1
|
Xu XT, Jiang MJ, Fu YL, Xie F, Li JJ, Meng QH. Incidence and efficacy of strategies for preventing hepatic encephalopathy following transjugular intrahepatic portosystemic shunt: A meta-analysis. World J Hepatol 2025; 17:104890. [DOI: 10.4254/wjh.v17.i4.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a primary complication following transjugular intrahepatic portosystemic shunt (TIPS), but the utility of pharmacological prophylaxis for HE is unclear.
AIM To assess the HE incidence post-TIPS across various groups and the prophylactic efficacies of various medications.
METHODS A thorough literature search was performed in PubMed, Web of Science, EMBASE, and the Cochrane Library databases from their inception to November 24, 2024, to collect data regarding HE incidence. The main outcome was HE incidence post-TIPS. A meta-analysis using a random effects model was performed to obtain odds ratios (ORs) and 95% confidence intervals. Statistical analyses were conducted using Stata and RevMan software.
RESULTS This meta-analysis included nine studies with 1140 patients; 647 received pharmacological agents including lactulose, rifaximin, albumin, and l-ornithin-l-aspartate, and 493 did not (controls). (1) In the single-group meta-analysis, the control group had higher short- and long-term HE rates than the drug intervention group. Among patients with and without prior HE, the non-intervention group's HE rates were also higher; (2) Pharmacological prevention post-TIPS significantly reduced HE incidence [OR = 0.59 (0.45, 0.77), P = 0.0001]. Compared with the no prophylaxis, rifaximin reduced the risk of HE after TIPS [OR = 0.52 (0.29, 0.95), P = 0.03], but lactulose did not; (3) In patients without prior HE, pharmacological prevention significantly reduced post-TIPS HE incidence [OR = 0.62 (0.41,0.95), P = 0.03]; and (4) Network meta-analysis showed no significant differences among five prevention strategies.
CONCLUSION The HE incidence after TIPS was relatively high, and the use of drugs after TIPS may reduce the HE incidence. However, research, especially large-scale randomized controlled trials, is still lacking.
Collapse
Affiliation(s)
- Xiao-Tong Xu
- Hepatic Disease and Oncology Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Min-Jie Jiang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yun-Lai Fu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jian-Jun Li
- Hepatic Disease and Oncology Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Hepatic Disease and Oncology Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Ren C, Cha L, Huang SY, Bai GH, Li JH, Xiong X, Feng YX, Feng DP, Gao L, Li JY. Dysregulation of bile acid signal transduction causes neurological dysfunction in cirrhosis rats. World J Hepatol 2025; 17:101340. [PMID: 40177200 PMCID: PMC11959655 DOI: 10.4254/wjh.v17.i3.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/19/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The pathogenesis of hepatic encephalopathy (HE) remains unclear, and the classical theory of ammonia toxicity lacks sufficient justification. AIM To investigate the potential of bile acids as intervention targets for HE. METHODS This study employed 42 wild-type male SD rats weighing 200 ± 20 g. Using a random number table method, two rats were randomly selected to undergo common bile duct ligation (BDL). The remaining 40 rats were randomly assigned to four groups serving as controls: The vehicle + control diet (VC) group, the thioacetamide (TAA) group, the TAA + total bile acids (TAAT) group, and the TAA + cholestyramine (TAAC) group. Except for the VC group, all rats were intraperitoneally injected with 100 mg/kg TAA solution once daily for ten consecutive days to establish a HE model. Simultaneously, the TAAT and TAAC groups were administered a diet containing 0.3% bile acids (derived from BDL rats) and 2% cholestyramine, respectively, by gavage for ten days. For the BDL rat model group, the common BDL procedure was performed following the aforementioned protocol. After four weeks, laparotomy revealed swollen bile ducts at the ligation site, and bile was collected. Following successful modeling, behavioral tests, including the elevated plus maze and open field test, were conducted to assess the HE status of the rats. Peripheral blood, liver, and cerebral cortex tissue samples were collected, and the total bile acid content in the serum and cerebral cortex was measured using an enzyme cycling method. The levels of inflammatory factors in the serum and cerebral cortex were analyzed using enzyme-linked immunosorbent assay. Liver histological examination was performed using the hematoxylin-eosin double-labeling method. Reverse transcription polymerase chain reaction, western blot, immunohistochemistry, and other techniques were employed to observe the expression of microglial activation marker ionized calcium-binding adaptor molecule-1 and Takeda G protein-coupled receptor 5 (TGR5) protein. RESULTS Compared to the VC group, the TAA group exhibited an exacerbation of HE in rats. The total bile acid content, pro-inflammatory factors [interleukin-1β (IL-1β), IL-6], and the anti-inflammatory factor IL-10 in both the serum and cerebral cortex were significantly elevated. Similarly, the expression of the TGR5 receptor in the cerebral cortex was upregulated. To investigate the impact of total bile acids on HE in rats, comparisons were made with the TAA group. In the TAAT group, the severity of HE was further aggravated, accompanied by increased total bile acid content in the serum and cerebral cortex, elevated pro-inflammatory factors (IL-1β, IL-6), reduced levels of the anti-inflammatory factor IL-10, and decreased expression of the TGR5 receptor in the cerebral cortex. In the TAAC group, the severity of HE was alleviated. This group showed reductions in total bile acid content in the serum and cerebral cortex, decreased pro-inflammatory factors (IL-1β, IL-6), increased levels of the anti-inflammatory factor IL-10, and enhanced expression of the TGR5 receptor in the cerebral cortex. CONCLUSION This study demonstrated that the total bile acid content in the serum and cerebral cortex of TAA-induced liver cirrhosis rats was elevated. Furthermore, total bile acids exacerbate the progression of HE in rats. This effect may be attributed to bile acids' involvement in the development of neurological dysfunction by mediating TGR5 expression and regulating neuroinflammation.
Collapse
Affiliation(s)
- Chao Ren
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Li Cha
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Yue Huang
- Department of Ultrasound, Qingdao Central Hospital, University of Health and Rehabilitation, Qingdao 266000, Shandong Province, China
| | - Guo-Hui Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Hui Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xin Xiong
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yu-Xing Feng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Dui-Ping Feng
- Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Long Gao
- Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| | - Jin-Yu Li
- Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
3
|
Xu X, Zhu T, Jing C, Jiang M, Fu Y, Xie F, Meng Q, Li J. Hepatic encephalopathy treatment after transjugular intrahepatic portosystemic shunt: a new perspective on the gut microbiota. Front Med (Lausanne) 2025; 12:1423780. [PMID: 40124683 PMCID: PMC11926149 DOI: 10.3389/fmed.2025.1423780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) placement alleviates portal hypertension symptoms. Hepatic encephalopathy (HE) is a common complication of TIPS, impacting patient quality of life and the healthcare burden. Post-TIPS HE is associated with portosystemic shunting, elevated blood ammonia levels, and inflammation. Increasing attention has been given to the liver and intestinal circulation in recent years. An imbalance in intestinal microecology plays a role in the occurrence of HE and may be a new target for treatment. This review discusses the causes, diagnosis, and treatment strategies for post-TIPS HE and focuses on exploring treatment strategies and their relationships with the gut microbiota, suggesting an innovative approach to address this complication.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhu
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Changyou Jing
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Minjie Jiang
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yunlai Fu
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qinghua Meng
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jianjun Li
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhang JG, Wang YW, Wang QY, Wen B. Clinical features and risk factors for combined Klebsiella pneumoniae infection in patients with liver cirrhosis. World J Hepatol 2025; 17:103648. [PMID: 40027572 PMCID: PMC11866142 DOI: 10.4254/wjh.v17.i2.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
This article discusses the findings presented by Zhang et al. They analyzed the risk factors and clinical characteristics associated with Klebsiella pneumoniae infection in patients with liver cirrhosis treated at a hospital in Beijing. In this article, we focus on the connection between chronic kidney disease and the intestinal microbiota, and propose microbiota transplantation as a potential treatment for this patient group. We also examine an intriguing phenomenon related to hepatic encephalopathy, and provide insights into the future research.
Collapse
Affiliation(s)
- Jian-Guo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Yan-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Qiong-Ya Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China.
| |
Collapse
|
5
|
Zhan L, Yang Y, Nie B, Kou Y, Du S, Tian Y, Huang Y, Ye R, Huang Z, Luo B, Ge L, Ye S. A prolonged activated partial thromboplastin time indicates poor short-term prognosis in patients with hepatic encephalopathy: insights from the MIMIC database. Front Med (Lausanne) 2025; 12:1514327. [PMID: 40018344 PMCID: PMC11865095 DOI: 10.3389/fmed.2025.1514327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Objectives This study investigates serum markers for short-term prognosis in hepatic encephalopathy patients. Background Patients with hepatic encephalopathy face elevated mortality rates and bleak prognoses. However, effective prognostic models or indicators are lacking. This study aims to explore serum markers for predicting short-term prognosis in these patients. Methods We conducted a retrospective analysis of 552 patients with hepatic encephalopathy, categorizing 429 individuals meeting exclusion criteria into normal and high activated partial thromboplastin time (APTT) groups. We assessed 12-day and 25-day survival rates using Kaplan-Meier analysis and Cox regression models to examine associations between groups and outcomes. Results Upon comparing baseline characteristics, the high APTT group exhibited significant disparities in acute kidney injury, sepsis, coagulation disorders, and ascites (p < 0.05). In the multivariate COX regression model, the hazard ratios [HRs; 95% confidence interval (CI)] of 12- and 25-day mortality were 1.012 (1.001, 1.022, p = 0.033) and 1.010 (1.002, 1.018, p = 0.013), respectively. We discovered that APTT demonstrated an independent association with prognosis. Our findings revealed that the ability of APTT to predict short-term prognosis surpasses that of the traditional MELD model. Regarding 12- and 25-day survival, Kaplan-Meier survival curves from these groups demonstrated a lower survival probability for patients in the high APTT group than the normal group (log-rank p < 0.05). The results of subgroup analysis and interaction analysis indicate that APTT is not influenced by other confounding factors. Conclusion A prolonged APTT suggests a poorer short-term prognosis in patients with hepatic encephalopathy.
Collapse
Affiliation(s)
- Liping Zhan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Biao Nie
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yanqi Kou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Shenshen Du
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Huanghe Sanmenxia Hospital, Sanmenxia, China
| | - Yuan Tian
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Yujie Huang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ruyin Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhe Huang
- Department of Colorectal Surgery, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Botao Luo
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Lei Ge
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Xu XT, Jiang MJ, Fu YL, Xie F, Li JJ, Meng QH. Gut microbiome composition in patients with liver cirrhosis with and without hepatic encephalopathy: A systematic review and meta-analysis. World J Hepatol 2025; 17:100377. [PMID: 39871903 PMCID: PMC11736471 DOI: 10.4254/wjh.v17.i1.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The gut microbiome is associated with hepatic encephalopathy (HE), but research results on the gut microbiome characteristics of patients with liver cirrhosis with and without HE are inconsistent. AIM To study the gut microbiota characteristics of patients with liver cirrhosis with and without HE. METHODS We searched the PubMed, Web of Science, EMBASE, and Cochrane databases using two keywords, HE, and gut microbiome. According to the inclusion and exclusion criteria, suitable literature was screened to extract data on the diversity and composition of the fecal microbiota in patients with liver cirrhosis with and without HE. The data were analyzed using RevMan and STATA. RESULTS Seventeen studies were included: (1) A meta-analysis of 7 studies revealed that the Shannon index in liver cirrhosis patients with HE was significantly lower than that in patients without HE [-0.20, 95% confidence interval (CI): -0.28 to -0.13, I2 = 20%]; (2) The relative abundances of Lachnospiraceae (-2.73, 95%CI: -4.58 to -0.87, I2 = 38%) and Ruminococcaceae (-2.93, 95%CI: -4.29 to -1.56, I2 = 0%) in liver cirrhosis patients with HE was significantly lower than those in patients without HE; (3) In patients with HE, Enterococcus, Proteobacteria, Enterococcaceae, and Enterobacteriaceae proportions increased, but Ruminococcaceae, Lachnospiraceae, Prevotellaceae, and Bacteroidetes proportions decreased; (4) Differences in the fecal metabolome between liver cirrhosis patients with and without HE were detected; and (5) Differential gut microbiomes may serve as diagnostic and prognostic tools. CONCLUSION The gut microbiomes of patients with liver cirrhosis with and without HE differ. Some gut microbiomes may distinguish liver cirrhosis patients with or without HE and determine patient prognosis.
Collapse
Affiliation(s)
- Xiao-Tong Xu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Min-Jie Jiang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Yun-Lai Fu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Jian-Jun Li
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Interventional Therapy Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Cordova-Gallardo J, Vargas-Beltran AM, Armendariz-Pineda SM, Ruiz-Manriquez J, Ampuero J, Torre A. Brain reserve in hepatic encephalopathy: Pathways of damage and preventive strategies through lifestyle and therapeutic interventions. Ann Hepatol 2024; 30:101740. [PMID: 39615628 DOI: 10.1016/j.aohep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
Brain reserve is an important concept to understand the variability of damage associated with brain-related diseases and includes the adaptation of cognitive processes to preserve brain function. A good cognitive reserve might delay the onset of clinical manifestations of neurodegenerative diseases as well as hepatic encephalopathy, improving the quality of life in patients with chronic liver diseases. By stimulating activities and maintaining overall health, individuals may be able to enhance their brain's resilience to age-related changes and pathology. This review aims to collect all the data available on the role of brain reserve in hepatic encephalopathy development, and the potential effect of a good brain reserve in slowing down hepatic encephalopathy progression and frequency.
Collapse
Affiliation(s)
- Jacqueline Cordova-Gallardo
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine. National Autonomous University of Mexico, 04360 Mexico City, Mexico.
| | - Andres Manuel Vargas-Beltran
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine, Meritorious Autonomous University of Puebla, 72420 Puebla, Mexico.
| | - Samantha Melanie Armendariz-Pineda
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine. National Autonomous University of Mexico, 04360 Mexico City, Mexico.
| | - Jesus Ruiz-Manriquez
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico
| | - Javier Ampuero
- Unit for the Clinical Management of Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Sevilla (IBIS) University of Sevilla, 41013 Sevilla, Spain.
| | - Aldo Torre
- Metabolic Unit. National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080 Mexico City, Mexico; Guest Researcher Hepatology, General Hospital of Mexico, Mexico City, Mexico; Gastroenterology Department, ABC Hospital, Mexico City, Mexico.
| |
Collapse
|
8
|
Cheng J, Sun GX, Cai LY, Tang QQ. Exploring pathogenic mechanism and nutritional treatment strategies for hepatic encephalopathy based on the gut-liver axis theory. Shijie Huaren Xiaohua Zazhi 2024; 32:793-796. [DOI: 10.11569/wcjd.v32.i11.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatic encephalopathy (HE) is a common and serious complication of chronic liver disease patients with complex pathogenesis and limited treatment methods. At present, the treatment strategy mainly focuses on prevention and nutritional support, but there exists certain contradiction between the metabolic needs of HE patients and nutritional treatment. In particular, the balance of ammonia intake and tissue metabolism needs has become the key to controlling the onset of HE and avoiding the vicious cycle. The gut-liver axis theory reveals the two-way interaction between the intestinal microbiota and the liver, providing a new perspective for the prevention and treatment of HE. This paper comprehensively analyses the signal transduction and related biomarkers of the microbiota in the intestinal-liver circulation, and discusses the regulation of the intestinal microbiota, the enhancement of intestinal barrier function, and the optimisation of the absorption and metabolism of nutrients, in order to reduce the occurrence of HE and provide a new treatment direction for the clinical management of HE.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of North China University of Technology, Tangshan 063000, Hebei Province, China
| | - Guo-Xin Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of North China University of Technology, Tangshan 063000, Hebei Province, China
| | - Li-Ying Cai
- Department of Gastrointestinal Surgery, Affiliated Hospital of North China University of Technology, Tangshan 063000, Hebei Province, China
| | - Qi-Qun Tang
- North China University of Science and Technology, Tangshan 063210, Hebei Province, China
| |
Collapse
|
9
|
Lapenna L, Di Cola S, Merli M. The crucial role of risk factors when dealing with hepatic Encephalopathy. Metab Brain Dis 2024; 40:29. [PMID: 39570425 DOI: 10.1007/s11011-024-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Hepatic encephalopathy (HE) is a common condition in patients with cirrhosis, representing the second most frequent cause of decompensation. Approximately 30-40% of patients with cirrhosis will experience overt HE during the clinical course of their illness. In most cases, it is possible to identify a precipitating or risk factor for HE. These are distinct concepts that play different roles in the development of this condition. While precipitating factors act acutely, risk factors are generally present over an extended period and contribute to the overall likelihood of developing HE. The two types of factors require different approaches, with risk factors being more susceptible to prevention. The aim of this review is to describe the most important risk factors (such as severity of liver disease, previous episode of HE, minimal/covert HE, spontaneous and iatrogenic shunt, malnutrition, chronic therapies, metabolic diseases) for the development of HE and how to prevent it.
Collapse
Affiliation(s)
- Lucia Lapenna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Di Cola
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Manuela Merli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Huang J, Xu T, Quan G, Li Y, Yang X, Xie W. Current progress on the microbial therapies for acute liver failure. Front Microbiol 2024; 15:1452663. [PMID: 39479215 PMCID: PMC11521890 DOI: 10.3389/fmicb.2024.1452663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Acute liver failure (ALF), associated with a clinical fatality rate exceeding 80%, is characterized by severe liver damage resulting from various factors in the absence of pre-existing liver disease. The role of microbiota in the progression of diverse liver diseases, including ALF, has been increasingly recognized, with the interactions between the microbiota and the host significantly influencing both disease onset and progression. Despite growing interest in the microbiological aspects of ALF, comprehensive reviews remain limited. This review critically examines the mechanisms and efficacy of microbiota-based treatments for ALF, focusing on their role in prevention, treatment, and prognosis over the past decade.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyu Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiao Quan
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuange Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Guangzhou Health Science College, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Leitner U, Brits A, Xu D, Patil S, Sun J. Efficacy of probiotics on improvement of health outcomes in cirrhotic liver disease patients: A systematic review and meta-analysis of randomised controlled trials. Eur J Pharmacol 2024; 981:176874. [PMID: 39121983 DOI: 10.1016/j.ejphar.2024.176874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Liver cirrhosis is a chronic condition of the liver and is the 14th most common cause of death around the world; yet it remains an incurable disease. Probiotics have gained significant popularity as a potential treatment option for liver cirrhosis. METHODS A systematic review and meta-analysis was conducted to assess the effects of probiotics on liver cirrhosis. PubMed, Scopus, Cochrane Central Register for Controlled Trials (CENTRAL) and ProQuest Dissertation and Thesis were searched from 2000 to January 2024 for studies that evaluated the effects of probiotics on a variety of outcomes of liver disease. RESULTS A total of 22 randomised controlled trial studies were included in the meta-analysis. Probiotics significantly decreased Gamma-glutamyl transferase (effect size: 0.307, p = 0.024, 95% CI [-0.572, -0.040]) and Aspartate aminotransferase (p = 0.013, 95% CI [-17.927, -2.128]). Significant reduction in serum ammonia levels (effect size = -1.093, p = 0.000, 95% CI [-1.764, -0.423]) and endotoxin levels (effect size = -0.961, p = 0.000, 95% CI [-1.537, -0.385]) were also found. SUMMARY Overall probiotics could be recommended as a potential adjunct therapy for patients with cirrhosis, as they appear to have some benefit in improving liver function, and are well tolerated with minimal adverse effects. More comprehensive research with larger sample sizes is recommended to understand more about the widespread effects of probiotic use.
Collapse
Affiliation(s)
- Unnah Leitner
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215. Australia
| | - Anita Brits
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215. Australia
| | - Dawei Xu
- Rural Health Research Institute, Charles Sturt University, New South Wales, NSW 2800, Australia; School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215. Australia
| | - Sasha Patil
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215. Australia
| | - Jing Sun
- Rural Health Research Institute, Charles Sturt University, New South Wales, NSW 2800, Australia; School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215. Australia.
| |
Collapse
|
12
|
Yang Z, Liu S, Wei F, Hu J. The effects of Qingchang Ligan formula on hepatic encephalopathy in mouse model: results from gut microbiome-metabolomics analysis. Front Cell Infect Microbiol 2024; 14:1381209. [PMID: 39220284 PMCID: PMC11362135 DOI: 10.3389/fcimb.2024.1381209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hepatic encephalopathy (HE) is a neurological disorder resulting from advanced liver injury. HE has a high mortality rate and poor prognosis. The pathogenesis of HE is still unclear, which has led to the lack of a satisfactory specific treatment method. There is increasing evidence that the intestinal flora affects the communication between the gut and the brain in the pathogenesis of HE. Adjusting the intestinal flora has had a beneficial effect on HE in recent studies, and the Qingchang Ligan formula (QCLG) has been shown in previous studies to regulate intestinal flora and metabolites. In this study, we established a thioacetamide-induced HE mouse model to evaluate the protective effect of QCLG on HE and explore its potential mechanism, which also demonstrated that intestinal flora dysbiosis is involved in the pathogenesis of HE. Methods Mice were intraperitoneally injected with thioacetamide (TAA, 150 mg/kg) to induce HE. Additionally, they were orally administered Qingchang Ligan Formula (QCLG) at a dose of 6.725 g/kg·d for seven days, while control mice received an equal volume of saline via gavage. Subsequently, samples were subjected to 16S ribosomal ribonucleic acid (rRNA) gene sequencing, high-performance liquid chromatography-mass spectrometry (LC-MS), and RNA-sequencing (RNA-seq) analysis. Result QCLG improved weight loss, cognitive impairment, neurological function scores, blood ammonia, and brain gene expression of interleukin-6 (TNF-α), Interleukin-1β (IL-1β), and interleukin-6 (IL-6) induced by HE. Moreover, QCLG increased the levels of liver function indicators, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum TNF-α, IL-1β, and IL-6. 16S RNA sequencing revealed increased Oscillibacter, Colidextribacter, and Helicobacter in TAA-induced mouse fecal samples. Also, the abundance of Bifidobacterium decreases TAA-induced mouse fecal samples. In contrast, QCLG treatment significantly restored the gut microbial community. Metabolomics indicated significant differences in some metabolites among the normal control, treatment, and model groups, including 5-methoxytryptophan, Daidzein, Stercobilin, and Plumieride (PLU). Conclusion QCLG can alleviate neuroinflammation and prevent HE caused by liver injury by regulating intestinal flora in mouse models.
Collapse
Affiliation(s)
- Ziwei Yang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuhui Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jianhua Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Tong XY, Hussain H, Shamaladevi N, Norenberg MD, Fadel A, El Hiba O, Abdeljalil EG, Bilal EM, Kempuraj D, Natarajan S, Schally AV, Jaszberenyi M, Salgueiro L, Paidas MJ, Jayakumar AR. Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol. BIOLOGY 2024; 13:228. [PMID: 38666840 PMCID: PMC11048384 DOI: 10.3390/biology13040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Hepatic encephalopathy (HE) is a neurological condition linked to liver failure. Acute HE (Type A) occurs with acute liver failure, while chronic HE (Type C) is tied to cirrhosis and portal hypertension. HE treatments lag due to gaps in understanding its development by gender and age. We studied how sex and age impact HE and its severity with combined liver toxins. Our findings indicate that drug-induced (thioacetamide, TAA) brain edema was more severe in aged males than in young males or young/aged female rats. However, adding alcohol (ethanol, EtOH) worsens TAA's brain edema in both young and aged females, with females experiencing a more severe effect than males. These patterns also apply to Type A HE induced by azoxymethane (AZO) in mice. Similarly, TAA-induced behavioral deficits in Type C HE were milder in young and aged females than in males. Conversely, EtOH and TAA in young/aged males led to severe brain edema and fatality without noticeable behavioral changes. TAA metabolism was slower in aged males than in young or middle-aged rats. When TAA-treated aged male rats received EtOH, there was a slow and sustained plasma level of thioacetamide sulfoxide (TASO). This suggests that with EtOH, TAA-induced HE is more severe in aged males. TAA metabolism was similar in young, middle-aged, and aged female rats. However, with EtOH, young and aged females experience more severe drug-induced HE as compared to middle-aged adult rats. These findings strongly suggest that gender and age play a role in the severity of HE development and that the presence of one or more liver toxins may aggravate the severity of the disease progression.
Collapse
Affiliation(s)
- Xiao Y. Tong
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (X.Y.T.); (M.D.N.)
| | - Hussain Hussain
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA;
| | | | - Michael D. Norenberg
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (X.Y.T.); (M.D.N.)
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Aya Fadel
- Department of Internal Medicine, Ocean Medical Center-Hackensack Meridian Health, Brick, NJ 08724, USA;
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology, Health, and Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (O.E.H.); (E.-M.B.)
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - El got Abdeljalil
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - El-Mansoury Bilal
- Laboratory of Anthropogenic, Biotechnology, Health, and Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (O.E.H.); (E.-M.B.)
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - Deepak Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
| | - Sampath Natarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Andrew V. Schally
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Pathology, Laboratory Medicine, Endocrine, Polypeptide and Cancer Institute, Department of Veterans Affairs, Miami, FL 33125, USA
| | - Miklos Jaszberenyi
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Luis Salgueiro
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arumugam R. Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
15
|
Yang X, Lei L, Shi W, Li X, Huang X, Lan L, Lin J, Liang Q, Li W, Yang J. Probiotics are beneficial for liver cirrhosis: a systematic review and meta-analysis of randomized control trials. Front Med (Lausanne) 2024; 11:1379333. [PMID: 38618195 PMCID: PMC11010643 DOI: 10.3389/fmed.2024.1379333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Gut dysbiosis may play a pivotal role in the pathogenesis of cirrhosis and the severity of complications. Numerous studies have investigated the probiotics as treatments for cirrhosis. However, there is still a lack of definitive evidence confirming the beneficial effects of probiotics on cirrhosis. Methods Databases including PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched for randomized controlled trials that compared the effects of probiotic intervention and control treatments, including placebo, no treatment, and active control, on cirrhosis, published from inception to February 2024. Outcomes included hepatic encephalopathy (HE) reversal, safety and tolerability of probiotics, liver function, quality of life, and other cirrhotic-related outcomes. A meta-analysis was conducted to synthesize evidence. Results Thirty studies were included. The quantitative synthesis results showed that compared with the control group, probiotics significantly reverse minimal hepatic encephalopathy (MHE) (risk ratio [RR] 1.54, 95% confidence interval [CI] 1.03 to 2.32) and improve HE (RR 1.94, 95% CI 1.24 to 3.06). Additionally, probiotics demonstrated higher safety and tolerability by causing a lower incidence of serious adverse events (RR 0.71, 95% CI 0.58 to 0.87). Probiotics could potentially improve liver function by reducing the Model for End-Stage Liver Disease (MELD) scores (standardized mean difference [SMD] -0.57, 95% CI -0.85 to -0.30), and displayed favorable changes in quality of life (SMD 0.51, 95% CI 0.27 to 0.75) and gut flora (SMD 1.67, 95% CI 1.28 to 2.06). Conclusion This systematic review and meta-analysis offers compelling evidence that probiotics are beneficial for cirrhosis by demonstrating reversal of HE, potential for liver function improvements, enhancements in quality of life, and regulation of gut dysbiosis. Furthermore, the apparent safety profile suggests that probiotics are a promising intervention for treating cirrhosis. Clinical trial registration number CRD42023478380.
Collapse
Affiliation(s)
- Xing Yang
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Langhuan Lei
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Shi
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaozhen Li
- Health Management Center, People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaozhi Huang
- Health Management Center, People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Liuyan Lan
- Office of Hospital Quality and Safety Management Committee, People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Jiali Lin
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Qiuyu Liang
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Li
- Health Management Center, People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Health Management Research Institute, People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
16
|
Nadinskaia MY, Maevskaya MV, Bakulin IG, Bessonova EN, Bueverov AO, Zharkova MS, Okovityi SV, Ostrovskaya AS, Gulyaeva KA, Ivashkin VT. Diagnostic and Prognostic Value of Hyperammonemia in Patients with Liver Cirrhosis, Hepatic Encephalopathy, and Sarcopenia (Experts’ Agreement). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:85-100. [DOI: 10.22416/1382-4376-2024-34-1-85-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction. In cirrhotic patients, hyperammonemia develops due to impaired ammonia detoxification and portosystemic blood shunting and is most commonly associated with hepatic encephalopathy and sarcopenia. Currently, there are questions regarding the diagnosis of hyperammonemia and the effect of ammonia-lowering therapy on disease outcomes.Materials and methods. The Russian Scientific Liver Society selected a panel of seven experts in liver cirrhosis research and management of patients with this disease to make reasoned statements and recommendations on the issue of diagnostic and prognostic value of hyperammonemia in patients with liver cirrhosis, hepatic encephalopathy and sarcopenia.Results. The Delphi panel identified the most relevant topics, in the form of PICO questions (patient or population, intervention, comparison, outcome). The Delphi panel made six questions relevant to clinical practice and gave reasoned answers, framed as ‘clinical practice recommendations and statements’ with evidence-based comments. The questions and statements were based on the search and critical analysis of medical literature by keywords in Englishand Russian-language databases. The formulated questions could be combined into four categories: hepatic encephalopathy, sarcopenia, hyperammonemia, and ammonia-lowering therapy.Conclusions. The results of the experts' work are directly relevant to the quality management of patients with liver cirrhosis, and their recommendations and statements can be used in clinical practice.
Collapse
Affiliation(s)
- M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | | | - A. O. Bueverov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
M.F. Vladimirsky Moscow Regional Research and Clinical Institute
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - A. S. Ostrovskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. A. Gulyaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
17
|
Wang Y, Li Y, Lv L, Zhu L, Hong L, Wang X, Zhang Y, Wang X, Diao H. Faecal hsa-miR-7704 inhibits the growth and adhesion of Bifidobacterium longum by suppressing ProB and aggravates hepatic encephalopathy. NPJ Biofilms Microbiomes 2024; 10:13. [PMID: 38396001 PMCID: PMC10891095 DOI: 10.1038/s41522-024-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Both gut microbiome and microRNAs (miRNAs) play a role in the development of hepatic encephalopathy (HE). However, the functional link between the microbiome and host-derived miRNAs in faeces remains poorly understood. In the present study, patients with HE had an altered gut microbiome and faecal miRNAs compared with patients with chronic hepatitis B. Transferring faeces and faecal miRNAs from patients with HE to the recipient mice aggravated thioacetamide-induced HE. Oral gavage of hsa-miR-7704, a host-derived miRNA highly enriched in faeces from patients with HE, aggravated HE in mice in a microbiome-dependent manner. Mechanistically, hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium longum by suppressing proB. B. longum and its metabolite acetate alleviated HE by inhibiting microglial activation and ammonia production. Our findings reveal the role of miRNA-microbiome axis in HE and suggest that faecal hsa-miR-7704 are potential regulators of HE progression.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Yu Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
18
|
Zhang Z, Du L, Ji Q, Liu H, Ren Z, Ji G, Bian ZX, Zhao L. The Landscape of Gut Microbiota and Its Metabolites: A Key to Understanding the Pathophysiology of Pattern in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:89-122. [PMID: 38351704 DOI: 10.1142/s0192415x24500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Liqing Du
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Qiuchen Ji
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hao Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhenxing Ren
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Ling Zhao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
19
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
20
|
Ahn JS, Koo BC, Choi YJ, Jung WW, Kim HS, Lee SJ, Hong ST, Chung HJ. Identification of Muscle Strength-Related Gut Microbes through Human Fecal Microbiome Transplantation. Int J Mol Sci 2024; 25:662. [PMID: 38203833 PMCID: PMC10779158 DOI: 10.3390/ijms25010662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The gut microbiome is well known for its influence on human physiology and aging. Therefore, we speculate that the gut microbiome may affect muscle strength in the same way as the host's own genes. To demonstrate candidates for gut microbes affecting muscle strength, we remodeled the original gut microbiome of mice into human intestinal microbiome through fecal microbiome transplantation (FMT), using human feces and compared the changes in muscle strength in the same mice before and three months after FMT. After comparing before and after FMT, the mice were divided into three groups based on the observed changes in muscle strength: positive, none, and negative changes in muscle strength. As a result of analyzing the α-diversity, β-diversity, and co-occurrence network of the intestinal microbial community before and after FMT, it was observed that a more diverse intestinal microbial community was established after FMT in all groups. In particular, the group with increased muscle strength had more gut microbiome species and communities than the other groups. Fold-change comparison showed that Eisenbergiella massiliensis and Anaeroplasma abactoclasticum from the gut microbiome had positive contributions to muscle strength, while Ileibacterium valens and Ethanoligenens harbinense had negative effects. This study identifies candidates for the gut microbiome that contribute positively and those that contribute negatively to muscle strength.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Bon-Chul Koo
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Chungbuk, Republic of Korea;
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju 28503, Chungbuk, Republic of Korea; (W.-W.J.); (H.-S.K.); (S.-J.L.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Jeolla, Republic of Korea; (J.-S.A.); (Y.-J.C.)
| |
Collapse
|
21
|
Guo XP, Yang J, Wu L, Fang C, Gu JM, Li F, Liu HS, Li LY, Wang SY. Periodontitis relates to benign prostatic hyperplasia via the gut microbiota and fecal metabolome. Front Microbiol 2023; 14:1280628. [PMID: 38163068 PMCID: PMC10756679 DOI: 10.3389/fmicb.2023.1280628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Periodontitis is associated with benign prostatic hyperplasia (BPH), whether it related to gut floramicrobiota and metabonomics is unclear. Methods We established ligature-induced periodontitis (EP), testosterone-induced BPH, and composite rat models. Fecal samples were collected to detect gut microbiota by 16S rDNA sequencing and metabonomics were detected by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results Sequencing results revealed differential gut floramicrobiota composition between EP+BPH group and other three groups. The abundances of Ruminococcus flavefaciens were significantly increased in EP+BPH group compared with other groups. Tenericutes, Mollicutes, RF39 and Ruminococcus gnavus were significantly decreased in EP+BPH group compared with BPH group, while Ruminococcus callidus and Escherichia were significantly decreased compared with EP group. For gut metabonomics, LC-MS/MS showed that fecal metabolites and seven metabolic pathways were changed in EP+BPH group, such as biosynthesis of unsaturated fatty acids, steroid hormone biosynthesis. Correlation analysis showed that the alterations of gut metabolism were significantly correlated with differential gut floramicrobiota, such as Ruminococcus callidus and Ruminococcus flavefaciens. Conclusion Our study highlights the relationship of periodontitis and BPH, the alterations of gut floramicrobiota and metabolites may be involved in two diseases, which provides new idea for prevention and treatment of patients with periodontitis concurrent BPH.
Collapse
Affiliation(s)
- Xing-Pei Guo
- Department of General Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, The First People's Hospital of Tianmen in Hubei Province, The Affiliated Hospital of Hubei University of Science and Technology, Tianmen, China
| | - Lan Wu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-Min Gu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fei Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han-Song Liu
- Department of General Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Torre A, Córdova-Gallardo J, Frati Munari AC. Rifaximin Alfa and Liver Diseases: More Than a Treatment for Encephalopathy, a Disease Modifier. Ther Clin Risk Manag 2023; 19:839-851. [PMID: 37899985 PMCID: PMC10612522 DOI: 10.2147/tcrm.s425292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 10/31/2023] Open
Abstract
RFX, a rifamycin-based antibacterial agent obtained by the culture of the actinomycete Streptomyces mediterranei, has a broad antibacterial spectrum covering gram- positive, gram-negative, aerobic, and anaerobic bacteria. RFX is an antibiotic that elicits its effect by inhibiting bacterial RNA synthesis. When administered orally, its intestinal absorption is extremely low (<0.4%), restricting antibacterial activity mainly in the intestinal tract, with few systemic side effects. RFX has been recommended by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver guidelines for the treatment of HE. RFX may contribute to restore hepatic function and to decrease the development of liver fibrosis. Its efficacy has been shown in patients with previous hepatic encephalopathy and several complications, such as infections, including spontaneous bacterial peritonitis, ascites and oesophageal variceal bleeding. Thus, RFX has an outstanding role in the therapeutic arsenal in hepatic cirrhosis, under the concept of disease modifier.
Collapse
Affiliation(s)
- Aldo Torre
- Guest Research, Metabolic Unit Department, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, México City, Mexico
- Guest Research, Liver Unit Department, Hospital General de México, México City, Mexico
| | | | | |
Collapse
|
23
|
Ahn JS, Choi YJ, Kim HB, Chung HJ, Hong ST. Identification of the Intestinal Microbes Associated with Locomotion. Int J Mol Sci 2023; 24:11392. [PMID: 37511151 PMCID: PMC10380270 DOI: 10.3390/ijms241411392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Given the impact of the gut microbiome on human physiology and aging, it is possible that the gut microbiome may affect locomotion in the same way as the host's own genes. There is not yet any direct evidence linking the gut microbiome to locomotion, though there are some potential connections, such as regular physical activity and the immune system. In this study, we demonstrate that the gut microbiome can contribute differently to locomotion. We remodeled the original gut microbiome of mice through fecal microbiota transplantation (FMT) using human feces and compared the changes in locomotion of the same mice before and three months after FMT. We found that FMT affected locomotion in three different ways: positive, none (the same), and negative. Analysis of the phylogenesis, α-diversities, and β-diversities of the gut microbiome in the three groups showed that a more diverse group of intestinal microbes was established after FMT in each of the three groups, indicating that the human gut microbiome is more diverse than that of mice. The FMT-remodeled gut microbiome in each group was also different from each other. Fold change and linear correlation analyses identified Lacrimispora indolis, Pseudoflavonifractor phocaeensis, and Alistipes senegalensis in the gut microbiome as positive contributors to locomotion, while Sphingobacterium cibi, Prevotellamassilia timonensis, Parasutterella excrementihominis, Faecalibaculum rodentium, and Muribaculum intestinale were found to have negative effects. This study not only confirms the presence of gut microbiomes that contribute differently to locomotion, but also explains the mixed results in research on the association between the gut microbiome and locomotion.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
24
|
Giuli L, Maestri M, Santopaolo F, Pompili M, Ponziani FR. Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease. Metabolites 2023; 13:772. [PMID: 37367929 DOI: 10.3390/metabo13060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogenesis of cerebral dysfunction in patients with acute and/or chronic liver disease. However, recent studies demonstrated a key role of neuroinflammation in the development of neurological complications in this setting. Neuroinflammation is characterized by activation of microglial cells and brain secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which alter neurotransmission, leading to cognitive and motor dysfunction. Changes in the gut microbiota resulting from liver disease play a crucial role in the pathogenesis of neuroinflammation. Dysbiosis and altered intestinal permeability, resulting in bacterial translocation and endotoxemia, are responsible for systemic inflammation, which can spread to brain tissue and trigger neuroinflammation. In addition, metabolites derived from the gut microbiota can act on the central nervous system and facilitate the development of neurological complications, exacerbating clinical manifestations. Thus, strategies aimed at modulating the gut microbiota may be effective therapeutic weapons. In this review, we summarize the current knowledge on the role of the gut-liver-brain axis in the pathogenesis of neurological dysfunction associated with liver disease, with a particular focus on neuroinflammation. In addition, we highlight emerging therapeutic approaches targeting the gut microbiota and inflammation in this clinical setting.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marta Maestri
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
25
|
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21:395. [PMID: 37330571 PMCID: PMC10276405 DOI: 10.1186/s12967-023-04262-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to describe the changes in the gut microbiome of patients with cirrhosis and hepatic encephalopathy (HE), as well as quantify the variations in short-chain fatty acid (SCFA) and tryptophan metabolite levels in serum and faeces. METHODS Fresh faeces and serum were collected from 20 healthy volunteers (NC group), 30 cirrhosis patients (Cir group), and 30 HE patients (HE group). Then, 16S rRNA sequencing and metabolite measurements were performed using the faeces. Gas chromatography‒mass spectrometry and ultrahigh-performance liquid chromatography-tandem mass spectrometry were used to measure SCFA and tryptophan levels, respectively. The results were analysed by SIMCA16.0.2 software. Differences in species were identified using MetaStat and t tests. The correlations among the levels of gut microbes and metabolites and clinical parameters were determined using Spearman correlation analysis. RESULTS Patients with cirrhosis and HE had lower microbial species richness and diversity in faeces than healthy volunteers; these patients also had altered β-diversity. Serum valeric acid levels were significantly higher in the HE group than in the Cir group. Serum SCFA levels did not differ between the Cir and NC groups. Serum melatonin and 5-HTOL levels were significantly higher in the HE group than in the Cir group. The Cir and NC groups had significant differences in the levels of eight serum tryptophan metabolites. Furthermore, the levels of faecal SCFAs did not differ between the HE and Cir groups. Faecal IAA-Ala levels were significantly lower in the HE group than in the Cir group. There were significant differences in the levels of 6 faecal SCFAs and 7 faecal tryptophan metabolites between the Cir and NC groups. Certain gut microbes were associated with serum and faecal metabolites, and some metabolites were associated with certain clinical parameters. CONCLUSION Reduced microbial species richness and diversity were observed in patients with HE and cirrhosis. In both serum and faeces, the levels of different SCFAs and tryptophan metabolites showed varying patterns of change. In HE patients, the levels of some serum tryptophan metabolites, and not SCFAs, were correlated with liver function and systemic inflammation. Systemic inflammation in patients with cirrhosis was correlated with faecal acetic acid levels. In summary, this study identified metabolites important for HE and cirrhosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chengxin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
26
|
Efremova I, Maslennikov R, Poluektova E, Vasilieva E, Zharikov Y, Suslov A, Letyagina Y, Kozlov E, Levshina A, Ivashkin V. Epidemiology of small intestinal bacterial overgrowth. World J Gastroenterol 2023; 29:3400-3421. [PMID: 37389240 PMCID: PMC10303511 DOI: 10.3748/wjg.v29.i22.3400] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is defined as an increase in the bacterial content of the small intestine above normal values. The presence of SIBO is detected in 33.8% of patients with gastroenterological complaints who underwent a breath test, and is significantly associated with smoking, bloating, abdominal pain, and anemia. Proton pump inhibitor therapy is a significant risk factor for SIBO. The risk of SIBO increases with age and does not depend on gender or race. SIBO complicates the course of a number of diseases and may be of pathogenetic significance in the development of their symptoms. SIBO is significantly associated with functional dyspepsia, irritable bowel syndrome, functional abdominal bloating, functional constipation, functional diarrhea, short bowel syndrome, chronic intestinal pseudo-obstruction, lactase deficiency, diverticular and celiac diseases, ulcerative colitis, Crohn's disease, cirrhosis, metabolic-associated fatty liver disease (MAFLD), primary biliary cholangitis, gastroparesis, pancreatitis, cystic fibrosis, gallstone disease, diabetes, hypothyroidism, hyperlipidemia, acromegaly, multiple sclerosis, autism, Parkinson's disease, systemic sclerosis, spondylarthropathy, fibromyalgia, asthma, heart failure, and other diseases. The development of SIBO is often associated with a slowdown in orocecal transit time that decreases the normal clearance of bacteria from the small intestine. The slowdown of this transit may be due to motor dysfunction of the intestine in diseases of the gut, autonomic diabetic polyneuropathy, and portal hypertension, or a decrease in the motor-stimulating influence of thyroid hormones. In a number of diseases, including cirrhosis, MAFLD, diabetes, and pancreatitis, an association was found between disease severity and the presence of SIBO. Further work on the effect of SIBO eradication on the condition and prognosis of patients with various diseases is required.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Ekaterina Vasilieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Yana Letyagina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
27
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
28
|
Shahbazi A, Sepehrinezhad A, Vahdani E, Jamali R, Ghasempour M, Massoudian S, Sahab Negah S, Larsen FS. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11:1272. [PMID: 37238943 PMCID: PMC10215854 DOI: 10.3390/biomedicines11051272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.
Collapse
Affiliation(s)
- Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Ali Sepehrinezhad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Edris Vahdani
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Raika Jamali
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Monireh Ghasempour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Shirin Massoudian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Fin Stolze Larsen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Inge Lehmanns Vej 5, 2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Shi K, Li L, Wang Z, Chen H, Chen Z, Fang S. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy. Front Neurosci 2023; 16:1124315. [PMID: 36741060 PMCID: PMC9892757 DOI: 10.3389/fnins.2022.1124315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The interactions between the microbiota and the human host can affect the physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating investigations indicate that the imbalance of microbial community is closely related to the occurrence and development of diseases. Thus, the identification of potential links between microbes and diseases can provide insight into the pathogenesis of diseases. In this study, we propose a deep learning framework (MDAGCAN) based on graph convolutional attention network to identify potential microbe-disease associations. In MDAGCAN, we first construct a heterogeneous network consisting of the known microbe-disease associations and multi-similarity fusion networks of microbes and diseases. Then, the node embeddings considering the neighbor information of the heterogeneous network are learned by applying graph convolutional layers and graph attention layers. Finally, a bilinear decoder using node embedding representations reconstructs the unknown microbe-disease association. Experiments show that our method achieves reliable performance with average AUCs of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted microbes are verified by published literatures, respectively. In conclusion, our method displays effective and reliable prediction performance and can be expected to predict unknown microbe-disease associations facilitating disease diagnosis and prevention.
Collapse
Affiliation(s)
- Kai Shi
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Zhengfeng Wang
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huazhou Chen
- College of Science, Guilin University of Technology, Guilin, China
| | - Zilin Chen
- Department of Developmental and Behavioural Pediatric Department & Department of Child Primary Care, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuanfeng Fang
- Department of Children Health Care, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|