1
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
2
|
Riaz R, Parveen S, Shafiq N, Ali A, Rashid M. Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Mol Divers 2025; 29:1139-1160. [PMID: 39012565 DOI: 10.1007/s11030-024-10897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Fagonia indica from Zygophyllaceae family is a medicinal specie with significant antidiabetic potential. The present study aimed to investigate the in vitro antidiabetic activity of Fagonia indica crude extract followed by an in silico screening of its phytoconstituents. For this purpose, crude extract of Fagonia indica was prepared and divided in three different parts, i.e., n-hexane, ethyl acetate, and methanolic fraction. Based on in vitro outcomes, the phytochemical substances of Fagonia indica were virtually screened through a literature survey and a screening library of compounds (1-13) was prepared. The clinical potential of these novel drug candidates was assessed by applying an ADME screening profile. Findings of SwissADME indicators (Absorption, Distribution, Metabolism, and Excretion) for the compounds (1-13) presented relatively optimal physicochemical characteristics, drug-likeness, and medicinal chemistry. The antidiabetic action of these leading drug candidates was optimized through molecular docking analysis against 3 different human pancreatic α-amylase macromolecular targets with (PDB ID 1B2Y), (PDB ID 3BAJ), and (PDB ID: 3OLI) by applying Virtual Docker (Molegro MVD). Metformin was taken as a reference standard for the sake of comparison. In vitro antidiabetic evaluation gave good results with promising α-amylase inhibitory action in the form of IC50 values, as for n-hexane extract = 206.3 µM, ethyl acetate = 41.64 µM, and methanolic extract = 9.61 µM. According to in silico outcomes, all 13 phytoconstituents possess the best binding affinity with successful MolDock scores ranging from - 97.2003 to - 65.6877 kcal/mol and show a great number of binding interactions than native drug metformin. Therefore, the current work concluded that the diabetic inhibition prospective of extract and the compounds of Fagonia indica may contribute to being investigated as a new class of antidiabetic drug or drug-like candidate for further studies.
Collapse
Affiliation(s)
- Rabia Riaz
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan.
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 2300, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Amin BH, Elsilk SE, Nasr S, Yosri M, Yahya G, Mahmoud YAG. Innovative antifungal Therapy: In vivo evaluation of 3-Ethyl-6,7-Dihydroxy-2-Phenyl-Chromen-4-One purified from Alpinia officinarum on Cryptococcus neoformans. Int Immunopharmacol 2025; 149:114163. [PMID: 39908803 DOI: 10.1016/j.intimp.2025.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Cryptococcus neoformans infections pose a significant challenge to human health, particularly due to the lack of effective drugs and the severe side effects of those currently available. This study aimed to evaluate the efficacy of a purified compound, 3-ethyl-6,7-dihydroxy-2-phenyl-chromen-4-one (EDPC), extracted from Alpinia officinarum, in comparison to fluconazole, in treating rat models infected with C. neoformans. A total of 120 rats were divided into six groups: a negative control group, a group infected with 1 × 104 CFU/mL of C. neoformans (positive control), and four treatment groups receiving either 10 mg/kg, 20 mg/kg, or 30 mg/kg of EDPC, or 10 mg/kg of fluconazole. Colony-forming units (CFU) in the lungs were measured at 7, 14, 21, 28, 35, 42, and 49 days post-infection. The results showed that treatment with EDPC, at all doses, as well as fluconazole, significantly increased survival rates and reduced lung CFU counts in infected rats. Histological analysis revealed notable improvements in lung tissue across the treated groups. Additionally, levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-17 were markedly reduced in animals treated with EDPC compared to the untreated infected group. Antioxidant activity was observed, with increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels in treated rats. Moreover, EDPC treatments helped normalize biomarkers related to liver and kidney function, while fluconazole was associated with a significant increase in renal biomarkers, indicating potential kidney toxicity. In contrast, EDPC demonstrated a safer profile regarding kidney function, making it a promising therapeutic agent for C. neoformans infections for long-term use.
Collapse
Affiliation(s)
- Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Sobhy E Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Samr Nasr
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt.
| | - Yehia A G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
4
|
Yang FQ, Tan XM, Chu SS, Yin MZ, Zhang ZY, Peng HS. UPLC-Q-TOF-MS With Chemometrics Approach Analysis of Nonvolatile Compounds for Medicinal Citrus reticulata With Cultivar and Areas Variations. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:467-484. [PMID: 39731403 DOI: 10.1002/pca.3496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
INTRODUCTION Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP. OBJECTIVES The objective of this study is to conduct a comprehensive comparative analysis on the chemical profiling of 51 C. reticulata samples of eight medicinal varieties, grown in different areas, and provide a methodological reference for the study of pharmacodynamic material bases and quality control of C. reticulata. METHODOLOGY Initially, a comprehensive characterization was performed using quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a heatmap visualization was employed for clarifying the distribution of the annotated active ingredients. Furthermore, obtained chemical profiles data were employed in multivariate statistical methods, comprising principal component analysis (PCA), and orthogonal partial least-squares-discrimination analysis (OPLS-DA). RESULTS A total of 42 chemical components were annotated in positive ion mode. The relative contents were evident differences in the active ingredients of medicinal varieties of C. reticulata; mostly, polymethoxy flavones (PMFs) in C. reticulata "Dahongpao" were more abundant; among them, nobiletin and tangeretin are the main active ingredients in CRP. In addition, the relative contents of chemical constituents of C. reticulata "Dahongpao" and C. reticulata "Unshiu" from different areas were less variable. Compared with production origins, the varieties of C. reticulata had a greater impact on quality. CONCLUSION This work obtains a better understanding of the chemical profiles of medicinal varieties of C. reticulata, facilitated the reasonable applicability and quality control of medicinal varieties of C. reticulata.
Collapse
Affiliation(s)
- Fang-Qing Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Mei Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shan-Shan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min-Zhen Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Yu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hua-Sheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Salem PPO, Silva DO, Silva PRS, Costa LPDM, Nicácio KJ, Murgu M, Caldas IS, Leite FB, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Bioguided isolation of anti-inflammatory and anti-urolithiatic active compounds from the decoction of Cissus gongylodes leaves. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118950. [PMID: 39419303 DOI: 10.1016/j.jep.2024.118950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cissus gongylodes has traditionally been used in the diet of indigenous people in Brazil and in traditional medicine for kidney stone removal and inflammatory diseases. The active compounds responsible for these pharmacological activities are unknown. AIM OF THE STUDY This study aims to isolate, for the first time, the compounds in the decoction of C. gongylodes leaves responsible for their anti-inflammatory and anti-urolithiatic ethnopharmacological properties. MATERIALS AND METHODS The most active fractions of the C. gongylodes leaf decoction were fractionated using SPE-C18 and the compounds were purified through HPLC-UV-DAD. The decoction fractions and isolated compounds were evaluated for their anti-inflammatory and anti-urolithiatic activities. The anti-inflammatory activity was assessed using an ex vivo assay in human blood induced by LPS and calcium ionophore, measuring inflammatory mediators, PGE2 and LTB4. The anti-urolithiatic activity was evaluated using an in vitro experimental model with human urine to determine the dissolution of the most recurrent calcium oxalate (CaOx) crystals. Additionally, the decoction was chemically characterized through metabolomic analysis using UHPLC-ESI-HRMS. RESULTS The isolated compounds from the decoction of C. gongylodes, including rutin, eriodictyol 3'-O-glycoside, and isoquercetin, have demonstrated significant multi-target actions. These components act as anti-inflammatory agents by inhibiting the release of main inflammatory mediators, PGE2 and LTB4. Additionally, they exhibit anti-urolithiatic properties, promoting the dissolution of calcium oxalate (CaOx) crystals. Furthermore, the characterization of the decoction by UHPLC-ESI-HRMS revealed a high content of flavonoids, mainly glycosylated flavonoids. CONCLUSIONS The results support the traditional use of C. gongylodes decoction, identifying the compounds responsible for its anti-inflammatory and anti-urolithiatic effects. The decoction fractions and isolated compounds exhibited dual anti-inflammatory activity, effectively inhibiting key inflammatory pathways and potentially presenting fewer adverse effects while also promoting the dissolution of CaOx crystals associated with urolithiasis. The multi-target action displayed by C. gongylodes is particularly desirable in the treatment of urolithiasis, as inflammation and PGE2 production precede and contribute to the formation of CaOx crystals in the kidneys. Based on these actions, C. gongylodes emerges as a potent source of active compounds for the development of new treatments for urolithiasis.
Collapse
Affiliation(s)
- Paula P O Salem
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniele O Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Paulo R S Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lara P D M Costa
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Karen J Nicácio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | | | - Ivo S Caldas
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernanda B Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Ana C C de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Danielle F Dias
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Marisi G Soares
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniela A Chagas-Paula
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
6
|
Hu Y, Wang F, Chen H, Chen L, Liu Y. Integrated nutritional and functional components analyses reveal insights into the peel and pulp quality at different harvest times of 'Dahongpao' tangerine (Citrus reticulata Blanco). Food Chem 2025; 463:141263. [PMID: 39306996 DOI: 10.1016/j.foodchem.2024.141263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
The fruit of Citrus reticulata 'Dahongpao' (DHP) is typically harvested when fully ripe, exhibiting a dark red color, high sweetness, and pleasant taste. However, it remains uncertain whether the optimum harvesting time for its medicinal part (peel) aligns with that of the fruit. The findings of the study indicated that the peel exhibited the highest concentration of total flavonoids (4.018 mg/g) during the middle stage of maturity. Additionally, the total polysaccharide content increased progressively with ripening, reaching its peak (5.36 %) at full maturity. Furthermore, the DHP pulp demonstrated the highest concentration of total polyphenols (11.5 %) and the lowest titrable acid content (0.97 %) during the middle stage of maturity. Furthermore, the peel and pulp of DHP at the middle stage of ripening exhibited the highest antioxidant capacity. Considering the nutritional and functional components at various harvest times of DHP, it is recommended to harvest the peel at the intermediate stage of ripeness. Additionally, during this stage, the pulp also exhibited greater abundance of nutritional components. The findings of this study elucidate the process of accumulation and alteration of nutritional and functional constituents during the ripening of DHP fruit.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Fu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Lin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| | - Youping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Abdullah HA, Moawed FSM, Ahmed ESA, Abdel Hamid FF, Haroun RAH. Iron chelating, antioxidant and anti-apoptotic activities of hesperidin and/or rutin against induced-ferroptosis in heart tissue of rats. Int J Immunopathol Pharmacol 2025; 39:3946320251331873. [PMID: 40200761 PMCID: PMC12032457 DOI: 10.1177/03946320251331873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/16/2025] [Indexed: 04/10/2025] Open
Abstract
Excess iron has been associated with cardiovascular diseases. Flavonoids are antioxidants and cardioprotectants. Therefore, the goal of the current study is to evaluate the anti-apoptotic, antioxidant, and iron-chelating qualities of two flavonoids, rutin (R) and hesperidin (H), as well as their potential to prevent induced ferroptosis in rats. It is an in vivo cross-sectional study, in which rats were divided into 12 groups; control, H, R, H + R, Fe, Fe + IR, Fe + IR + Ref, Fe + H, Fe + IR + H, Fe + R, Fe + IR + R and Fe + IR + H + R. Cardiac and serum iron levels, serum troponin I, creatine kinase-MB (CK-MB), total iron binding capacity (TIBC), transferrin, ferritin, and hepicidin were determined. Moreover, the levels of malondialdehyde (MDA), nitric oxide (NO) and glutathione (GSH) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were also determined. The expression levels of DMT1, ACSL4, GPX4, Nrf2, and caspase-3 genes were evaluated by RT-qPCR. Lastly, a histological analysis of the heart tissues from several groups of rats was conducted. After hesperidin and/or rutin treatment, our results revealed that cardiac markers (serum troponin I and CK-MB), iron metabolism markers (serum and cardiac iron, TIBC, ferritin, transferrin, hepicidin and DMT1 expression levels) and oxidative stress markers (MDA, NO and ACSL4 expression levels) were significantly (P ⩽ 0.05) reduced, while the antioxidant markers (GSH level, GPx and SOD activities and GPX4 and Nrf2 expression levels) were significantly (P ⩽ 0.05) increased. Also, hesperidin and rutin exerted its protective anti-apoptotic role by significantly (P ⩽ 0.05) decreasing caspase-3 expression levels. Hesperidin and/or rutin treatment can be proposed as a therapeutic candidate to attenuate ferroptosis.
Collapse
Affiliation(s)
- Haidy A Abdullah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa SA Ahmed
- Radiation Biology Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
8
|
Al Shammari L. Phytochemical diversity, therapeutic potential, and ecological roles of the Cecropia genus. Heliyon 2024; 10:e40375. [PMID: 39759284 PMCID: PMC11699044 DOI: 10.1016/j.heliyon.2024.e40375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
The genus Cecropia, a pivotal component of Neotropical flora, is renowned for its integration of traditional medicinal uses with significant ecological functions. This review aims to highlight the phytochemical diversity and pharmacological activities of the Cecropia genus, with a particular focus on well-documented species such as C. angustifolia, C. glaziovii, and C. pachystachya. Through a comprehensive review of the literature and current studies, this review identifies critical phytochemicals, including flavonoids, phenolic acids, and terpenoids, and correlates these compounds with biological activities such as anti-inflammatory, antimicrobial, and antioxidant effects. Notably, the review delves into the pharmacological potential of less than ten out of the sixty-six accepted Cecropia species, revealing a significant research opportunity within the genus. The findings advocate for intensified drug discovery initiatives involving advanced phytochemical analyses, bioactivity assessments, and the integration of conservation strategies. These efforts are crucial for the sustainable utilization of new therapeutic agents for Cecropia species. Additionally, this review discusses the ecological roles of Cecropia, particularly its contributions to forest regeneration and its symbiotic relationships with ants and proposes future research directions aimed at bridging current knowledge gaps and enhancing conservation measures for this valuable genus.
Collapse
Affiliation(s)
- Latifah Al Shammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
9
|
Rath D, Pattnaik G, Kar B, Padhy GK, Patro CS, Bhukta P. Antidiabetic potency of glimepiride and naringin: an in silico and in vitro investigation. J Biomol Struct Dyn 2024:1-12. [PMID: 39731535 DOI: 10.1080/07391102.2024.2442759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 12/30/2024]
Abstract
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects. Initially, we assessed the binding efficacy of GLM and NARN against nine putative target enzymes using AutoDock 4.2 software. We also analysed the drug chemistry, drug-ability, and cytotoxicity, as well as performed molecular dynamic (MD) simulation at 100 ns with individual and combination states using GROMACS-2022 software. Both candidates showed higher binding efficacy, especially against the AKT-serine/threonine kinase-1 (AKT1) target enzyme (-11.85 kcal/mol), and demonstrated higher stability and compatibility with AKT1 from MD-simulation (based on RMSD, Rg, RMSF, and H-bond plots) in combination than individual form. The in vitro cytotoxicity with human embryonic kidney (HEK-293) cells suggested 100 µg/mL (observed 80% of the cell viability) as a non-toxic dose for further study. Alpha-amylase, alpha-glucosidase, and DPP-IV inhibition assays revealed that both GLM and NARN inhibited up to 60% at 100 µg/mL in a concentration-dependent manner. At the end, selecting a lower dose of GLM and a higher dose of NARN (2:8 v/v ratio) showed up to 87% inhibition at 100 µg/mL. Both in silico and in vitro studies suggest that the investigated formulation could be a potential and non-toxic dose for diabetics.
Collapse
Affiliation(s)
- Deepankar Rath
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Gopal Krishna Padhy
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Chandra Sekhar Patro
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Pallishree Bhukta
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| |
Collapse
|
10
|
Liu Z, Ran Q, Luo J, Shen Q, Zhang T, Fang S, Pan K, Long L. Correlation analysis of secondary metabolites and disease resistance activity of different varieties of Congou black tea based on LC-MS/MS and TCMSP. Food Chem X 2024; 23:101331. [PMID: 39071939 PMCID: PMC11282962 DOI: 10.1016/j.fochx.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 07/30/2024] Open
Abstract
To investigate the correlation between the difference of secondary metabolites and the disease-resistance activity of different varieties of Congou black tea. Among a total of 657 secondary metabolites identified, 183 metabolites had anti-disease activity, 113 were key active ingredients in traditional Chinese medicine (TCM), 73.22% had multiple anti-disease activities, and all were mainly flavonoids and phenolic acids. The main enriched metabolic pathways were phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, flavonoid biosynthesis, and metabolic pathways. Flavonoid and phenolic acid secondary metabolites were more correlated with anti-disease activity and key active TCM ingredients. Conclusion: The types of JGY and Q601 Congou black tea of the relative contents show large differences in secondary metabolites. Flavonoid and phenolic acid secondary metabolites were identified as the primary factors contributing to the variation in secondary metabolites among different varieties of Congou black tea. These compounds also exhibited a stronger correlation with disease resistance activity.
Collapse
Affiliation(s)
- Zhongying Liu
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Qiansong Ran
- Guizhou Agricultural Vocational College, Qingzhen 551400, China
| | - Jinlong Luo
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Qiang Shen
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Tuo Zhang
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Shimao Fang
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ke Pan
- Tea Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Guizhou tea Industry Research Institute, China
| | - Lin Long
- Guizhou Guitianxia Tea Group Co. LTD, Guiyang 550001, China
- Guizhou tea Industry Research Institute, China
| |
Collapse
|
11
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
12
|
Cao Y, Tan YJ, Huang D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:10694. [PMID: 39409020 PMCID: PMC11477439 DOI: 10.3390/ijms251910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
13
|
El-Feky AM, Aboulthana WM, El-Rashedy AA. Assessment of the in vitro anti-diabetic activity with molecular dynamic simulations of limonoids isolated from Adalia lemon peels. Sci Rep 2024; 14:21478. [PMID: 39277638 PMCID: PMC11401861 DOI: 10.1038/s41598-024-71198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Limonoids are important constituents of citrus that have a significant impact on promoting human health. Therefore, the primary focus of this research was to assess the overall limonoid content and isolate limonoids from Adalia lemon (Citrus limon L.) peels for their potential use as antioxidants and anti-diabetic agents. The levels of limonoid aglycones in the C. limon peel extract were quantified through a colorimetric assay, revealing a concentration of 16.53 ± 0.93 mg/L limonin equivalent. Furthermore, the total concentration of limonoid glucosides was determined to be 54.38 ± 1.02 mg/L. The study successfully identified five isolated limonoids, namely limonin, deacetylnomilin, nomilin, obacunone 17-O-β-D-glucopyranoside, and limonin 17-O-β-D-glucopyranoside, along with their respective yields. The efficacy of the limonoids-rich extract and the five isolated compounds was evaluated at three different concentrations (50, 100, and 200 µg/mL). It was found that both obacunone 17-O-β-D-glucopyranoside and limonin 17-O-β-D-glucopyranoside possessed the highest antioxidant, free radical scavenging, and anti-diabetic activities, followed by deacetylnomilin, and then the limonoids-rich extract. The molecular dynamic simulations were conducted to predict the behavior of the isolated compounds upon binding to the protein's active site, as well as their interaction and stability. The results revealed that limonin 17-O-β-D-glucopyranoside bound to the protein complex system exhibited a relatively more stable conformation than the Apo system. The analysis of Solvent Accessible Surface Area (SASA), in conjunction with the data obtained from Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and Radius of Gyration (ROG) computations, provided further evidence that the limonin 17-O-β-D-glucopyranoside complex system remained stable within the catalytic domain binding site of the human pancreatic alpha-amylase (HPA)-receptor. The research findings suggest that the limonoids found in Adalia lemon peels have the potential to be used as effective natural substances in creating innovative therapeutic treatments for conditions related to oxidative stress and disorders in carbohydrate metabolism.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
14
|
Chen DJ, Liu CJ, Chen ZH, Li JJ, Shi W, Zhang QM, Yang X, Chen JX, Zhang FX. Chemical profiling of Zhi-Ke-Bao pills and its potential mechanism against cough by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and network pharmacology. J Pharm Biomed Anal 2024; 247:116257. [PMID: 38815520 DOI: 10.1016/j.jpba.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Zhi-Ke-Bao pills (ZKB), a traditional Chinese medicine preparation composed of 13 herbs, is generally used to treat cough caused by external wind cold, phlegm, etc in clinical applications, and it plays a core role in relieving cough caused by COVID-19 and influenza in China. Till now, the understanding of its chemical constituents was dramatically limited due to its chemical complexity, restricting its clinical application or development. In this work, a developed ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) method, a targeted and non-targeted strategy and network pharmacology were used to comprehensively characterize the chemical compositions in ZKB and predict its mechanism against cough. A total of 164 compounds (148 targeted compounds and 16 non-targeted ones) were identified or tentatively characterized in ZKB, including 65 flavonoids, 25 alkaloids, 19 organic acids, 41 saponins, 9 coumarins, 2 phenylpropanoids, 2 anthraquinones, and 1 other types. Among them, 37 compounds were unambiguously identified by comparison to reference standards. Meanwhile, the fragmentation behaviors of five main chemical structure types were also summarized. 309 targets and two core signaling pathways of ZKB against cough were predicted by network pharmacology, including MAPK and PI3K-Akt signaling pathways. It was the first time to characterize the chemical compounds of ZKB and reveal its potential mechanism against cough, providing the material basis for further quality control or pharmacodynamic evaluation of ZKB.
Collapse
Affiliation(s)
- De-Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Qing-Min Zhang
- Teyi Pharmaceutical Group Co., Ltd., Jiangmen 529200, PR China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Jian-Xin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
15
|
Păcularu-Burada B, Cîrîc AI, Begea M. Anti-Aging Effects of Flavonoids from Plant Extracts. Foods 2024; 13:2441. [PMID: 39123632 PMCID: PMC11311508 DOI: 10.3390/foods13152441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a natural and irreversible process, affecting living organisms by negatively impacting the tissues' and cells' morphology and functionality and consequently being responsible for aging-related diseases. Taking into account the actual preoccupations of both consumers and researchers, healthy anti-aging alternatives are being intensively studied in order to address such concerns. Due to their functional features, plant flavonoids can be considered valuable nutraceuticals. This paper highlights the possibilities to use flavonoids extracted from various plants for their anti-aging potential on the skin, brain, and heart. Moreover, their anticarcinogenic, anti-inflammatory, and anti-diabetic properties are summarized, along with the senescence-associated mechanisms. Both the nutraceutical and cosmeceutical fields are continuously developing and flavonoids originating from plants are promising candidates to obtain such products. Thus, the bioactive compounds' extraction and their subsequent involvement in innovative product manufacturing must be carefully performed while being aware of the various intrinsic and extrinsic factors that may affect the phytochemicals' structures, bioavailability, and health effects.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- ICA Research & Development S.R.L., 202 Splaiul Independenței, 060021 Bucharest, Romania;
- Dan Voiculescu Foundation for the Development of Romania, 011885 Bucharest, Romania
| | - Alexandru-Ionuț Cîrîc
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| |
Collapse
|
16
|
Lu G, Pan F, Li X, Zhu Z, Zhao L, Wu Y, Tian W, Peng W, Liu J. Virtual screening strategy for anti-DPP-IV natural flavonoid derivatives based on machine learning. J Biomol Struct Dyn 2024; 42:6645-6659. [PMID: 37489054 DOI: 10.1080/07391102.2023.2237594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Flavonoids, especially their inhibitory effect on DPP-IV activity, have been widely recognized for their antidiabetic effects. However, the variety of natural flavonoid derivatives is very rich, and even subtle structural differences can lead to several orders of magnitude differences in their inhibitory activities against DPP-IV, which makes it challenging to find novel and potent anti-DPP-IV flavonoid derivatives experimentally. Therefore, there is an urgent need to develop an efficient screening pipeline that targets active natural products. Here, we propose a fusion strategy based on a QSAR model, and to simplify this process, it was applied to the discovery of flavonoid derivatives with potent anti-DPP-IV activity. First, the high-quality QSAR model (R test 2 = 0.816, MAEtest = 0.14, MSEtest = 0.026) was composed of seven key molecular property parameters, which were constructed with the genetic algorithm (GA) and passed the leave-one-out cross-validation evaluation. A total of 1,668 flavonoid derivatives were obtained from the natural product enriched by NPCD based on molecular fingerprint similarity (> 0.8). Further, the enriched flavonoid derivatives were further predicted and screened using the QED score combined with the QSAR model, and a total of 33 flavonoid derivatives (IC50pre < 6.5 μM) were found. Subsequently, three flavonoid derivatives (5,7,3',5'-tetrahydroxyflavone, 3,7-dihydroxy-5,3',4'-trimethoxyflavone, and 5,7,2',5'-tetrahydroxyflavone) with highly effective anti-DPP-IV activity were obtained by ADMET analysis. Finally, the DPP-IV inhibitory potential of these three flavonoid derivatives was verified by 100 ns MD simulation and MM/PB(GB)SA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaotong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Vinha AF, Sousa C, Vilela A, Ferreira J, Medeiros R, Cerqueira F. Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. APPLIED SCIENCES 2024; 14:6278. [DOI: 10.3390/app14146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Vitis vinifera is the grape variety used in the production of wine and other products. In the wine production process, many of the vine’s by-products are wasted, namely seeds and stems. Given the proportion of wine production worldwide, the quantity of by-products is beginning to be an environmental problem, making it urgent to take measures for their use to obtain bioactive compounds with health benefits. The aim of this work was to study the antioxidant and antimicrobial activities of extracts from the seeds and stems of four Portuguese grape varieties: Touriga Franca, Touriga Nacional, Viosinho, and Tinta Roriz. Total phenolic (TPC) and total flavonoids (TFC) contents present in the different extracts were evaluated, as well as the antioxidant activity, by DPPH and FRAP methods. TPC and TFC values of the stem’s extracts are much higher than those of the seeds of the same grape variety in the same solvent. The antioxidant activity of aqueous and ethanolic stem extracts is higher than that obtained for the seeds, showing that antioxidant activity is related to the content of polyphenols. The antimicrobial activity of different stem and seed extracts was determined against yeasts and Gram-positive and Gram-negative bacteria, and the effect was determined based on the minimal inhibitory concentrations calculated (MIC). In general, the ethanol:water (1:1) extract of the seeds from the different varieties tested inhibited C. albicans ATCC10231 and C. krusei ATCC6258 growth even at 200 μg/mL, and the effect was fungicidal at 200 μg/mL. The same type of extract showed selective antimicrobial activity, inhibiting S. aureus ATCC29213 growth but having no effect against E. coli ATCC25922 even at 200 μg/mL. The effect against S. aureus was bactericidal (at 200 μg/mL) for Touriga Franca, Touriga Nacional, and Viosinho. Taking all these results into account, it can be concluded that the by-products of the grape varieties tested are important sources of bioactive products, particularly as antioxidants and antimicrobials.
Collapse
Affiliation(s)
- Ana F. Vinha
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Sousa
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Andreia Vilela
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Joana Ferreira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
18
|
Riaz R, Parveen S, Shafiq N, Ali A, Rashid M. Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Mol Divers 2024. [DOI: https:/doi.org/10.1007/s11030-024-10897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 01/06/2025]
|
19
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
20
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
21
|
Kumar V, Sharma A, Sharma N, Saini R, Dev K, El-Shazly M, Bari ABA. A review of botany, traditional applications, phytochemistry, pharmacological applications, and toxicology of Rubus ellipticus Smith fruits. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4483-4497. [PMID: 38252298 DOI: 10.1007/s00210-024-02964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Rubus ellipticus Smith. (Family Rosaceae), often known as the yellow Himalayan raspberry (Yellow Hissar), is one of the most widely used edible fruits in Indian folk medicinal systems. The current review aims to identify the gap between research and existing applications of this fruit to help scientists explore the current trends and opportunities for future development. Fruits of R. ellipticus are the source of several classes of compounds. Fruits of R. ellipticus are also rich in nutrients such as carbohydrates, vitamins, and minerals. It has been shown to have significant medical value in a variety of studies, including as an anti-diabetic, nephroprotective, anti-inflammatory, analgesic, antipyretic, antitumor, wound healing, antifertility, oviposition deterrent, antibacterial, and antioxidant. Fruits of R. ellipticus have been the subject of several in vitro and in vivo investigations, all of which have corroborated their wide range of biological activities and demonstrated their potential for the identification of new therapeutic candidates and the development of innovative herbal food supplements. Additional mechanism-based pharmacological evaluation and clinical research should provide an adequate scientific basis for the traditional usage of R. ellipticus fruits, which is currently not sufficiently supported by the available research on its active components and molecular mechanisms.
Collapse
Affiliation(s)
- Vikas Kumar
- University Institute of Bioengineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - Ankita Sharma
- University Institute of Bioengineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140307, India
| | - Rakshandha Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 4543, USA
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Ahamed Basha Abdul Bari
- Department of Physiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
22
|
Fei Z, Xu Y, Zhang G, Liu Y, Li H, Chen L. Natural products with potential hypoglycemic activity in T2DM: 2019-2023. PHYTOCHEMISTRY 2024; 223:114130. [PMID: 38714289 DOI: 10.1016/j.phytochem.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
As currently the most common metabolic disease, type 2 diabetes mellitus (T2DM) has shown a continuous increase in the number of patients in recent decades. Most anti-T2DM drugs tend to cause some side effects. Given the pathogenesis of T2DM, natural products have emerged as an important source of anti-T2DM drugs. This article reviews natural products with potential hypoglycemic activity from 2019 to 2023. A total of 200 previously natural products were discovered on SciFinder, PubMed and Web of Science. These products were categorized based on their structural frameworks and their biological activities were summarized. Although the mechanisms of action of most compounds are unclear, these compounds could still serve as candidates for the development of lead compounds. Therefore, further structure and activity research of natural products will significantly contribute to the development of potential anti-T2DM drugs.
Collapse
Affiliation(s)
- Zhang Fei
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guoyu Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
23
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
24
|
Thembane N, Hlatshwayo S, Ngcobo M, Ngubane P, Gqaleni N. Review on the Anti-Hyperglycemic Potential of Psidium guajava and Seriphium plumosum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1608. [PMID: 38931040 PMCID: PMC11207340 DOI: 10.3390/plants13121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The treatment and management of diabetes mellitus (DM) with conventional therapies, such as insulin injections and oral hypoglycemic agents, present significant challenges due to their side effects and burdensome administration. Therapies often manage symptoms rather than addressing insulin regulation, akin to medications like thiazolidinediones and glinides, which resemble many medicinal plants. Medicinal plants offer potential alternative treatments due to bioactive compounds targeting diabetes causes. We aimed to explore the antidiabetic potential of two medicinal plants, Psidium guajava and Seriphium plumosum L., by investigating their phytochemical constituents, medicinal uses, pharmacological actions, and mechanisms. This review followed specific guidelines and searched databases including PubMed, Scopus, ScienceDirect, and Web of Science for studies on medicinal plants and DM. Eligible studies underwent quality assessment and were categorized based on their design and interventions for data synthesis. This review identified the phytochemical constituents in Psidium guajava and Seriphium plumosum L., including tannins, flavonoids, phenols, and steroids, exerting antidiabetic effects through various mechanisms like antioxidant activity, anti-inflammatory effects, stimulation of insulin secretion, glucose regulation, and inhibition of carbohydrate-digesting enzymes. Psidium guajava and Seriphium plumosum L. exhibit promising antidiabetic potential, offering alternative approaches to diabetes management. Polyherbalism, combining multiple plant extracts, may enhance therapeutic efficacy in diabetes treatment. Comprehensive research is needed to explore the combined therapeutic effects of these plants and develop more effective antidiabetic treatments. This review highlights the importance of harnessing natural resources to combat the global burden of DM. Further research is warranted to fully explore the combined therapeutic effects of these plants and develop novel treatments.
Collapse
Affiliation(s)
- Nokukhanya Thembane
- Department of Biomedical Sciences, Mangosuthu University of Technology, Durban 4026, South Africa
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Sphamandla Hlatshwayo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Mlungisi Ngcobo
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
| | - Phikelelani Ngubane
- Discipline of Medical Microbiology, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nceba Gqaleni
- Traditional Medicine Laboratory, University of KwaZulu-Natal, Durban 4041, South Africa (M.N.); (N.G.)
- Africa Health Research Institute, Durban 4013, South Africa
| |
Collapse
|
25
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
26
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
27
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
28
|
Wang J, Hu Y, Li Q, Liu YN, Lin J, Xu RA. Effects of myricetin and quercetin on ticagrelor metabolism and the underlying mechanism. Chem Biol Interact 2024; 392:110924. [PMID: 38401715 DOI: 10.1016/j.cbi.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The aim of this study was to investigate the potential drug-drug interactions (DDIs) between ticagrelor and other drugs as well as their underlying mechanisms. Rat liver microsome (RLM) reaction system was used to screen potential DDIs in vitro, and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect the levels of ticagrelor and AR-C124910XX, the main metabolite of ticagrelor. A total of 68 drugs were screened, 11 of which inhibited the production of AR-C124910XX to 20% or less, especially two flavonoids (myricetin and quercetin). The half-maximal inhibitory concentration (IC50) of myricetin on ticagrelor was 11.51 ± 0.28 μM in RLM and 17.96 ± 0.54 μM in human liver microsome (HLM). The IC50 of quercetin in inhibiting ticagrelor in RLM and HLM was 16.92 ± 0.49 μM and 60.15 ± 0.43 μM, respectively. They all inhibited the metabolism of ticagrelor through a mixed mechanism. In addition, Sprague-Dawley (SD) rats were used to study the interactions of ticagrelor with selected drugs in vivo. We found that the main pharmacokinetic parameters including AUC (0-t), AUC (0-∞) and Cmax of ticagrelor were significantly increased when ticagrelor was combined with these two flavonoids. Our results suggested that myricetin and quercetin of flavonoids both had significant effects on the metabolism of ticagrelor, providing reference data for the clinical individualized medication of ticagrelor.
Collapse
Affiliation(s)
- Jing Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Huang F, Jia X, Su D, Ma Q, Zhao D, Zhang M. Shatianyu dietary fiber (Citrus grandis L. Osbeck) promotes the production of active metabolites from its flavonoids during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3139-3146. [PMID: 38072776 DOI: 10.1002/jsfa.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
30
|
Huynh TTH, Wongmaneepratip W, Vangnai K. Relationship between Flavonoid Chemical Structures and Their Antioxidant Capacity in Preventing Polycyclic Aromatic Hydrocarbons Formation in Heated Meat Model System. Foods 2024; 13:1002. [PMID: 38611308 PMCID: PMC11011254 DOI: 10.3390/foods13071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The relationship between the chemical structures of six flavonoids and their abilities to inhibit the formation of polycyclic aromatic hydrocarbons (PAHs) in a heated meat model system was investigated. The PAH8 forming in samples was analyzed by using QuEChERS coupled GC-MS. Inhibitory effects of PAHs were myricetin (72.1%) > morin (55.7%) > quercetin (57.3%) > kaempferol (49.9%) > rutin (32.7%) > taxifolin (30.2%). The antioxidant activities of these flavonoids, assessed through (1, 1-diphenyl-2-picrylhydrazyl) free radical scavenging activity assay (DPPH), [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] free radical scavenging activity assay (ABTS) and ferric ion reducing antioxidant power assay (FRAP) assays, exhibited a significant negative correlation with PAH reduction. Notably, myricetin that contained three hydroxyl groups on the B-ring, along with a 2,3-double bond in conjugation with a 4-keto moiety on the C-ring, demonstrated strong antioxidant properties and free radical scavenging abilities, which significantly contributed to their ability to inhibit PAH formation. However, rutin and taxifolin, substituted at the C-3 position of the C-ring, decreased the PAH inhibitory activity. The ABTS assay proved the most effective in demonstrating the correlation between flavonoid antioxidant properties and their capacity to inhibit PAH formation in heated meat model systems. Thus, the inhibition of PAHs can be achieved by dietary flavonoids according to their chemical structures.
Collapse
Affiliation(s)
- Thi Thu Huong Huynh
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwisa Wongmaneepratip
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand;
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
31
|
Al-Ansari M, Al-Dahmash ND, Angulo-Bejarano PI, Ha HA, Nguyen-Thi TH. Phytochemical, bactericidal, antioxidant and anti-inflammatory properties of various extracts from Pongamia pinnata and functional groups characterization by FTIR and HPLC analyses. ENVIRONMENTAL RESEARCH 2024; 245:118044. [PMID: 38157963 DOI: 10.1016/j.envres.2023.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.
Collapse
Affiliation(s)
- Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | | |
Collapse
|
32
|
Gone GB, Go G, Nam G, Jeong W, Kim H, Lee S, Chung SJ. Exploring the Anti-Diabetic Potential of Quercetagitrin through Dual Inhibition of PTPN6 and PTPN9. Nutrients 2024; 16:647. [PMID: 38474775 DOI: 10.3390/nu16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 μM) and PTPN9 (IC50 = 1.7 μM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.
Collapse
Affiliation(s)
- Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhui Go
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woojoo Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemin Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Xiong C, Wu J, Ma Y, Li N, Wang X, Li Y, Ding X. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Gut Microbiota in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mice: Compared Evaluation of Liraglutide and Semaglutide Intervention. Diabetes Metab Syndr Obes 2024; 17:865-880. [PMID: 38406269 PMCID: PMC10894520 DOI: 10.2147/dmso.s451129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Polycystic ovary syndrome (PCOS) is a frequent cause of infertility in reproductive-age women. Our work aims to evaluate the effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on gut microbiota, with metabolic parameters including body weight and the hormone profile in PCOS. Patients and Methods Dehydroepiandrosterone (DHEA)-induced PCOS mice were established and then treated with two GLP-1RAs: liraglutide and novel form semaglutide for four weeks. Changes in body weight and metabolic parameters were measured. Fecal samples were collected and analyzed using metagenomic sequencing. Results Liraglutide and semaglutide modulated both alpha and beta diversity of the gut microbiota in PCOS. Liraglutide increased the Bacillota-to-Bacteroidota ratio through up-regulating the abundance of butyrate-producing members of Bacillota like Lachnospiraceae. Moreover, liraglutide showed the ability to reverse the altered microbial composition and the disrupted microbiota functions caused by PCOS. Semaglutide increased the abundance of Helicobacter in PCOS mice (p < 0.01) which was the only bacteria found negatively correlated with body weight. Moreover, pathways involving porphyrin and flavonoids were increased after semaglutide intervention. Conclusion Liraglutide and semaglutide improved reproductive and metabolic disorders by modulating the whole structure of gut microbiota in PCOS. The greater efficacy in weight loss compared with liraglutide observed after semaglutide intervention was positively related with Helicobacter. The study may provide new ideas in the treatment and the underlying mechanisms of GLP-1RAs to improve PCOS.
Collapse
Affiliation(s)
- Chuanhao Xiong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jingzhu Wu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
34
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
35
|
Deepika, Dakal TC, Sharma NK, Ranga V, Maurya PK. Naringenin Orchestrates and Regulates the Reactive Oxygen Species-Mediated Pathways and Proinflammatory Signaling: Targeting Hallmarks of Aging-Associated Disorders. Rejuvenation Res 2024; 27:3-16. [PMID: 38308480 DOI: 10.1089/rej.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
The therapeutic application of flavonoids in the management of infectious diseases, cancers, chronic wounds, aging, and neurodegenerative disorders has been well documented in scientific literature. The citric flavonoid naringenin comes under the category of flavanone and exhibits a plethora of health benefits. Very few flavonoids such as curcumin, resveratrol, catechin, quercetin, and kaempferol have been studied to exert their anti-aging properties in humans. The effect of naringenin in the context of age-associated disorders in detail has not been elucidated yet. The databases used for the literature search were Science Direct, Google Scholar, and PubMed. More emphasis has been put on the recent literature on "naringenin" and its effect on "age-associated disorders." Almost all chronic degenerative disorders are characterized by oxidative stress and inflammatory response. The study aims at highlighting the reactive oxygen species-mediated activity of naringenin and the underlying molecular mechanism leading to the prevention of various age-associated disorders. Altogether, the review presents a systematic comprehension of the pharmaceutical and clinicopathological benefits of naringenin in age-associated disorders.
Collapse
Affiliation(s)
- Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, INDIA
| | - Tikam Chand Dakal
- Genome and Computational Biology Laboratory, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, INDIA
| |
Collapse
|
36
|
Fossatelli L, Maroccia Z, Fiorentini C, Bonucci M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int J Mol Sci 2023; 25:251. [PMID: 38203418 PMCID: PMC10778966 DOI: 10.3390/ijms25010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the process of carcinogenesis. Since then, more and more evidence has demonstrated its anticancer efficacy, both in vitro and in vivo. Apigenin has been shown to target signaling pathways involved in the development and progression of cancer, such as PI3K/Akt/mTOR, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/β-catenin pathways, and to modulate different hallmarks of cancer, such as cell proliferation, metastasis, apoptosis, invasion, and cell migration. Furthermore, apigenin modulates PD1/PD-L1 expression in cancer/T killer cells and regulates the percentage of T killer and T regulatory cells. Recently, apigenin has been studied for its synergic and additive effects when combined with chemotherapy, minimizing the side effects. Unfortunately, its low bioavailability and high permeability limit its therapeutic applications. Based on micro- and nanoformulations that enhance the physical stability and drug-loading capacity of apigenin and increase the bioavailability of apigenin, novel drug-delivery systems have been investigated to improve its solubility.
Collapse
Affiliation(s)
- Laura Fossatelli
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| |
Collapse
|
37
|
Assiri RA, El-Masry TA, El-Haggar SM, Elekhnawy E, Eldin SS, El-Kadem AH, Mostafa SA, Elberri AI, Magdeldin S, Negm WA, Mokhtar FA. Phytochemical investigation, antibacterial, and ameliorative potential effects of Tamarix nilotica on LPS-induced acute lung injury model in mice. Biomed Pharmacother 2023; 168:115678. [PMID: 37820564 DOI: 10.1016/j.biopha.2023.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Acute lung injury (ALI) is a serious illness with a high mortality rate of 40-60%. It is characterised by systemic inflammatory processes and oxidative stress. Gram-negative bacterial infections are the major cause of ALI, and lipopolysaccharide (LPS) is the major stimulus for the release of inflammatory mediators. Hence, there is an urgent need to develop new therapies which ameliorate ALI and prevent its serious consequences. The Middle Eastern native plant Tamarix nilotica (Ehrenb) Bunge belongs to the family Tamaricaceae, which exhibits strong anti-inflammatory and antioxidant effects. Thus, the current work aimed to ensure the plausible beneficial effects of T. nilotica different fractions on LPS-induced acute lung injury after elucidating their phytochemical constituents using LC/MS analysis. Mice were randomly allocated into six groups: Control saline, LPS group, and four groups treated with total extract, DCM, EtOAc and n-butanol fractions, respectively, intraperitoneal at 100 mg/kg doses 30 min before LPS injection. The lung expression of iNOS, TGF-β1, NOX-1, NOX-4 and GPX-1 levels were evaluated. Also, oxidative stress was assessed via measurements of MDA, SOD and Catalase activity, and histopathological and immunohistochemical investigation of TNF-α in lung tissues were performed. T. nilotica n-butanol fraction caused a significant downregulation in iNOS, TGF-β1, TNF-α, NOX-1, NOX-4, and MDA levels (p ˂ 0.05), and significantly elevated GPX-1 expression levels, SOD, and catalase activity (p ˂ 0.05), and alleviated all histopathological abnormalities confirming its advantageous role in ALI. The antibacterial activities of T. nilotica and its different fractions were investigated by agar well diffusion method and broth microdilution method. Interestingly, the n-butanol fraction exhibited the best antibacterial activity against Klebsiella pneumoniae clinical isolates. It also significantly reduced exopolysaccharide quantity, cell surface hydrophobicity, and biofilm formation.
Collapse
Affiliation(s)
- Rasha Assad Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Salwa Seif Eldin
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Aya H El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt
| | - Sameh Magdeldin
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| |
Collapse
|
38
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
39
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
41
|
Nur MA, Islam M, Biswas S, Hasan MN, Rahman MM, Uddin MJ, Satter MA, Amin MZ. Determination of biological activities of malabar spinach ( Basellaalba) fruit extracts and molecular docking against COX-II enzyme. Heliyon 2023; 9:e21568. [PMID: 38027774 PMCID: PMC10663853 DOI: 10.1016/j.heliyon.2023.e21568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
To achieve the health benefit from the natural of Basella. Albafruit. This study intended to figure out the bioactive compounds in the two varieties of B. alba (native and hybrid) fruit extract and measurement its biological activities like antioxidant, anti-inflammatory, cytotoxic activities and a molecular docking were performed to observed the pharmaceutical impact on the anti-inflammatory Cyclooxygenase-2 (COX-2) enzyme. The cold extractions along with GC-MS were used for the extraction of and analysis of phytoconstituents from B. alba fruit. The hemolytic inhibitory and BSA (Bovine serum albumin)-denaturation assay, DPPH(2,2-diphenyl-1-picrylhydrazyl) and H2O2-free radical scavenging analysis, and brine shrimp lethalness test were performed to measure the biological activities of the extracted The biological activities assay results showed that the ethanol extract of native malabar spinach exhibited dose-dependent antioxidant activity. The IC50 value 21.55 ± 1.51 μg/mL was for DPPH scavenging assay and 23.36 ± 0.36 μg/mL was for H2O2 scavenging analysis. In anti-inflammatory activity assessment study, the IC50 values of the ethanol extracts were 20.52 ± 0.91 μg/mL for BSA inhibition and 20.43 ± 1.30 μg/mL for RBC hemolytic inhibitory study. In this study, cytotoxicity test results reveal that aqueous extract exhibited no cytotoxicity as compared to ethanol and ethyl acetate extract (LD50 = 875.27 μg/mL). Conversely, the current study insist the in silico analysis, to find out the anti-inflammatory activity of the investigated two fruit varieties due to pharmacokinetics analysis, toxicity properties analysis, ADMETand molecular docking. The result of this study signified that both (native and hybrid) malabar spinach fruit varieties contain phytoconstituents with potent antioxidant, anti-inflammatory, and cytotoxic action.Moreover, the in vitro and in silico results suggest that the native and hybrid fruit varieties of the extracts could be a superior striver for future appraisal as a prospective therapeutically active ingredient.
Collapse
Affiliation(s)
- M. Ashaduzzaman Nur
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Mubenul Islam
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Sangram Biswas
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - M. Nahid Hasan
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - M. Mashiar Rahman
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - M. Jashim Uddin
- Dept. of Pharmacy, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Mohammed A. Satter
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Qudrat-I-Khuda Road, Dhanmondhi, Dhaka-1205, Bangladesh
| | - M. Ziaul Amin
- Dept. of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| |
Collapse
|
42
|
Li J, Xiong M, Liu J, Zhang F, Li M, Zhao W, Xu Y. Discovery of novel cGAS inhibitors based on natural flavonoids. Bioorg Chem 2023; 140:106802. [PMID: 37666112 DOI: 10.1016/j.bioorg.2023.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) plays an important role in the inflammatory response. It has been reported that aberrant activation of cGAS is associated with a variety of immune-mediated inflammatory disorders. The development of small molecule inhibitors of cGAS has been considered as a promising therapeutic strategy for the diseases. Flavonoids, a typical class of natural products, are known for their anti-inflammatory activities. Although cGAS is closely associated with inflammation, the potential effects of natural flavonoid compounds on cGAS have been rarely studied. Therefore, we screened an in-house natural flavonoid library by pyrophosphatase (PPiase) coupling assay and identified novel cGAS inhibitors baicalein and baicalin. Subsequently, crystal structures of the two natural flavonoids in complex with human cGAS were determined, which provide mechanistic insight into the anti-inflammatory activities of baicalein and baicalin at the molecular level. After that, a virtual screening based on the crystal structures of baicalein and baicalin in complex with human cGAS was performed. As a result, compound C20 was identified to inhibit both human and mouse cGAS with IC50 values of 2.28 and 1.44 μM, respectively, and its detailed interactions with human cGAS were further revealed by the X-ray crystal structure determination. These results demonstrate the potential of natural products used as hits in drug discovery and provide valuable hints for further development of cGAS inhibitors.
Collapse
Affiliation(s)
- Jiameng Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fengping Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
43
|
Prananda AT, Dalimunthe A, Harahap U, Simanjuntak Y, Peronika E, Karosekali NE, Hasibuan PAZ, Syahputra RA, Situmorang PC, Nurkolis F. Phyllanthus emblica: a comprehensive review of its phytochemical composition and pharmacological properties. Front Pharmacol 2023; 14:1288618. [PMID: 37954853 PMCID: PMC10637531 DOI: 10.3389/fphar.2023.1288618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phyllanthus emblica Linn, a prominent member of the euphorbiaceae family, exhibits extensive distribution across a multitude of tropical and subtropical nations. Referred to as "Balakka" in Indonesia, this plant assumes various names across regions, such as "kimalaka," "balakka," "metengo," "malaka," and "kemloko" in North Sumatra, Ternate, Sundanese, and Java respectively. Phyllanthus emblica thrives in tropical locales like Indonesia, Malaysia, and Thailand, while also making its presence felt in subtropical regions like India, China, Uzbekistan, and Sri Lanka. The fruits of Balakka are enriched with bioactive constituents recognized for their wide-ranging benefits, including antioxidant, anti-aging, anti-cholesterol, anti-diabetic, immunomodulatory, antipyretic, analgesic, anti-inflammatory, chemoprotective, hepatoprotective, cardioprotective, antimutagenic, and antimicrobial properties. Comprising a spectrum of phenolic compounds (such as tannins, phenolic acids, and flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, and vitamins, the bioactive components of Malacca fruit offer a diverse array of health-promoting attributes. In light of these insights, this review aims to comprehensively examine the pharmacological activities associated with P. emblica and delve into the intricate composition of its phytochemical constituents.
Collapse
Affiliation(s)
- Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Epina Peronika
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Natasya Elsa Karosekali
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Putri Cahaya Situmorang
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
44
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
45
|
Sidhic J, George S, Alfarhan A, Rajagopal R, Olatunji OJ, Narayanankutty A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023; 28:6875. [PMID: 37836717 PMCID: PMC10574196 DOI: 10.3390/molecules28196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and β-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.
Collapse
Affiliation(s)
- Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Satheesh George
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | | | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| |
Collapse
|
46
|
Proença C, Rufino AT, Santos I, Albuquerque HMT, Silva AMS, Fernandes E, Ferreira de Oliveira JMP. Gossypetin Is a Novel Modulator of Inflammatory Cytokine Production and a Suppressor of Osteosarcoma Cell Growth. Antioxidants (Basel) 2023; 12:1744. [PMID: 37760046 PMCID: PMC10525374 DOI: 10.3390/antiox12091744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma (OS) is a common childhood sarcoma, and its treatment is hindered by adverse effects, chemoresistance, and recurrence. Interleukin (IL)-6 production by tumors plays a significant role in inflammation, carcinogenesis, and metastasis. This study aimed to investigate the antiproliferative potential of luteolin derivatives in OS and to evaluate interleukin production. MG-63, Saos-2, HOS, and 143B human OS cell lines were incubated with luteolin and eight derivatives containing hydroxy, chlorine, or alkyl substitutions. The cell viability and growth were evaluated in the presence of these compounds. Apoptosis was also examined through the analysis of the Bax expression and caspase-3 activity. Finally, the gossypetin effects were measured regarding the production of proinflammatory cytokines interleukin (IL)-6, IL-1β, and IL-12p70. Our findings show that gossypetin was the most potent compound, with proliferation-suppressing activities that induced a series of critical events, including the inhibition of the cell viability and growth. Apoptosis was associated with enhanced caspase-3 activity and increased Bax expression, indicating the involvement of the intrinsic pathway of apoptosis. Moreover, pre-/co-treatment with gossypetin significantly reduced the autocrine production of proinflammatory cytokines. Further investigation is required; nevertheless, considering the link between inflammation, carcinogenesis, and metastasis in OS, our findings suggest that gossypetin exhibits anti-proliferative and anti-inflammatory properties that are potentially relevant in the clinical context.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Ana Teresa Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Isabela Santos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Hélio M. T. Albuquerque
- LAQV, REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV, REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (A.M.S.S.)
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| |
Collapse
|
47
|
Hsieh CY, Wang CC, Tayo LL, Tsai PW, Lee CJ. Identification for metabolism profiles and pharmacokinetic studies of tradition Chinese prescription Ji-Ming-San and its major metabolites in rats by UHPLC-Q-TOF-MS/MS and UHPLC-MS/MS. J Food Drug Anal 2023; 31:502-518. [PMID: 39666275 PMCID: PMC10629916 DOI: 10.38212/2224-6614.3473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 02/09/2024] Open
Abstract
Ji-Ming-Shan (JMS) is a traditional prescription use for patients with rheumatism, tendons swelling, athlete's foot, diuresis and even gout. This study developed a rapid and sensitive method for the analysis of JMS chemical components in the Traditional Chinese medicine (TCM) prescription and in the serum samples of rats which were administered with the herbal extract. Two mass spectrometric approaches were used namely Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) method for the major metabolites of the JMS extract while Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed for the detection of the JMS metabolites in the sera of rats. It was revealed that the major components in the JMS extract were identified to be narirutin and hesperidin. It was confirmed that 17 compounds were determined in JMS prescription extract and 16 metabolites resulting from the biotransformation of narirutin and hesperidin were identified in the serum samples. In silico analyses also revealed that the metabolite hersperidin-7-glucoside exhibited the best binding ability with respect to the Cyclooxygenase-2 (COX-2) enzyme target. This study showcased the possible biochemical mechanism involved in the therapeutic efficiency of JMS components and their biotransformation products.
Collapse
Affiliation(s)
- Cheng-Yang Hsieh
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai,
Japan
| | - Ching-Chiung Wang
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 110,
Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
| | - Lemmuel L. Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Intramuros, Manila, 1002, Metro Manila,
Philippines
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, 711,
Taiwan
| | - Chia-Jung Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110,
Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 110,
Taiwan
| |
Collapse
|
48
|
Qiu Y, Cai C, Mo X, Zhao X, Wu L, Liu F, Li R, Liu C, Chen J, Tian M. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl. FRONTIERS IN PLANT SCIENCE 2023; 14:1220507. [PMID: 37680360 PMCID: PMC10481954 DOI: 10.3389/fpls.2023.1220507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Introduction Dendrobium nobile L. is a rare orchid plant with high medicinal and ornamentalvalue, and extremely few genetic species resources are remaining in nature. In the normal purple flower population, a type of population material with a white flower variation phenotype has been discovered, and through pigment component determination, flavonoids were preliminarily found to be the main reason for the variation. Methods This study mainly explored the different genes and metabolites at different flowering stages and analysed the flower color variation mechanism through transcriptome- and flavonoid-targeted metabolomics. The experimental materials consisted of two different flower color phenotypes, purple flower (PF) and white flower (WF), observed during three different periods. Results and discussion The results identified 1382, 2421 and 989 differentially expressed genes (DEGs) in the white flower variety compared with the purple flower variety at S1 (bud stage), S2 (chromogenic stage) and S3 (flowering stage), respectively. Among these, 27 genes enriched in the ko00941, ko00942, ko00943 and ko00944 pathways were screened as potential functional genes affecting flavonoid synthesis and flower color. Further analysis revealed that 15 genes are potential functional genes that lead to flavonoid changes and flower color variations. The metabolomics results at S3 found 129 differentially accumulated metabolites (DAMs), which included 8 anthocyanin metabolites, all of which (with the exception of delphinidin-3-o-(2'''-o-malonyl) sophoroside-5-o-glucoside) were found at lower amounts in the WF variety compared with the PF variety, indicating that a decrease in the anthocyanin content was the main reason for the inability to form purple flowers. Therefore, the changes in 19 flavone and 62 flavonol metabolites were considered the main reasons for the formation of white flowers. In this study, valuable materials responsible for flower color variation in D. nobile were identified and further analyzed the main pathways and potential genes affecting changes in flavonoids and the flower color. This study provides a material basis and theoretical support for the hybridization and molecular-assisted breeding of D. nobile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
49
|
Lamichhane A, Lamichhane G, Devkota HP. Yellow Himalayan Raspberry ( Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules 2023; 28:6071. [PMID: 37630323 PMCID: PMC10458938 DOI: 10.3390/molecules28166071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Yellow Himalayan raspberry (Rubus ellipticus Sm., Rosaceae) is a native species of the Indian subcontinent, Southern China, and the Philippines, which has been historically used as a traditional medicine and food. All of the parts of this plant have been used in traditional medicine to treat respiratory ailments, diabetes, and gastrointestinal disorder, and as an anti-infective agent. The scientific evaluation revealed a richness of macronutrients, micronutrients, and minerals in the fruits, indicating its potential use as a nutraceutical. Furthermore, this plant has been found to be rich in various secondary metabolites, including polyphenols, flavonoids, anthocyanins, tannins, and terpenoids. Ascorbic acid, kaempferol, gallic acid, and catechin are some of the compounds found in this plant, which have been widely discussed for their health benefits. Furthermore, various extracts and compounds obtained from R. ellipticus have shown antioxidant, antidiabetic, anticancer, anti-inflammatory, nephroprotective, antipyretic, anticonvulsant, and anti-infective activities investigated through different study models. These findings in the literature have validated some of the widespread uses of the fruits in folk medicinal systems and the consumption of this nutritious wild fruit by local communities. In conclusion, R. ellipticus holds strong potential for its development as a nutraceutical. It can also improve the nutritional status of villagers and uplift the economy if properly utilized and marketed.
Collapse
Affiliation(s)
- Ananda Lamichhane
- Collage of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
50
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|