.2023.1186122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives To evaluate extracellular vesicles levels in a cohort of SARS-CoV-2's patients hospitalized in an intensive care unit with and without COVID-19 associated thromboembolic events. Methods In this study, we aim to assess endothelial and platelet membrane-derived extracellular vesicles levels in a cohort of SARS-CoV-2 patients with and without COVID-19-associated thromboembolic events who were hospitalized in an intensive care unit. Annexin-V positive extracellular vesicles levels were prospectively assessed by flow cytometry in one hundred twenty-three critically ill adults diagnosed with acute respiratory distress syndrome associated with a SARS-CoV-2 infection, ten adults diagnosed for moderate SARS-CoV-2 infection and 25 healthy volunteers. Results On our critically ill patients, thirty-four patients (27.6%) had a thromboembolic event, Fifty-three (43%) died. Endothelial and platelet membrane-derived extracellular vesicles were drastically increased in SARS-CoV-2 patients hospitalized in the ICU compared to healthy volunteers. Moreover a slighty higher small/large ratio for platelets membrane-derived extracellular vesicles in patients was linked to thrombo-embolic events. Conclusion A comparison between total annexin-V positive extracellular vesicles levels in severe and moderate SARS-CoV-2 infection and healthy controls showed a significant increase in patients with severe infection and their sizes could be considered as biomarkers of SARS-CoV-2 associated thrombo-embolic events.
Collapse
Affiliation(s)
- Valentine Jacob
- Department of Human Biology Center, Amiens University Medical Center, Amiens, France
- EA HEMATIM 4666, Jules Verne University of Picardie, Amiens, France
| | - Alexis Lambour
- Department of Medical Intensive Care Unit, Amiens University Medical Center, Amiens, France
| | - Benjamin Swinyard
- Department of Medical Intensive Care Unit, Amiens University Medical Center, Amiens, France
| | - Yoann Zerbib
- Department of Medical Intensive Care Unit, Amiens University Medical Center, Amiens, France
| | - Momar Diouf
- Department of Statistics, Amiens University Medical Center, Amiens, France
| | - Simon Soudet
- Department of Vascular Medicine, Amiens University Medical Center, Amiens, France
| | - Etienne Brochot
- Department of Human Biology Center, Amiens University Medical Center, Amiens, France
- AGIR Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Julien Maizel
- Department of Medical Intensive Care Unit, Amiens University Medical Center, Amiens, France
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Michel Slama
- Department of Medical Intensive Care Unit, Amiens University Medical Center, Amiens, France
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Nicolas Guillaume
- Department of Human Biology Center, Amiens University Medical Center, Amiens, France
- EA HEMATIM 4666, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
15
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
16
|
Maruhashi T, Higashi Y. Current topic of vascular function in hypertension. Hypertens Res 2023; 46:630-637. [PMID: 36604472 PMCID: PMC9813887 DOI: 10.1038/s41440-022-01147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Vascular function assessment is useful for the evaluation of atherosclerosis severity, which may provide additional information for cardiovascular risk stratification. In addition, vascular function assessment is helpful for a better understanding of pathophysiological associations between vascular dysfunction and cardiometabolic disorders. In 2020 and 2021, although coronavirus disease 2019 (COVID-19) was still a worldwide challenge for health care systems, many excellent articles regarding vascular function were published in Hypertension Research and other major cardiovascular and hypertension journals. In this review, we summarize new findings on vascular function and discuss the association between vascular function and COVID-19, the importance of lifestyle modifications for the maintenance of vascular function, and the usefulness of vascular function tests for cardiovascular risk assessment. We hope this review will be helpful for the management of cardiovascular risk factors, including hypertension and cardiovascular diseases, in clinical practice.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
17
|
Cardiovascular and Renal Comorbidities Included into Neural Networks Predict the Outcome in COVID-19 Patients Admitted to an Intensive Care Unit: Three-Center, Cross-Validation, Age- and Sex-Matched Study. J Cardiovasc Dev Dis 2023; 10:jcdd10020039. [PMID: 36826535 PMCID: PMC9967447 DOI: 10.3390/jcdd10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Here, we performed a multicenter, age- and sex-matched study to compare the efficiency of various machine learning algorithms in the prediction of COVID-19 fatal outcomes and to develop sensitive, specific, and robust artificial intelligence tools for the prompt triage of patients with severe COVID-19 in the intensive care unit setting. In a challenge against other established machine learning algorithms (decision trees, random forests, extra trees, neural networks, k-nearest neighbors, and gradient boosting: XGBoost, LightGBM, and CatBoost) and multivariate logistic regression as a reference, neural networks demonstrated the highest sensitivity, sufficient specificity, and excellent robustness. Further, neural networks based on coronary artery disease/chronic heart failure, stage 3-5 chronic kidney disease, blood urea nitrogen, and C-reactive protein as the predictors exceeded 90% sensitivity and 80% specificity, reaching AUROC of 0.866 at primary cross-validation and 0.849 at secondary cross-validation on virtual samples generated by the bootstrapping procedure. These results underscore the impact of cardiovascular and renal comorbidities in the context of thrombotic complications characteristic of severe COVID-19. As aforementioned predictors can be obtained from the case histories or are inexpensive to be measured at admission to the intensive care unit, we suggest this predictor composition is useful for the triage of critically ill COVID-19 patients.
Collapse
|
18
|
Asif S, Frithiof R, Larsson A, Franzén S, Anderberg SB, Kristensen B, Hultström M, Lipcsey M. Immuno-Modulatory Effects of Dexamethasone in Severe COVID-19-A Swedish Cohort Study. Biomedicines 2023; 11:biomedicines11010164. [PMID: 36672672 PMCID: PMC9855905 DOI: 10.3390/biomedicines11010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Dexamethasone (Dex) has been shown to decrease mortality in severe coronavirus disease 2019 (COVID-19), but the mechanism is not fully elucidated. We aimed to investigate the physiological and immunological effects associated with Dex administration in patients admitted to intensive care with severe COVID-19. A total of 216 adult COVID-19 patients were included-102 (47%) received Dex, 6 mg/day for 10 days, and 114 (53%) did not. Standard laboratory parameters, plasma expression of cytokines, endothelial markers, immunoglobulin (Ig) IgA, IgM, and IgG against SARS-CoV-2 were analyzed post-admission to intensive care. Patients treated with Dex had higher blood glucose but lower blood lactate, plasma cortisol, IgA, IgM, IgG, D-dimer, cytokines, syndecan-1, and E-selectin and received less organ support than those who did not receive Dex (Without-Dex). There was an association between Dex treatment and IL-17A, macrophage inflammatory protein 1 alpha, syndecan-1 as well as E-selectin in predicting 30-day mortality. Among a subgroup of patients who received Dex early, within 14 days of COVID-19 debut, the adjusted mortality risk was 0.4 (95% CI 0.2-0.8), i.e., 40% compared with Without-Dex. Dex administration in a cohort of critically ill COVID-19 patients resulted in altered immunological and physiologic responses, some of which were associated with mortality.
Collapse
Affiliation(s)
- Sana Asif
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| | - Robert Frithiof
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Stephanie Franzén
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Sara Bülow Anderberg
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | | | - Michael Hultström
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Unit for Integrative Physiology, Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
19
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
20
|
Shibuya M, Togashi N, Inui T, Okubo Y, Endo W, Miyabayashi T, Sato R, Takezawa Y, Kodama K, Ikeda M, Kawashima A, Haginoya K. Multiple Cerebral Hemorrhages and White Matter Lesions Developing after Severe hMPV Pneumonia in a Patient with Trisomy 13: A Case Report and Review of the Literature. TOHOKU J EXP MED 2022; 258:49-54. [PMID: 35793947 DOI: 10.1620/tjem.2022.j056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | - Ryo Sato
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Yusuke Takezawa
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | | |
Collapse
|