1
|
Zhang S, Zhao J, Zhan Y, Li J, Hang J, Tang C, Nong X. Artesunate ameliorates diabetic xerostomia in rats through regulating oral microbiota and metabolic profile in salivary gland based on NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156746. [PMID: 40273561 DOI: 10.1016/j.phymed.2025.156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Artemisia annua. L, as a valuable Chinese medicine, has been applied for millennia in China. Its major active ingredient, artemisinin, has demonstrated diverse pharmacological properties, including anti-inflammatory, antioxidant, and anti-diabetic effects. Recent studies suggest that artesunate (ART), an artemisinin derivative, exhibits promising therapeutic effects on diabetic complications. Nevertheless, the role and underlying mechanisms of ART in the treatment of diabetic xerostomia (DX) remain unclear. AIM This study aimed to elucidate the effects of ART on DX in a type 2 diabetes mellitus (T2DM) rat model, primarily from the perspective of oral microbiota and salivary gland (SG) metabolism, and to further explore potential mechanisms involved. METHODS Various assessments including blood levels, insulin resistance (IR), saliva flow rate, as well as histological analyses through hematoxylin and eosin and Masson staining were performed to verify the reliability of DX model and protective effects of ART on the DX. Untargeted metabolomics and 16S rDNA sequencing were employed to respectively evaluate effects of ART on metabolite changes in SG and oral microbiota in the DX rats. Network pharmacology was employed to predict key pathways and targets with critical roles in ART's therapeutic effect on DX. Additionally, molecular docking and molecular dynamics (MD) simulations were utilized to evaluate interactions between ART and the identified key pathway targets. Surface plasmon resonance (SPR) experiment was performed to verify our computational predictions. Finally, molecular biology experiments were conducted to further validate the identified key pathway targets. RESULTS ART treatment ameliorated the hyperglycemia, IR and hyposalivation, and ameliorated pathological changes and oxidative stress of SGs in the DX rats. Besides, 16S rDNA sequencing suggested that ART alleviated the perturbation of oral microbiota (such as Veillonella, Lactobacillus, Clostridium sensu stricto 1, Escherichia-Shigella, and Dubosiella). Untargeted metabolomics revealed that steroid hormone biosynthesis, taurine and hypotaurine metabolism of SGs in the DX rats were partially corrected by ART treatment. Correlation analysis demonstrated an obvious association between the oral microbiota species and SG metabolites. Network pharmacology analysis identified NF-κB pathway as a critical pathway of ART in treating DX. Meanwhile, molecular docking and MD simulation suggested stable binding of ART to NF-κB/NLRP3 pathway targets, particularly NLRP3. Furthermore, SPR confirmed a stable binding of ART to NLRP3, a key target in the NF-κB/NLRP3 pathway. Oxidative stress indicators involved in NF-κB pathway, including MDA and SOD levels, were significantly reduced after ART intervention. Western blotting and qRT-PCR experiments further revealed that ART inhibited increase of NF-κB/NLRP3 pathway related targets expression, including NF-κB, NLRP3, Caspase1, IL-1β, IL-18, TNF-α, and IL-6 in the SGs of DX rats. CONCLUSION ART exerted beneficial therapeutic effects on DX by modulating oral microbiota dysbiosis and restoring SG's metabolic profiles, and inhibiting activation of NF-κB/NLRP3 pathway, suggesting its potential novel application in DX treatment.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jun Zhao
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Yuxiang Zhan
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiarui Li
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiayi Hang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Chan Tang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China
| | - Xiaolin Nong
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China.
| |
Collapse
|
2
|
Wang Y, Li Q, Hua J, Que H, Xu H, Xu X, Feng N. Causal relationship between gut microbiota and dental caries: a two-sample mendelian randomization study. BDJ Open 2025; 11:35. [PMID: 40210870 PMCID: PMC11986140 DOI: 10.1038/s41405-025-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND In recent years, an increasing number of studies have revealed a close relationship between the gut microbiota and a variety of human diseases. At the same time, it has also been shown that dysregulation of the oral microbiota may lead to changes in the gut microbiota. However, it remains unclear whether the gut microbiota affects the occurrence and development of oral diseases. Therefore, the aim of this study was to explore the potential effects of gut microbiota on dental caries and to reveal possible mechanisms of the gut-oral microbiota axis. METHODS First, gut microbiota and dental caries data from genome-wide association studies (GWAS) were analyzed using Mendelian randomization analysis. Inverse variance weighted (IVW) was used as the main criterion (P value < 0.05). Then, MR-Egger regression, IVW regression and leave-one-out tests were used to test the reliability and stability of the mendelian randomization results. Finally, the potential mechanisms and significance of the relationship between gut microbiota and dental caries were explored. RESULTS The analysis showed that Eubacteriumbrachygroup [odds ratio (OR) = 1.001, 95% confidence interval (CI): 1.000-1.002, P = 0.046] and Terrisporobacter (OR = 1.002, 95% CI: 1.0001-1.0041, P = 0.035) were positively correlated with dental caries. Escherichia.Shigella (OR = 0.997, 95% CI: 0.995-0.999, P = 0.047), Oscillibacter (OR = 0.998, 95% CI: 0.997-0.999, P = 0.038), RuminococcaceaeUCG014 (OR = 0.998, 95% CI: 0.996-0.999, P = 0.044) and Oscillospira (OR = 0.997, 95% CI: 0.995-0.999, P = 0.038) were negatively correlated with dental caries. CONCLUSION The present study demonstrated a significant causal relationship between the gut microbiota and the development of dental caries, providing new insights into influencing the development of dental caries by affecting the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yang Wang
- Department of urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi, 214000, China
| | - Quan Li
- Department of urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinqi Hua
- Department of urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hongliang Que
- Department of urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Haoxiang Xu
- Department of urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi, 214000, China
| | - Xinyu Xu
- Department of urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi, 214000, China
| | - Ninghan Feng
- Department of urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi, 214000, China.
| |
Collapse
|
3
|
Ranbhise JS, Ju S, Singh MK, Han S, Akter S, Ha J, Choe W, Kim SS, Kang I. Chronic Inflammation and Glycemic Control: Exploring the Bidirectional Link Between Periodontitis and Diabetes. Dent J (Basel) 2025; 13:100. [PMID: 40136728 PMCID: PMC11940948 DOI: 10.3390/dj13030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Periodontitis and diabetes mellitus are two highly prevalent chronic conditions that share a bidirectional relationship, significantly impacting public health. Periodontitis, a gum inflammation caused by microbial dysbiosis, aggravates glycemic control in diabetics, while uncontrolled diabetes heightens periodontitis severity. These conditions create a vicious cycle, where inflammation and microbial dysbiosis mutually drive disease progression, exacerbating systemic health. The underlying mechanisms involve inflammation, immune dysfunction, and microbial dysbiosis, with both diseases contributing to a chain of chronic inflammation that exacerbates systemic health. This relationship is significant because managing one condition can significantly impact the other. In diabetic individuals, interventions such as periodontal therapy have shown effectiveness in improving glycemic control, underscoring the potential of integrated strategies for managing these conditions simultaneously. In this review, we highlight the importance of a deeper understanding of the molecular and immunological interactions between these diseases is essential for developing integrated therapeutic approaches, with the potential to enhance the quality of life of the patient significantly.
Collapse
Affiliation(s)
- Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Carías Domínguez AM, de Jesús Rosa Salazar D, Stefanolo JP, Cruz Serrano MC, Casas IC, Zuluaga Peña JR. Intestinal Dysbiosis: Exploring Definition, Associated Symptoms, and Perspectives for a Comprehensive Understanding - a Scoping Review. Probiotics Antimicrob Proteins 2025; 17:440-449. [PMID: 39235661 PMCID: PMC11832579 DOI: 10.1007/s12602-024-10353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Dysbiosis is a clinical condition marked by altered gut microbiota resulting from external and internal host factors. It is strongly associated with gastrointestinal and extraintestinal alterations, so its symptomatology is broad and nonspecific. To date, gaps remain that limit professionals from making a timely diagnosis and prescribing the appropriate treatment. We aim to synthesize existing literature regarding clinical parameters for the early detection of patients with intestinal dysbiosis and the clinical events in which the use of probiotics as adjuvant therapy is most frequently reported. A scoping review of the literature was conducted in PubMed, Embase, Cochrane, and BVS (Biblioteca Virtual en Salud in Spanish) databases for articles published in the last 5 years. Primary studies and literature reviews related to clinical presentation, dysbiosis screening, and probiotics as adjuvant therapy for adult and pediatric patients were included. Twenty-three articles were retrieved in which the most frequently reported symptoms were abdominal distension, abdominal pain, and diarrhea. Chronic and metabolic diseases where the conditions most strongly associated with dysbiosis. Depending on symptomatology and etiology, dysbiosis is often treated with probiotics. Dysbiosis, often linked to diarrhea, should be considered with other symptoms like abdominal distension and pain, along with predisposing conditions and patient risk factors. Probiotics are commonly used as co-adjuvant treatments for antibiotic-associated diarrhea, irritable bowel syndrome, and childhood allergic diseases. The most commonly used probiotics were Weizmannia coagulans (formerly B. coagulans), Alkalihalobacillus clausii (formerly Bacillus clausii), Lacticaseibacillus rhamnosus, Limosilactobacillus reuteri, and Saccharomyces boulardii.
Collapse
Affiliation(s)
- Ailim Margarita Carías Domínguez
- Fundación Santa Fe de Bogotá (Santa Fe de Bogotá Foundation), Bogotá, Colombia.
- Universidad de los Andes (University of the Andes), Bogotá, Colombia.
- Colegio Colombiano de Gastroenterología, Hepatología y Nutrición Pediátrica (Colombian College of Gastroenterology, Hepatology and Pediatric Nutrition) (COLGAHNP), Bogotá, Colombia.
- LASPGHAN, Bogotá, Colombia.
- NASPGHAN, Bogotá, Colombia.
| | - Dimas de Jesús Rosa Salazar
- Grupo de Investigación del Caribe y Centroamérica Para La Microbiota, Probióticos y Prebióticos (Research Group of the Caribbean and Central America for Microbiota, Probiotics and Prebiotics) (GICCAMPP), Bogotá, Colombia
- Asociación Colombiana de Probióticos y Prebióticos (Colombian Association of Probiotics and Prebiotics) (ACoPyP), Bogotá, Colombia
- Sociedad Iberoamericana de Microbiota, Probióticos y Prebióticos (Ibero-American Society of Microbiota, Probiotics and Prebiotics) (SIAMPYP), Bogotá, Colombia
| | - Juan Pablo Stefanolo
- Hospital de Gastroenterología Carlos Bonorino Udaondo (Carlos Bonorino Udaondo Gastroenterology Hospital), CABA-Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Fu Y, Yang Y, Mu K, Zhou Y, Chai H. Efficacy of toothpaste containing OPTIMEALTH® OR in inhibiting dental plaque and gingivitis: A randomized controlled trial. Medicine (Baltimore) 2025; 104:e41225. [PMID: 39889197 PMCID: PMC11789894 DOI: 10.1097/md.0000000000041225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND This randomized double-blind, placebo-controlled clinical trial evaluated the effects of 2% OPTIMEALTH® OR toothpaste in regulating dental plaque microbiota and alleviating gingivitis. METHODS Subjects were randomly assigned to the placebo group and test group. They were instructed to brush their teeth with placebo toothpaste (placebo group) or OPTIMEALTH® OR toothpaste (test group) for a continuous 4 weeks. Clinical indices of plaque index, gingival index, and bleeding on probe (%) were examined, and images of dental plaque staining were captured at baseline and after 2 and 4 weeks. The plaque microbiome was analyzed by 16s rDNA amplicon sequencing at baseline and after 4 weeks. RESULTS Thirty-two participants with similar characteristics were recruited. After using OPTIMEALTH® OR toothpaste for 4 weeks, a decrease of 27.05% (P < .01), 8.29% (P > .05), and 47.44% (P < .05) in plaque index, gingival index, and bleeding on probe (%) scores was observed compared to the baseline, respectively. The extent of decline in these indices is greater than that in the placebo group. A decrease in dental plaque could be observed after 2 and 4 weeks in the test group. The 16s rDNA sequencing results showed that the observed species index and Chao index, but not the Shannon index and beta diversity, were reduced significantly after using OPTIMEALTH® OR toothpaste for 4 weeks. In addition, compared with the placebo group, using OPTIMEALTH® OR toothpaste reduced the abundance of bacterial species such as Veillonella parvula and Prevotella denticola. CONCLUSION Brushing teeth with 2% OPTIMEALTH® OR-fortified toothpaste could effectively reduce dental plaque and regulate plaque microbiota.
Collapse
Affiliation(s)
- Yimin Fu
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yong Yang
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Keyun Mu
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Yuye Zhou
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Hui Chai
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Polizzi A, Leanza Y, Belmonte A, Grippaudo C, Leonardi R, Isola G. Impact of Hyaluronic Acid and Other Re-Epithelializing Agents in Periodontal Regeneration: A Molecular Perspective. Int J Mol Sci 2024; 25:12347. [PMID: 39596411 PMCID: PMC11594871 DOI: 10.3390/ijms252212347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
This narrative review delves into the molecular mechanisms of hyaluronic acid (HA) and re-epithelializing agents in the context of periodontal regeneration. Periodontitis, characterized by chronic inflammation and the destruction of tooth-supporting tissues, presents a significant challenge in restorative dentistry. Traditional non-surgical therapies (NSPTs) sometimes fail to fully manage subgingival biofilms and could benefit from adjunctive treatments. HA, with its antibacterial, antifungal, anti-inflammatory, angiogenic, and osteoinductive properties, offers promising therapeutic potential. This review synthesizes the current literature on the bioactive effects of HA and re-epithelializing agents, such as growth factors and biomaterials, in promoting cell migration, proliferation, and extracellular matrix (ECM) synthesis. By modulating signaling pathways like the Wnt/β-catenin, TGF-β, and CD44 interaction pathways, HA enhances wound healing processes and tissue regeneration. Additionally, the role of HA in facilitating cellular crosstalk between epithelial and connective tissues is highlighted, as it impacts the inflammatory response and ECM remodeling. This review also explores the combined use of HA with growth factors and cytokines in wound healing, revealing how these agents interact synergistically to optimize periodontal regeneration. Future perspectives emphasize the need for further clinical trials to evaluate the long-term outcomes of these therapies and their potential integration into periodontal treatment paradigms.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy
| | - Ylenia Leanza
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy
| | - Antonio Belmonte
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy
| | - Cristina Grippaudo
- Head and Neck Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy
| |
Collapse
|
7
|
Xi M, Ruan Q, Zhong S, Li J, Qi W, Xie C, Wang X, Abuduxiku N, Ni J. Periodontal bacteria influence systemic diseases through the gut microbiota. Front Cell Infect Microbiol 2024; 14:1478362. [PMID: 39619660 PMCID: PMC11604649 DOI: 10.3389/fcimb.2024.1478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM) and cardiovascular disease, are associated with microbiota dysbiosis. The oral and intestinal microbiota are directly connected anatomically, and communicate with each other through the oral-gut microbiome axis to establish and maintain host microbial homeostasis. In addition to directly, periodontal bacteria may also be indirectly involved in the regulation of systemic health and disease through the disturbed gut. This paper provides evidence for the role of periodontal bacteria in systemic diseases via the oral-gut axis and the far-reaching implications of maintaining periodontal health in reducing the risk of many intestinal and parenteral diseases. This may provide insight into the underlying pathogenesis of many systemic diseases and the search for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qijun Ruan
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Congman Xie
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Nuerbiya Abuduxiku
- Department of Stomatology, The First People’s Hospital of Kashi, Kashi, China
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Kis-György R, Körtési T, Anicka A, Nagy-Grócz G. The Connection Between the Oral Microbiota and the Kynurenine Pathway: Insights into Oral and Certain Systemic Disorders. Curr Issues Mol Biol 2024; 46:12641-12657. [PMID: 39590344 PMCID: PMC11593024 DOI: 10.3390/cimb46110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The oral microbiome, comprising bacteria, fungi, viruses, and protozoa, is essential for maintaining both oral and systemic health. This complex ecosystem includes over 700 bacterial species, such as Streptococcus mutans, which contributes to dental caries through acid production that demineralizes tooth enamel. Fungi like Candida and pathogens such as Porphyromonas gingivalis are also significant, as they can lead to periodontal diseases through inflammation and destruction of tooth-supporting structures. Dysbiosis, or microbial imbalance, is a key factor in the development of these oral diseases. Understanding the composition and functions of the oral microbiome is vital for creating targeted therapies for these conditions. Additionally, the kynurenine pathway, which processes the amino acid tryptophan, plays a crucial role in immune regulation, neuroprotection, and inflammation. Oral bacteria can metabolize tryptophan, influencing the production of kynurenine, kynurenic acid, and quinolinic acid, thereby affecting the kynurenine system. The balance of microbial species in the oral cavity can impact tryptophan levels and its metabolites. This narrative review aims to explore the relationship between the oral microbiome, oral diseases, and the kynurenine system in relation to certain systemic diseases.
Collapse
Affiliation(s)
- Rita Kis-György
- Section of Health Behaviour and Health Promotion, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Szőkefalvi–Nagy Béla u. 4/B, H-6720 Szeged, Hungary
| | - Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Alexandra Anicka
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Út 78/A, H-1182 Budapest, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Alkaya B, Haytac MC, Özcan M, Türer OU, Kayhan HG, Demirbilek F, Teughels W. Daily Probiotic Ayran Intake Reduces Gingival Inflammation: An Experimental Gingivitis Study. ORAL HEALTH & PREVENTIVE DENTISTRY 2024; 22:511-518. [PMID: 39400083 PMCID: PMC11619859 DOI: 10.3290/j.ohpd.b5784693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE This study investigates the effects of daily consumption of a probiotic ayran drink on gingival inflammation and the development of experimental gingivitis. MATERIALS AND METHODS This randomised, double-blind, placebo-controlled trial involved 54 volunteer students. The participants were randomly assigned to two groups: the control group received regular ayran for 42 days, while the test group received probiotic enriched ayran (including Lactobacillus acidophilus and Bifidobacterium bifidum) for 42 days twice a day. After 42 days, mechanical plaque control was stopped for 5 days. The plaque index (PI), gingival index (GI), probing bleeding (BOP), and probing depth (PPD) were measured at baseline, day 42, and day 47. At the same time, gingival crevicular fluid was taken for matrix metalloproteinase-8 examination. RESULTS The mean scores of BOP, GI, PI, and MMP-8 levels increases in both groups following the 5-day experimental gingivitis period compared to baseline and day 42. Patients using probiotic ayran had significantly less PI, GI, BOP scores and MPP-8 values (p = 0.002; p 0.001; p 0.001; p = 0.001; p = 0.001, respectively) at day 47 compared to the control group. No statistically significant differences in probing pocket depth (PPD) were observed at any time point. CONCLUSION The present study suggests that daily consumption of a probiotic ayran drink containing Lactobacillus acidophilus and Bifidobacterium bifidum statistically significantly lowers clinical and immunological markers of gingival inflammation.
Collapse
Affiliation(s)
- Bahar Alkaya
- Assistant Professor, Department of Periodontology Faculty of Dentistry, Cukurova University, Adana, Turkey. Data collection, critically revised the manuscript
| | - Mehmet Cenk Haytac
- Professor, Department of Periodontology Faculty of Dentistry, Cukurova University, Adana, Turkey. Study conception and design, critically revised the manuscript
| | - Mustafa Özcan
- Associate Professor, Department of Periodontology Faculty of Dentistry, Cukurova University, Adana, Turkey. Performed clinical treatment, critically revised the manuscript
| | - Onur Uçak Türer
- Professor, Department of Periodontology Faculty of Dentistry, Cukurova University, Adana, Turkey. collected and analyzed data and prepared the manuscript, critically revised the manuscript
| | - Hamza Gökhan Kayhan
- Research Assistant, Department of Periodontology, Cukurova University, Adana, Turkey. Collected and analysed data, prepared and critically revised the manuscript
| | - Furkan Demirbilek
- Research Assistant, Department of Periodontology, Cukurova University, Adana, Turkey. Collected and analysed data, prepared and critically revised the manuscript
| | - Wim Teughels
- Professor, Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium. Study conception and design, critically revised the manuscript
| |
Collapse
|
10
|
Sulaiman Y, Pacauskienė IM, Šadzevičienė R, Anuzyte R. Oral and Gut Microbiota Dysbiosis Due to Periodontitis: Systemic Implications and Links to Gastrointestinal Cancer: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1416. [PMID: 39336457 PMCID: PMC11433653 DOI: 10.3390/medicina60091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Periodontitis can disrupt oral and gut microbiota, leading to dysbiosis that affects overall systemic health. Besides the spread of periodontal pathogens by the hematogenous route, they can also be translocated into the gastrointestinal tract, possibly intervening in the neoplastic process in the gastrointestinal tract. This manuscript reviews the relationship between oral and gut microbiota due to periodontitis, discussing systemic health implications and potential links to gastrointestinal cancer. This article highlights the significance and effect of dysbiosis in the gut, emphasizing the importance of maintaining oral health to prevent systemic diseases. Lastly, it will go through therapeutic innovations such as probiotics and oral microbiota analysis tools for systemic disease detection. These findings will mark the integration of oral health management in clinical practice to lower systemic disease risk and improve overall patient outcomes. Aim of work: This manuscript aims to unravel the pathological interaction between oral and gut microbiota and their bidirectional effect on systemic diseases. Materials and methods: The review was performed using the MEDLINE and ScienceDirect databases. Reviewed articles were published in English between the year 2015 and 2024. The search used keywords such as ("oral microbiota" AND "periodontal disease") OR ("oral microbiota" AND "gastrointestinal cancer") OR ("Porphyromonas gingivalis" AND "periodontal disease") OR ("Helicobacter pylori" AND "gastric cancer") OR ("gut microbiome" AND "inflammatory bowel disease") OR ("oral microbiome" AND "systemic diseases"). Conclusions: The dysbiotic change in the oral cavity due to periodontitis is linked directly and indirectly to systemic diseases such as IBS, neurodegenerative diseases, muscle joint diseases, respiratory infections, and gastrointestinal cancer; this underscores the importance of maintaining oral hygiene for prophylaxis of oral diseases and the prevention of systemic diseases. A better understanding of the interconnections between oral health and systemic diseases will integrate oral health management to offer new prevention, diagnostic, and treatment opportunities to improve overall patient outcomes.
Collapse
Affiliation(s)
- Yaman Sulaiman
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Ingrida Marija Pacauskienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Renata Šadzevičienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Rugile Anuzyte
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
11
|
Mo C, Huang M, Yan F, Song M, Fan J, Zhang J. Correlation Between Gut Microbiota Composition and Serum Interleukin 17 (IL-17) in Mice With Type 2 Diabetes and Experimental Periodontitis. Cureus 2024; 16:e68005. [PMID: 39211822 PMCID: PMC11360949 DOI: 10.7759/cureus.68005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To preliminarily explore the composition characteristics of gut microbiota in mice with type 2 diabetes mellitus (T2DM) and experimental periodontitis, and their correlation with serum IL-17 levels, aiming to provide new insights and evidence for related experimental studies. Methods A total of 42 SPF-grade C57BL/6J mice were randomly selected, with 24 used for T2DM modeling. Successfully modeled T2DM mice were divided into the T2DM group (ND group, n=8) and T2DM with experimental periodontitis group (PD group, n=8). Non-T2DM mice were divided into the blank control group (NC group, n=8) and the experimental periodontitis group (NP group, n=8). After modeling, body weight and fasting plasma glucose (FPG) were measured weekly. Each group of mice underwent an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). Six weeks after modeling experimental periodontitis, serum IL-17 levels were measured using ELISA, intestinal inflammation was assessed using HE staining, and gut microbiota composition in cecal contents was analyzed by 16S rRNA sequencing to determine its correlation with serum IL-17 levels. Results FPG in the PD group was higher than in the ND group, with a statistically significant difference in the 12th week (p<0.05). The glucose tolerance level in the PD group was lower than in the ND group (p<0.01). Compared with the NC group, other groups showed varying degrees of inflammatory cell infiltration in the intestinal mucosa, and serum IL-17 levels were lower in both the ND and PD groups compared to the NC group (p<0.01), with the PD group also lower than the NP group (p<0.01). The Shannon and Pielou-e indices of gut microbiota in the PD group were significantly lower than those in the NP group (p<0.05). In terms of microbiota composition, Firmicutes were increased in both the ND and PD groups compared to the NC and NP groups (p<0.05), while Bacteroidetes were decreased (p<0.05). Proteobacteria were increased in the PD group compared to the ND group (p<0.05). The abundance of Bacteroidetes and the Bacteroidetes/Firmicutes ratio was moderately positively correlated with serum IL-17 levels (p<0.01) and moderately negatively correlated with blood glucose levels (p<0.01); serum IL-17 levels were strongly negatively correlated with blood glucose levels (p<0.01). Conclusion Comorbidity of experimental periodontitis and T2DM may exacerbate glucose metabolism impairment in T2DM mice by increasing the abundance of Proteobacteria and intestinal mucosal damage. Serum IL-17 levels may serve as an indicator of gut microbiota dysbiosis in T2DM mice with experimental periodontitis.
Collapse
Affiliation(s)
- Chaolun Mo
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Mingkun Huang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Fuhua Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing University Medical School & Nanjing University Institute of Stomatology, Nanjing, CHN
| | - Minghui Song
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Jiabing Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, CHN
| |
Collapse
|
12
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
13
|
Duane B, Yap T, Neelakantan P, Anthonappa R, Bescos R, McGrath C, McCullough M, Brookes Z. Mouthwashes: Alternatives and Future Directions. Int Dent J 2023; 73 Suppl 2:S89-S97. [PMID: 37867066 PMCID: PMC10690551 DOI: 10.1016/j.identj.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
This narrative review summarises "alternative" or "natural" over-the-counter (OTC) mouthwashes not covered elsewhere in this supplement and newly emerging products, as potential mouthwashes of the future. The "natural" mouthwashes reviewed include saltwater, baking soda, coconut oil, charcoal, propolis, seaweeds, and probiotics. Other than essential oils, it is apparent that their clinical effectiveness is still under debate, but there is some evidence to suggest that propolis reduces plaque and gingivitis. This review also covers the host immune response, via novel anti-inmmunomodulant mouthwashes, such as erythropoietin to reduce inflammation with oral mucositis (OM) after radiotherapy. The emerging concept of nanoparticle-containing mouthwashes, such as iron oxide, is further discussed for OM, this agent having the potential for more targeted delivery of chemical antimicrobials. Unfortunately, there are impacts on the environment of widening mouthwash use with more new products, including increased use of packaging, antimicrobial resistance, and possible detrimental effects on marine life. Further, there are roadblocks, relating to regularly approvals and side effects, that still need to be overcome for any OTC deivered immunomodulant or nanoformulation mouthwashes. Despite these caveats, there are many new mouthwashes under development, which could help manage major oral diseases such as caries, gingivitis, and periodontal disease.
Collapse
Affiliation(s)
- Brett Duane
- Dublin Dental School and Hospital, Trinity College Dublin, Dublin, Ireland
| | - Tami Yap
- Faculty of Medicine, Dentistry & Health Sciences, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | | | - Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Colman McGrath
- Applied Oral Sciences & Community Dental Care, Hong Kong
| | - Michael McCullough
- Faculty of Medicine, Dentistry & Health Sciences, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Zoë Brookes
- Peninsula Dental School, Plymouth University, Plymouth, UK.
| |
Collapse
|
14
|
D’Elia D, Truu J, Lahti L, Berland M, Papoutsoglou G, Ceci M, Zomer A, Lopes MB, Ibrahimi E, Gruca A, Nechyporenko A, Frohme M, Klammsteiner T, Pau ECDS, Marcos-Zambrano LJ, Hron K, Pio G, Simeon A, Suharoschi R, Moreno-Indias I, Temko A, Nedyalkova M, Apostol ES, Truică CO, Shigdel R, Telalović JH, Bongcam-Rudloff E, Przymus P, Jordamović NB, Falquet L, Tarazona S, Sampri A, Isola G, Pérez-Serrano D, Trajkovik V, Klucar L, Loncar-Turukalo T, Havulinna AS, Jansen C, Bertelsen RJ, Claesson MJ. Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action. Front Microbiol 2023; 14:1257002. [PMID: 37808321 PMCID: PMC10558209 DOI: 10.3389/fmicb.2023.1257002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices.
Collapse
Affiliation(s)
- Domenica D’Elia
- Department of Biomedical Sciences, National Research Council, Institute for Biomedical Technologies, Bari, Italy
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Magali Berland
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| | - Georgios Papoutsoglou
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, Heraklion, Greece
- Department of Computer Science, University of Crete, Heraklion, Greece
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
| | - Aldert Zomer
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marta B. Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, Portugal
| | - Eliana Ibrahimi
- Department of Biology, University of Tirana, Tirana, Albania
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Alina Nechyporenko
- Systems Engineering Department, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Thomas Klammsteiner
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Enrique Carrillo-de Santa Pau
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Gianvito Pio
- Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Simeon
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
| | - Ramona Suharoschi
- Molecular Nutrition and Proteomics Research Laboratory, Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, the Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA-BIONAND Platform), University of Malaga, Malaga, Spain
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
| | | | - Elena-Simona Apostol
- Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Ciprian-Octavian Truică
- Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jasminka Hasić Telalović
- Department of Computer Science, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Erik Bongcam-Rudloff
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Uppsala, Sweden
| | | | - Naida Babić Jordamović
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Verlab Research Institute for BIomedical Engineering, Medical Devices and Artificial Intelligence, Sarajevo, Bosnia and Herzegovina
| | - Laurent Falquet
- University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Alexia Sampri
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - David Pérez-Serrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Aki S. Havulinna
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Christian Jansen
- Biome Diagnostics GmbH, Vienna, Austria
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | | |
Collapse
|
15
|
Siddiqui R, Badran Z, Boghossian A, Alharbi AM, Alfahemi H, Khan NA. The increasing importance of the oral microbiome in periodontal health and disease. Future Sci OA 2023; 9:FSO856. [PMID: 37621848 PMCID: PMC10445586 DOI: 10.2144/fsoa-2023-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 08/26/2023] Open
Abstract
Herein, the aim is to discuss the current knowledge of microbiome and periodontal diseases. Current treatment strategies include mechanical therapy such as root planing, scaling, deep pocket debridement and antimicrobial chemotherapy as an adjuvant therapy. Among promising therapeutic strategies, dental probiotics and oral microbiome transplantation have gained attention, and may be used to treat bacterial imbalances by competing with pathogenic bacteria for nutrients and adhesion surfaces, as well as probiotics targeting the gut microbiome. Development of strategies to prevent and treat periodontal diseases are warranted as both are highly prevalent and can affect human health. Further studies are necessary to better comprehend the microbiome in order to develop innovative preventative measures as well as efficacious therapies against periodontal diseases.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts & Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Zahi Badran
- Periodontology Unit, Department of Preventive & Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anania Boghossian
- College of Arts & Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha, 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
17
|
Elzayat H, Mesto G, Al-Marzooq F. Unraveling the Impact of Gut and Oral Microbiome on Gut Health in Inflammatory Bowel Diseases. Nutrients 2023; 15:3377. [PMID: 37571313 PMCID: PMC10421146 DOI: 10.3390/nu15153377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disorder characterized by chronic inflammation of the gastrointestinal tract (GIT). IBD mainly includes two distinct diseases, namely Crohn's disease and ulcerative colitis. To date, the precise etiology of these conditions is not fully elucidated. Recent research has shed light on the significant role of the oral and gut microbiome in the development and progression of IBD and its collective influence on gut health. This review aims to investigate the connection between the oral and gut microbiome in the context of IBD, exploring the intricate interplay between these microbial communities and their impact on overall gut health. Recent advances in microbiome research have revealed a compelling link between the oral and gut microbiome, highlighting their pivotal role in maintaining overall health. The oral cavity and GIT are two interconnected ecosystems that harbor complex microbial communities implicated in IBD pathogenesis in several ways. Reduction in diversity and abundance of beneficial bacterial species with the colonization of opportunistic pathogens can induce gut inflammation. Some of these pathogens can arise from oral origin, especially in patients with oral diseases such as periodontitis. It is essential to discern the mechanisms of microbial transmission, the impact of oral health on the gut microbiome, and the potential role of dysbiosis in disease development. By elucidating this relationship, we can enhance our understanding of IBD pathogenesis and identify potential therapeutic avenues for managing the disease. Furthermore, innovative strategies for modulating the oral and gut microbiome can promote health and prevent disease occurrence and progression.
Collapse
Affiliation(s)
- Hala Elzayat
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ghaidaa Mesto
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
18
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
19
|
Nascimento GG, Leite FR, Mesquita CM, Vidigal MTC, Borges GH, Paranhos LR. Confounding in observational studies evaluating the association between Alzheimer's disease and periodontal disease: A systematic review. Heliyon 2023; 9:e15402. [PMID: 37128313 PMCID: PMC10147971 DOI: 10.1016/j.heliyon.2023.e15402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Background Studies investigating the association between periodontitis and Alzheimer's disease (AD) suggested indirect (periodontitis would increase the circulation of inflammation-inducible molecules) and direct (periodontopathogens might colonize brains affected by Alzheimer's disease) pathways. While there seems to be a positive relationship between periodontitis and AD, concerns have been raised about the role of confounding. Aim To systematically review the literature to assess confounding and their level of heterogeneity in the association between periodontitis and AD. Also, to examine data reporting and interpretation regarding confounding bias. Methods This review followed the PRISMA guidelines and was registered within PROSPERO. Electronic searches were performed in seven main databases and three others to capture the "grey literature". The PECO strategy was used to identify observational studies (cross-sectional, case-control, or cohort studies) assessing the association between periodontal disease and AD without restricting publication language and year. Critical appraisal was performed according to the Joanna Briggs Institute guidelines. Confounders were evaluated following a two-step approach. Results A total of 3255 studies were found, of which 18 (13 case-control, four cross-sectional, and one cohort) met the eligibility criteria. Participants with AD were 1399 (mean age 64 ± 9 to 84.8 ± 5.6 years), whereas those without AD were 1730 (mean age 62.6 ± 7.1 to 81.4 ± 4.6). Female patients composed most of the sample for both groups. The confounding variables "age" and "sex" were present in all studies. Four studies used the 2017 AAP/EFP periodontal classification. Most studies had a low risk of bias. Fifty percent of the articles did not consider confounding; variation in the adjustment approaches was observed. Additionally, 62% of the studies did not mention bias, and 40% did not discuss any limitations about confounders. Conclusions Given the study's limitations, caution must be taken to properly interpret the association between periodontitis and AD.Registration: CRD42022293884.
Collapse
Affiliation(s)
- Gustavo G. Nascimento
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore
- Corresponding author. National Dental Research Institute Singapore National Dental Centre Singapore, 5 Second Hospital Avenue, 168938, Singapore.
| | - Fábio R.M. Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore
| | - Caio Melo Mesquita
- School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Maria Tereza Campos Vidigal
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme Henrique Borges
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Renato Paranhos
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
- Department of Preventive and Community Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
20
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|