1
|
Zhang J, He Z, Zheng L, He X, Li J, Zhang L. Factors Influencing Early Diagnosis of Ruptured Abdominal Aortic Aneurysms: The Role of Neutrophils. J Inflamm Res 2025; 18:5777-5790. [PMID: 40322533 PMCID: PMC12049119 DOI: 10.2147/jir.s512895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Background Currently, there is no effective and convenient indicator for the early differential diagnosis of ruptured abdominal aortic aneurysms (rAAAs) from unruptured abdominal aortic aneurysms (AAAs). Objective The aim of this study was to explore indicators for the early differential diagnosis of rAAAs in a clinical setting. Methods This case‒control study included 276 subjects within the last 5 years (220 patients with unruptured AAAs; 56 patients with rAAAs) in the initial analysis and 229 subjects (186 patients with unruptured AAA's; 43 patients with rAAA's) after subgroup analysis. The meaningful indicators were screened via univariate analysis and logistic regression analysis. The diagnostic performance and clinical usefulness of the indicators were assessed and compared using receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and clinical impact curve (CIC). Results A high venous blood neutrophil counts (OR = 1.316, P = 0.007) was found to be a risk factor for rAAAs in the initial model. After subgroup analysis, the levels of neutrophils (OR = 1.394, P = 0.017) and D-dimer (OR = 1.023, P = 0.043) were both significantly greater in patients with a rAAA. Abdominal pain (OR = 32.613, P = 0.044) and back pain (OR=91.946, P = 0.036) were strongly associated with the rupture of AAA. The results of the receiver operating characteristic (ROC) analysis revealed that neutrophils (AUC: 0.847, 95% CI: 0.774-0.921) and NLR (AUC: 0.795, 95% CI: 0.717-0.873) had good diagnostic performance for rAAA. DCA demonstrated that the net benefit of neutrophils was greater than that of other indicators. The CIC confirmed that the model has good clinical usefulness. Conclusion The use of neutrophils may enhance the early diagnostic accuracy for identifying rAAAs and holds potential for clinical and scientific applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhaopeng He
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lihua Zheng
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xinqi He
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jian Li
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lei Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
Jamalinia M, Lonardo A, Weiskirchen R. Abdominal Aortic Aneurysm and Liver Fibrosis: Clinical Evidence and Molecular Pathomechanisms. Int J Mol Sci 2025; 26:3440. [PMID: 40244390 PMCID: PMC11989544 DOI: 10.3390/ijms26073440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
To stimulate further research, this review summarizes studies linking liver fibrosis with the risk of abdominal aortic aneurysms (AAA). AAA is defined as a permanently weakened and dilated abdominal aorta, which develops due to inflammation of the tunica media, activation of the renin-angiotensin-aldosterone system, immune system activation, and coagulation disorders. Typically asymptomatic, AAA is often incidentally detected through imaging done for abdominal symptoms or as part of screening programs. AAA follows a variable course and has a mortality rate strongly dependent on age and sex. Risk factors for AAA include age, male sex, ethnicity, family history of AAA, lifestyle habits, arterial hypertension, dyslipidemia, and comorbid atherosclerotic cardiovascular disease. Conversely, individuals with type 2 diabetes, female sex, and certain ethnicities are at a reduced risk of AAA. Liver fibrosis, resulting from chronic liver diseases owing to varying etiologies, is increasingly recognized as a potential contributor to AAA development. Evidence increasingly indicates that metabolic dysfunction-associated steatotic liver disease (MASLD) and other chronic liver conditions may intensify inflammatory pathways shared with AAA, thereby potentially exacerbating AAA progression. This review specifically examines the epidemiology and risk factors associated with the link between AAA and liver fibrosis. It also highlights potential pathomechanisms, including systemic inflammation, oxidative stress, and extracellular matrix remodeling, which may contribute to both conditions. Although these findings underscore significant overlaps in risk profiles, additional research is needed to clarify whether type 2 diabetes, female sex, and certain ethnicities truly confer protection against AAA or if this association is influenced by other confounding variables. Ultimately, addressing these open questions will help guide targeted therapeutic interventions and the identification of novel biomarkers to predict disease progression.
Collapse
Affiliation(s)
- Mohamad Jamalinia
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 41100, Iran;
| | - Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
3
|
Hu C, Tan H, Zhang Y, Cao G, Wu C, Lin P, Qiu S, Mo F, Wang E, Li S, Yuan T, Li Z, Fu W, Cheng D, Lai H, Chen X, Wang L. Fibroblast Activation Protein Acts as a Biomarker for Monitoring ECM Remodeling During Aortic Aneurysm via 68Ga-FAPI-04 PET Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411152. [PMID: 39950910 PMCID: PMC11984865 DOI: 10.1002/advs.202411152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/26/2025] [Indexed: 04/12/2025]
Abstract
Traditional imaging modalities used to monitor the diameter of aortic aneurysms (AAs) often fail to follow pathological progression. Fibroblast activation protein (FAP), a key regulator of extracellular matrix (ECM) remodeling, plays a pivotal role in aortic disease. However, its expression in the aortic wall during aneurysm progression and its potential correlation with disease severity remains unexplored. Here, utilizing histology the levels of FAP are higher in the aortic wall of patients with AA compared to healthy controls. In three distinct animal models of AA, a progressive increase in FAP expression, coincides with the advancement of ECM remodeling. Notably, the levels of 68Ga-FAPI-04 uptake in a rabbit model of abdominal AA (AAA) is positively correlated with aortic dilation (r = 0.84, p < 0.01), and the histological examination further confirmed that regions of high 68Ga-FAPI-04 uptake exhibited both increased FAP expression and more severe pathological changes. The 68Ga-FAPI-04 imaging in AA patients showed that the radiotracer specifically accumulated in the aortic walls of persistently dilated AA. These findings suggest that 68Ga-FAPI-04 positron emission tomographic (PET) imaging, by visualizing FAP localization, allows for a non-invasive approach to potentially monitor ECM remodeling during the AA progression.
Collapse
Affiliation(s)
- Chengkai Hu
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Hui Tan
- Department of Nuclear MedicineZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Yuchong Zhang
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Genmao Cao
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Chenye Wu
- Department of Cardiac SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Peng Lin
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Shouji Qiu
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Fandi Mo
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Enci Wang
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Shiyi Li
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Tong Yuan
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Zheyun Li
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Weiguo Fu
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Department of Vascular Surgery (Xiamen)Zhongshan hospitalFudan UniversityXiamen361015China
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment LabXiamen361015China
| | - Dengfeng Cheng
- Department of Nuclear MedicineZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Hao Lai
- Department of Cardiac SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineering, Biomedical Engineering, Pharmacy and Pharmaceutical SciencesYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology, and Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Lixin Wang
- Department of Vascular SurgeryZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Department of Vascular Surgery (Xiamen)Zhongshan hospitalFudan UniversityXiamen361015China
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment LabXiamen361015China
| |
Collapse
|
4
|
Yu Q, Zeng S, Hu R, Li M, Liu Q, Wang Y, Dai M. Dexmedetomidine Alleviates Abdominal Aortic Aneurysm by Activating Autophagy Via AMPK/mTOR Pathway. Cardiovasc Drugs Ther 2025; 39:33-42. [PMID: 37392236 DOI: 10.1007/s10557-023-07483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) are a critical global health issue with increasing prevalence. Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that has previously been shown to play a protective role in AAA. Nevertheless, the mechanisms underlying its protection effect remain not fully understood. METHODS A rat AAA model was established via intra-aortic porcine pancreatic elastase perfusion with or without DEX administration. The abdominal aortic diameters of rats were measured. Hematoxylin-eosin and Elastica van Gieson staining were conducted for histopathological observation. TUNEL and immunofluorescence staining were utilized to detect cell apoptosis and α-SMA/LC3 expression in the abdominal aortas. Protein levels were determined using western blotting. RESULTS DEX administration repressed the dilation of aortas, alleviated pathological damage and cell apoptosis, and suppressed phenotype switching of vascular smooth muscle cells (VSMCs). Moreover, DEX activated autophagy and regulated the AMP-activated protein kinase/mammalian target of the rapamycin (AMPK/mTOR) signaling pathway in AAA rats. Administration of the AMPK inhibitor attenuated the DEX-mediated ameliorative effects on AAA in rats. CONCLUSION DEX ameliorates AAA in rat models by activating autophagy via the AMPK/mTOR pathway.
Collapse
MESH Headings
- Animals
- Dexmedetomidine/pharmacology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- TOR Serine-Threonine Kinases/metabolism
- Autophagy/drug effects
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Aorta, Abdominal/enzymology
- Signal Transduction/drug effects
- Disease Models, Animal
- AMP-Activated Protein Kinases/metabolism
- Rats, Sprague-Dawley
- Male
- Apoptosis/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Rats
Collapse
Affiliation(s)
- Qi Yu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Simin Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Ruilin Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Muqi Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China
| | - Min Dai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 1519, Dongyue Avenue, Nanchang, 330052, Jiangxi, China.
| |
Collapse
|
5
|
Manta A, Tzirakis K. A Comprehensive Review on Computational Analysis, Research Advances, and Major Findings on Abdominal Aortic Aneurysms for the Years 2021 to 2023. Ann Vasc Surg 2025; 110:63-81. [PMID: 39343357 DOI: 10.1016/j.avsg.2024.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a pathological condition characterized by the dilation of the lower part of the aorta, where significant hemodynamic forces are present. The prevalence and high mortality risk associated with AAA remain major concerns within the scientific community. There is a critical need for extensive research to understand the underlying mechanisms, pathophysiological characteristics, and effective detection methods for abdominal aortic abnormalities. Additionally, it is imperative to develop and refine both medical and surgical management strategies. This review aims to indicate the role of computational analysis in the comprehension and management of AAAs and covers recent research studies regarding the computational analysis approach conducted between 2021 and 2023. Computational analysis methods have emerged as sophisticated and noninvasive approaches, providing detailed insights into the complex dynamics of AAA and enhancing our ability to study and manage this condition effectively. METHODS Computational analysis relies on fluid mechanics principles applied to arterial flow, using the Navier-Stokes equations to model blood flow dynamics. Key hemodynamic indicators relevant to AAAs include Time-Average Wall Shear Stress, Oscillatory Shear Index, Endothelial Cell Activation Potential, and Relative Residence Time. The primary methods employed for simulating the abdominal aorta and studying its biomechanical environment are computational fluid dynamics and Finite Element Methods. This review article encompasses a thorough examination of recent literature, focusing on studies conducted between 2021 and 2023. RESULTS The latest studies have elucidated crucial insights into the blood flow characteristics and geometric attributes of AAAs. Notably, blood flow patterns within AAAs are associated with increased rupture risk, along with elevated intraluminal thrombus volume and specific calcification thresholds. Asymmetric AAAs exhibit heightened risks of rupture and thrombus formation due to low and oscillating wall shear stresses. Moreover, larger aneurysms demonstrate increased wall stress, pressure, and energy loss. Advanced modeling techniques have augmented predictive capabilities concerning growth rates and surgical thresholds. Additionally, the influence of material properties and thrombus volume on wall stress levels is noteworthy, while inlet velocity profiles significantly modulate blood flow dynamics within AAAs. CONCLUSIONS This review highlights the potential utility of computational modeling. However, the clinical applicability of computational modeling has been limited by methodological variability despite the ongoing accumulation of evidence supporting the prognostic significance of biomechanical and hemodynamic indices in this field. The establishment of standardized reporting is critical for clinical implementation.
Collapse
Affiliation(s)
- Anastasia Manta
- Department of Mechanical Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, Greece; School of Medicine, University of Crete, Heraklion, Greece.
| | - Konstantinos Tzirakis
- Department of Mechanical Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
6
|
Roslik M, Zharikov Y, Vovkogon A, Zharova N, Pontes-Silva A, Zharikova T. Aortic aneurysm: Correlations with phenotypes associated with connective tissue dysplasia. Microvasc Res 2025; 157:104754. [PMID: 39401669 DOI: 10.1016/j.mvr.2024.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
An aortic aneurysm is a localized enlargement that exceeds the normal diameter of the vessel by 50 %, posing a risk due to the likelihood of rupture. The cause of aortic aneurysm, especially in young people, is connective tissue dysplasia, a condition characterized by defects in the assembly of collagen and elastin proteins, leading to changes in elastic properties and disruption of the formation of organs and their systems. The article presents data confirming the relationship between many morphological manifestations of connective tissue dysplasia (e.g., funnel-shaped deformation of the sternum, scoliosis of the thoracic spine, abdominal hernias, arterial tortuosity, striae of atypical localization) and the risk of aortic aneurysm formation. The literature suggests that the identified combinations of some external manifestations of connective tissue dysplasia deserve special attention and may be constitutional markers for the possible development of aortic aneurysm, which is a promising direction for further research in this area.
Collapse
Affiliation(s)
- Maria Roslik
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Yury Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Andzhela Vovkogon
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Nataliya Zharova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| | - Tatiana Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| |
Collapse
|
7
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
8
|
Yao G, Hu X, Song D, Yao J, Chen D, Luan T, Zhao Y. Identification of Macrophage-Related Biomarkers for Abdominal Aortic Aneurysm Through Combined Single-Cell Sequencing and Machine Learning. J Inflamm Res 2024; 17:11009-11027. [PMID: 39697792 PMCID: PMC11652794 DOI: 10.2147/jir.s499593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Purpose The relationship between macrophages and the progression of abdominal aortic aneurysms (AAA) remains unclear, and effective biomarkers are lacking. In this study, we elucidated the mechanism whereby macrophages promote AAA development and identified associated biomarkers, with the goal of developing new targeted therapies and improving patient outcomes. Patients and Methods Differential expression analysis, weighted gene co-expression network analysis, and single-cell analysis were used to identify macrophage-related genes in an AAA dataset. Machine learning algorithms identified THBS1, HCLS1, DMXL2, and ZEB2 as key macrophage-related genes upregulated in AAA; these four hub genes were then used to construct a nomogram as an auxiliary tool for clinical diagnosis. Subsequent downstream single-cell and CellChat analyses were conducted to observe the interactions between macrophages and fibroblasts and analyze potential pathways. Results Single-cell validation confirmed enhanced THBS1 expression in macrophages in AAA. CellChat analysis revealed enhanced interactions between macrophages and fibroblasts in AAA through THBS1-CD47 signaling. Finally, an analysis of clinical samples from patients with AAA confirmed the high expression of THBS1 and CD47 in AAA and that THBS1 promotes the progression of AAA through the TNF-NFκB signaling pathway. Our findings reveal the THBS1-CD47 signaling pathway as a critical mechanism in macrophage-driven AAA progression, highlighting THBS1's potential as a therapeutic target. Conclusion Our findings highlight THBS1 as a potential driver of macrophage-mediated AAA formation and an important biomarker for AAA diagnosis. The study results would help in improving treatment outcomes in patients with AAA. These findings provide a foundation for the development of diagnostic tools and targeted therapies for AAA, potentially improving early detection and patient outcomes.
Collapse
Affiliation(s)
- Guoqing Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xuemei Hu
- Department of Endocrinology, The People’s Hospital of Rongchang District, Chongqing, 402460, People’s Republic of China
| | - Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People’s Republic of China
| | - Deqing Chen
- Department of Endocrinology, The People’s Hospital of Rongchang District, Chongqing, 402460, People’s Republic of China
| | - Tiankuo Luan
- Department of Anatomy, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
9
|
Gu X, Li Q, Qian T, Hu Q, Gu J, Ding W, Li M, Wang M, Lu H, Tao K. FGF21 promotes angiotensin II-induced abdominal aortic aneurysm via PI3K/AKT/mTOR pathway. Vascular 2024; 32:1369-1377. [PMID: 37522318 DOI: 10.1177/17085381231192688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially fatal vascular disorder with a high mortality rate. It was previously reported that fibroblast growth factor 21 (FGF21) was highly expressed in AAA patients. Nonetheless, its underlying mechanism in AAA progression is unclarified. METHODS Angiotensin II (Ang-II) was used to induce AAA in human aortic vascular smooth muscle cells (HASMCs) and mouse models. Western blotting and RT-qPCR were utilized for measuring protein and RNA levels. Immunofluorescence staining was utilized for detecting LC3B expression in HASMCs. Elastica van Gieson staining was conducted for histological analysis of the abdominal aortas of mice. RESULTS FGF21 displayed a high level in Ang-II-stimulated HASMCs and AAA mice. FGF21 depletion ameliorated abdominal aorta dilation and Ang-II-triggered pathological changes in mice. FGF21 silencing hindered autophagy and PI3K/AKT/mTOR pathway. CONCLUSIONS FGF21 contributes to AAA progression by enhancing autophagy and activating PI3K/AKT/mTOR pathway.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/enzymology
- Angiotensin II
- Animals
- TOR Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Humans
- Disease Models, Animal
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Autophagy/drug effects
- Mice, Inbred C57BL
- Male
- Phosphatidylinositol 3-Kinase/metabolism
- Cells, Cultured
- Dilatation, Pathologic
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Qi Hu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Wei Ding
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ming Wang
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Huan Lu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| |
Collapse
|
10
|
Xie M, Li X, Qi C, Zhang Y, Li G, Xue Y, Chen G. Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms. Front Cardiovasc Med 2024; 11:1497170. [PMID: 39600608 PMCID: PMC11588672 DOI: 10.3389/fcvm.2024.1497170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a life-threatening vascular condition. This study aimed to discover new indicators for the early detection of AAA and explore the possible involvement of immune cell activity in its development. Methods Sourced from the Gene Expression Omnibus, the AAA microarray datasets GSE47472 and GSE57691 were combined to generate the training set. Additionally, a separate dataset (GSE7084) was designated as the validation set. Enrichment analyses were carried out to explore the underlying biological mechanisms using Disease Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology. We then utilized weighted gene co-expression network analysis (WGCNA) along with 3 machine learning techniques: least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, to identify feature genes for AAA. Moreover, data were validated using the receiver operating characteristic (ROC) curve, with feature genes defined as those having an area under the curve above 85% and a p-value below 0.05. Finally, the single sample gene set enrichment analysis algorithm was applied to probe the immune landscape in AAA and its connection to the selected feature genes. Results We discovered 72 differentially expressed genes (DEGs) when comparing healthy and AAA samples, including 36 upregulated and 36 downregulated genes. Functional enrichment analysis revealed that the DEGs associated with AAA are primarily involved in inflammatory regulation and immune response. By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. The diagnostic performance of all these genes was strong, as revealed by the ROC analysis. A significant increase in 15 immune cell types in AAA samples was observed, based on the analysis of immune cell infiltration. In addition, the 3 feature genes show a strong linkage with different types of immune cells. Conclusion Three feature genes (MRAP2, PPP1R14A, and PLN) related to the development of AAA were identified. These genes are linked to immune cell activity and the inflammatory microenvironment, providing potential biomarkers for early detection and a basis for further research into AAA progression.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Congwei Qi
- Department of Pharmacy, Jianhu County People’s Hospital, Jianhu, Jiangsu, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
- Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Yong Xue
- Department of Cardiology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Guobao Chen
- Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| |
Collapse
|
11
|
Wang J, Ye W, Zou J, Yang P, Jin M, Zheng Z, Zhou C, Qiu W, Lu J, Li C, Guo S, Xu Y, Huang Z, Liu P, Liu Z. Targeting the smooth muscle cell Keap1-Nrf2-GSDMD-pyroptosis axis by cryptotanshinone prevents abdominal aortic aneurysm formation. Theranostics 2024; 14:6516-6542. [PMID: 39479449 PMCID: PMC11519792 DOI: 10.7150/thno.98400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Abdominal aortic aneurysm (AAA) is an inflammatory, fatal aortic disease that currently lacks any effective drugs. Cryptotanshinone (CTS) is a prominent and inexpensive bioactive substance derived from Salvia miltiorrhiza Bunge, a well-known medicinal herb for treating cardiovascular diseases through its potent anti-inflammatory properties. Nevertheless, the therapeutic effect of CTS on AAA formation remains unknown. Methods: To investigate the therapeutic effect of CTS in AAA, variety of experimental approaches were employed, majorly including AAA mouse model establishment, real-time polymerase chain reaction (PCR), RNA sequencing, western blot, co-immunoprecipitation, scanning/transmission electron microscopy (SEM/TEM), enzyme-linked immunosorbent assay (ELISA), seahorse analysis, immunohistochemistry, and confocal imaging. Results: In this study, we demonstrated that CTS suppressed the formation of AAA in apolipoprotein E knock-out (ApoE-/-) mice infused with Ang II. A combination of network pharmacology and whole transcriptome sequencing analysis indicated that activation of the Keap1-Nrf2 pathway and regulation of programmed cell death in vascular smooth muscle cells (VSMCs) are closely linked to the anti-AAA effect of CTS. Mechanistically, CTS promoted the transcription of Nrf2 target genes, particularly Hmox-1, which prevented the activation of NLRP3 and GSDMD-initiated pyroptosis in VSMCs, thereby mitigating VSMC inflammation and maintaining the VSMC contractile phenotype. Subsequently, by utilizing molecular docking, together with the cellular thermal shift assay (CETSA) and isothermal titration calorimetry (ITC), a particular binding site was established between CTS and Keap1 at Arg415. To confirm the binding site, site-directed mutagenesis was performed, which intriguingly showed that the Arg415 mutation eliminated the binding between CTS and the Keap1-Nrf2 protein and abrogated the antioxidant and anti-pyroptosis effects of CTS. Furthermore, VSMC-specific Nrf2 knockdown in mice dramatically reversed the protective action of CTS in AAA and the inhibitory effect of CTS on VSMC pyroptosis. Conclusion: Naturally derived CTS exhibits promising efficacy as a treatment drug for AAA through its targeting of the Keap1-Nrf2-GSDMD-pyroptosis axis in VSMCs.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NF-E2-Related Factor 2/metabolism
- Phenanthrenes/pharmacology
- Pyroptosis/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chunhong Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Wanlu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuai Guo
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiming Xu
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
12
|
Le S, Wu J, Liu H, Du Y, Wang D, Luo J, Yang P, Ran S, Hu P, Chen M, Ye P, Xia J. Single-cell RNA sequencing identifies interferon-inducible monocytes/macrophages as a cellular target for mitigating the progression of abdominal aortic aneurysm and rupture risk. Cardiovasc Res 2024; 120:1351-1364. [PMID: 38836630 DOI: 10.1093/cvr/cvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) represents a life-threatening condition characterized by medial layer degeneration of the abdominal aorta. Nevertheless, knowledge regarding changes in regulators associated with aortic status remains incomplete. A thorough understanding of cell types and signalling pathways involved in the development and progression of AAAs is essential for the development of medical therapy. METHODS AND RESULTS We harvested specimens of the abdominal aorta with different pathological features in Angiotensin II (AngII)-infused ApoE-/- mice, conducted scRNA-seq, and identified a unique population of interferon-inducible monocytes/macrophages (IFNICs), which were amply found in the AAAs. Gene set variation analysis revealed that activation of the cytosolic DNA sensing cGAS-STING and JAK-STAT pathways promoted the secretion of type I interferons in monocytes/macrophages and differentiated them into IFNICs. We generated myeloid cell-specific deletion of Sting1 (Lyz2-Cre+/-; Sting1flox/flox) mice and performed bone marrow transplantation and found that myeloid cell-specific deletion of Sting1 or Ifnar1 significantly reduced the incidence of AAA, aortic rupture rate, and diameter of the abdominal aorta. Mechanistically, the activated pyroptosis- and inflammation-related signalling pathways, regulated by IRF7 in IFNICs, play critical roles in the developing AAAs. CONCLUSION IFNICs are a unique monocyte/macrophage subset implicated in the development of AAAs and aortic rupture.
Collapse
Affiliation(s)
- Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Jia Wu
- Key Laboratory for Molecular Diagnosis of Hubei Province Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China
| | - Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Manhua Chen
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| |
Collapse
|
13
|
Cai Z, Xu S, Liu C. Cathepsin B in cardiovascular disease: Underlying mechanisms and therapeutic strategies. J Cell Mol Med 2024; 28:e70064. [PMID: 39248527 PMCID: PMC11382359 DOI: 10.1111/jcmm.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing, P.R. China
| | - Shunyao Xu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, P.R. China
| | - Chen Liu
- Department of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
14
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Barkhordarian M, Tran HHV, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A, Weissman S. Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med 2024; 14:91408. [PMID: 38948412 PMCID: PMC11212750 DOI: 10.5493/wjem.v14.i2.91408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 06/19/2024] Open
Abstract
Aortic aneurysm (AA) refers to the persistent dilatation of the aorta, exceeding three centimeters. Investigating the pathophysiology of this condition is important for its prevention and management, given its responsibility for more than 25000 deaths in the United States. AAs are classified based on their location or morphology. various pathophysiologic pathways including inflammation, the immune system and atherosclerosis have been implicated in its development. Inflammatory markers such as transforming growth factor β, interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-2 and many more may contribute to this phenomenon. Several genetic disorders such as Marfan syndrome, Ehler-Danlos syndrome and Loeys-Dietz syndrome have also been associated with this disease. Recent years has seen the investigation of novel management of AA, exploring the implication of different immune suppressors, the role of radiation in shrinkage and prevention, as well as minimally invasive and newly hypothesized surgical methods. In this narrative review, we aim to present the new contributing factors involved in pathophysiology of AA. We also highlighted the novel management methods that have demonstrated promising benefits in clinical outcomes of the AA.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Axel Fuertes
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Angel Ann Chacko
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
16
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Bruls S, Musumeci L, Courtois A, Hustinx R, Sakalihasan S, Namur G, Defraigne JO, Sakalihasan N. Can Biomarkers and PET Imaging Predict Abdominal Aortic Aneurysm Growth Rate? J Clin Med 2024; 13:2448. [PMID: 38673721 PMCID: PMC11051427 DOI: 10.3390/jcm13082448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Abdominal aortic aneurysm (AAA) is a life-threatening condition due to the risk of aneurysm growth and rupture. Biomarkers linked to AAA pathogenesis are attractive candidates for AAA diagnosis and prognosis. The aim of this study was to assess circulating biomarkers levels relationship with PET imaging positivity and their predictive value in AAA growth rate. Methods: A total of 164 patients with AAA had whole body [18F]FDG PET/CT examination and blood drawn for biomarkers analysis at inclusion. Of these, 121 patients had at least one follow-up imaging assessment for AAA progression. Median (quartiles) imaging follow-up period was 32.8 months (15.2-69.6 months). Results: At baseline, PET was visually positive in 28 (17%) patients. Among PET+ patients, female proportion was higher compared to PET-patients (respectively, n = 6, 21.4% vs. n = 11, 8.1%, p = 0.046). Biomarkers of inflammation (CRP, CCL18), of proteolytic activity (MMP9), of extracellular matrix, and calcification regulation (OPN, OPG) were all significantly increased in PET+ patients (p < 0.05). During follow-up, rapid AAA growth (increase in size ≥ 1 cm per year) was observed in 36 (29.8%) patients and several biomarkers (CRP, MMP9, OPN, and OPG) were increased in those patients compared to patients without rapid growth (p < 0.05). Conclusions: Although PET positivity at baseline was not associated with rapid growth, CRP levels showed a significant association.
Collapse
Affiliation(s)
- Samuel Bruls
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, 4000 Liège, Belgium; (S.B.); (L.M.); (J.-O.D.)
| | - Lucia Musumeci
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, 4000 Liège, Belgium; (S.B.); (L.M.); (J.-O.D.)
- Surgical Research Center (GIGA—Cardiovascular Science Unit), University Hospital of Liège, 4000 Liège, Belgium;
| | - Audrey Courtois
- Surgical Research Center (GIGA—Cardiovascular Science Unit), University Hospital of Liège, 4000 Liège, Belgium;
| | - Roland Hustinx
- Department of Nuclear Medicine, University Hospital of Liège, 4000 Liège, Belgium;
| | | | - Gauthier Namur
- Department of Nuclear Medicine, CHC Mont-Légia, 4000 Liège, Belgium;
| | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, 4000 Liège, Belgium; (S.B.); (L.M.); (J.-O.D.)
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, University Hospital of Liège, 4000 Liège, Belgium; (S.B.); (L.M.); (J.-O.D.)
- Surgical Research Center (GIGA—Cardiovascular Science Unit), University Hospital of Liège, 4000 Liège, Belgium;
| |
Collapse
|
18
|
Jia Y, Li Y, Yu J, Jiang W, Liu Y, Zeng R, Wan Z, Liao X, Li D, Zhao Q. Association between metabolic dysfunction-associated fatty liver disease and abdominal aortic aneurysm. Nutr Metab Cardiovasc Dis 2024; 34:953-962. [PMID: 38161123 DOI: 10.1016/j.numecd.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is the second most common aortic pathological manifestation. Metabolic dysfunction-associated fatty liver disease (MAFLD) has a wide impact on the cardiovascular system and may be a risk factor for AAA. The aim of this study was to investigate whether MAFLD is associated with the risk of AAA. METHODS AND RESULTS We used data from the prospective UK Biobank cohort study. MAFLD is defined as hepatic steatosis plus metabolic abnormality, type 2 diabetes, or overweight/obesity. AAA is collected by ICD-10 code. Cox regression was established to analyze the association between MAFLD and AAA. A total of 370203 participants were included; the average age of the participants was 56.7 ± 8.0 years, and 134649 (36.4 %) were diagnosed with MAFLD. During the 12.5 years of follow-up, 1561 (0.4 %) participants developed AAA. After fully adjusting for confounding factors, individuals with MAFLD had a significantly increased risk of AAA (HR 1.521, 95 % CI 1.351-1.712, p < 0.001). Importantly, the risk of AAA increases with the severity of MAFLD as assessed by fibrosis scores. These associations were consistent according to sex, weight, and alcohol consumption but weaker in elderly or diabetics (P for interaction <0.05). The association between the MAFLD phenotype and AAA was independent of the polygenic risk score. Additionally, MAFLD was not associated with thoracic aortic aneurysm or aortic dissection events. CONCLUSIONS There was a significant relationship between MAFLD and AAA. These findings strongly recommend early prevention of AAA by intervening in MAFLD.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yu
- Department of Emergency Medicine, Disaster Medical Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenli Jiang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Emergency Medicine, Disaster Medical Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency Medicine, Disaster Medical Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine, Disaster Medical Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Zhang Y, Li G. Predicting feature genes correlated with immune infiltration in patients with abdominal aortic aneurysm based on machine learning algorithms. Sci Rep 2024; 14:5157. [PMID: 38431726 PMCID: PMC10908806 DOI: 10.1038/s41598-024-55941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a condition characterized by a pathological and progressive dilatation of the infrarenal abdominal aorta. The exploration of AAA feature genes is crucial for enhancing the prognosis of AAA patients. Microarray datasets of AAA were downloaded from the Gene Expression Omnibus database. A total of 43 upregulated differentially expressed genes (DEGs) and 32 downregulated DEGs were obtained. Function, pathway, disease, and gene set enrichment analyses were performed, in which enrichments were related to inflammation and immune response. AHR, APLNR, ITGA10 and NR2F6 were defined as feature genes via machine learning algorithms and a validation cohort, which indicated high diagnostic abilities by the receiver operating characteristic curves. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was used to quantify the proportions of immune infiltration in samples of AAA and normal tissues. We have predicted AHR, APLNR, ITGA10 and NR2F6 as feature genes of AAA. CD8 + T cells and M2 macrophages correlated with these genes may be involved in the development of AAA, which have the potential to be developed as risk predictors and immune interventions.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, China
- Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
20
|
Wu Y, Yang J, Shen H, Zhu J, Zhang F, Ren X, Xu Y, Zhao X, Li J, Huang H, Zhang Y, Jiang Z, Tang M, Shen Z. A New and Practical Model of Human-Like Ascending Aorta Aneurysm in Rats. Cells Tissues Organs 2024; 213:403-412. [PMID: 38310851 DOI: 10.1159/000536569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long and the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. METHODS Cushion needles with different pipe diameters (1.0, 1.2, 1.4, and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after 2 weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson's trichrome staining, Verhoeff's Van Gieson staining, and hematoxylin and eosin staining, while real-time polymerase chain reaction was utilized to assess the total RNA of cytokine interleukin-1β, interleukin 6, transforming growth factor-beta 1, and metalloproteinase 2. RESULTS Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. CONCLUSIONS The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms of ascending aortic aneurysm in a more clinically relevant fashion.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Jin Yang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Han Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Jiacheng Zhu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Feixiang Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiaoyi Ren
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yue Xu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiaotong Zhao
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Jingyi Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Haoyue Huang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Ziyun Jiang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingliang Tang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China
| | - Zhenya Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
22
|
Zehtabi F, Gangrade A, Tseng K, Haghniaz R, Abasgholizadeh R, Montazerian H, Khorsandi D, Bahari J, Ahari A, Mohaghegh N, Kouchehbaghi NH, Mandal K, Mecwan M, Rashad A, de Barros NR, Byun Y, Ermis M, Kim HJ, Khademhosseini A. Injectable Shear-Thinning Hydrogels with Sclerosing and Matrix Metalloproteinase Modulatory Properties for the Treatment of Vascular Malformations. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2305880. [PMID: 38558868 PMCID: PMC10977963 DOI: 10.1002/adfm.202305880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 04/04/2024]
Abstract
Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.
Collapse
Affiliation(s)
- Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reza Abasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | | | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
- Vellore Institute of Technology (VIT), Vellore, India, 632014
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
23
|
Huang Y, Herbst EB, Xie Y, Yin L, Islam ZH, Kent EW, Wang B, Klibanov AL, Hossack JA. In Vivo Validation of Modulated Acoustic Radiation Force-Based Imaging in Murine Model of Abdominal Aortic Aneurysm Using VEGFR-2-Targeted Microbubbles. Invest Radiol 2023; 58:865-873. [PMID: 37433074 PMCID: PMC10784413 DOI: 10.1097/rli.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the β-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.
Collapse
Affiliation(s)
- Yi Huang
- From the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (Y.H., Y.X., J.A.H.); Philips Research North America, Cambridge, MA (E.B.H.); Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA (L.Y., Z.H.I., E.W.K., B.W.); and Division of Cardiovascular Medicine, Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (A.L.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elizondo-Benedetto S, Sastriques-Dunlop S, Detering L, Arif B, Heo GS, Sultan D, Luehmann H, Zhang X, Gao X, Harrison K, Thies D, McDonald L, Combadière C, Lin CY, Kang Y, Zheng J, Ippolito J, Laforest R, Gropler RJ, English SJ, Zayed MA, Liu Y. Chemokine Receptor 2 Is A Theranostic Biomarker for Abdominal Aortic Aneurysms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298031. [PMID: 37986880 PMCID: PMC10659515 DOI: 10.1101/2023.11.06.23298031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular disease impacting aging populations with a high mortality upon rupture. There are no effective medical therapies to prevent AAA expansion and rupture. We previously demonstrated the role of the monocyte chemoattractant protein-1 (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis in rodent AAA pathogenesis via positron emission tomography/computed tomography (PET/CT) using CCR2 targeted radiotracer 64 Cu-DOTA-ECL1i. We have since translated this radiotracer into patients with AAA. CCR2 PET showed intense radiotracer uptake along the AAA wall in patients while little signal was observed in healthy volunteers. AAA tissues collected from individuals scanned with 64 Cu-DOTA-ECL1i and underwent open-repair later demonstrated more abundant CCR2+ cells compared to non-diseased aortas. We then used a CCR2 inhibitor (CCR2i) as targeted therapy in our established male and female rat AAA rupture models. We observed that CCR2i completely prevented AAA rupture in male rats and significantly decreased rupture rate in female AAA rats. PET/CT revealed substantial reduction of 64 Cu-DOTA-ECL1i uptake following CCR2i treatment in both rat models. Characterization of AAA tissues demonstrated decreased expression of CCR2+ cells and improved histopathological features. Taken together, our results indicate the potential of CCR2 as a theranostic biomarker for AAA management.
Collapse
|
25
|
Zhao Y, Shen QR, Chen YX, Shi Y, Wu WB, Li Q, Li DJ, Shen FM, Fu H. Colchicine protects against the development of experimental abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1533-1545. [PMID: 37748024 PMCID: PMC10550771 DOI: 10.1042/cs20230499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Abdominal aortic aneurysm (AAA) is characterized by at least 1.5-fold enlargement of the infrarenal aorta, a ruptured AAA is life-threatening. Colchicine is a medicine used to treat gout and familial Mediterranean fever, and recently, it was approved to reduce the risk of cardiovascular events in adult patients with established atherosclerotic disease. With an AAA mice model created by treatment with porcine pancreatic elastase (PPE) and β-aminopropionitrile (BAPN), this work was designed to explore whether colchicine could protect against the development of AAA. Here, we showed that colchicine could limit AAA formation, as evidenced by the decreased total aortic weight per body weight, AAA incidence, maximal abdominal aortic diameter and collagen deposition. We also found that colchicine could prevent the phenotypic switching of vascular smooth muscle cells from a contractile to synthetic state during AAA. In addition, it was demonstrated that colchicine was able to reduce vascular inflammation, oxidative stress, cell pyroptosis and immune cells infiltration to the aortic wall in the AAA mice model. Finally, it was proved that the protective action of colchicine against AAA formation was mainly mediated by preventing immune cells infiltration to the aortic wall. In summary, our findings demonstrated that colchicine could protect against the development of experimental AAA, providing a potential therapeutic strategy for AAA intervention in the clinic.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi-Rui Shen
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Xin Chen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Shi
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bing Wu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Qiao Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Porto FG, Tanaka LY, de Bessa TC, Oliveira PVS, Souza JMFD, Kajihara D, Fernandes CG, Santos PN, Laurindo FRM. Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection. Atherosclerosis 2023; 382:117283. [PMID: 37774430 DOI: 10.1016/j.atherosclerosis.2023.117283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND AND AIMS Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. METHODS Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. RESULTS Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. CONCLUSIONS Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Collapse
Affiliation(s)
- Fernando Garcez Porto
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie de Bessa
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Júlia Martins Felipe de Souza
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Kajihara
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Nolasco Santos
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
27
|
Dinc R. The Role of Immune Mechanisms in Abdominal Aortic Aneurysm: Could It be a Promising Therapeutic Strategy? ACTA CARDIOLOGICA SINICA 2023; 39:675-686. [PMID: 37720407 PMCID: PMC10499961 DOI: 10.6515/acs.202309_39(5).20230531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an enlargement of the aorta greater than 50% in diameter. Although up to 80% of cases result in mortality if the aneurysm ruptures, patients are often diagnosed too late, as most cases are asymptomatic. The current treatment for AAA is still surgery as there are currently no effective drug treatments. Knowledge of the pathophysiological mechanisms is essential for the development of new preventive and therapeutic approaches. However, the molecular mechanisms are complex and remain unclear. Apoptosis of vascular smooth muscle cells, the major cellular component of the aorta, and degeneration of the extracellular matrix, the skeleton of the aortic wall, are hallmarks of AAA pathology. Inflammation, mainly through macrophage cells, has been recognized as a central factor in the development of AAA. Macrophage cells also orchestrate other pathways and immune cells involved in this process. Macrophages do not exist as pure populations at aneurysm sites. M1 macrophages are pro-inflammatory and weaken the aortic wall during AAA development. M2 macrophages, in contrast, are involved in anti-inflammatory reactions and aorta tissue repair. The balancing effect on AAA progression makes M1/M2 macrophages therapeutic targets to control inflammation and destruction of the aortic wall. An early diagnosis is also important to allow for early interventions. This review article, based on the available data, aims to evaluate the role of an immunotherapeutic approach in controlling AAA development by briefly discussing the immunological mechanisms.
Collapse
|
28
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
29
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
30
|
Tian Y, Fu S, Zhang N, Zhang H, Li L. The abdominal aortic aneurysm-related disease model based on machine learning predicts immunity and m1A/m5C/m6A/m7G epigenetic regulation. Front Genet 2023; 14:1131957. [PMID: 36911406 PMCID: PMC9995589 DOI: 10.3389/fgene.2023.1131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Abdominal aortic aneurysms (AAA) are among the most lethal non-cancerous diseases. A comprehensive analysis of the AAA-related disease model has yet to be conducted. Methods: Weighted correlation network analysis (WGCNA) was performed for the AAA-related genes. Machine learning random forest and LASSO regression analysis were performed to develop the AAA-related score. Immune characteristics and epigenetic characteristics of the AAA-related score were explored. Results: Our study developed a reliable AAA-related disease model for predicting immunity and m1A/m5C/m6A/m7G epigenetic regulation. Discussion: The pathogenic roles of four model genes, UBE2K, TMEM230, VAMP7, and PUM2, in AAA, need further validation by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Yu Tian
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
A Molecular (Not Very Becoming) Picture of Stressed Arteries and Heart, with Some Therapeutic Hope. Int J Mol Sci 2023; 24:ijms24043870. [PMID: 36835280 PMCID: PMC9968135 DOI: 10.3390/ijms24043870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
This Special Issue has focused on molecular mechanisms (vascular calcification, endothelial dysfunction, cardiac remodelling, inflammation, oxidative stress, etc [...].
Collapse
|