1
|
Li X, Wen X, Luo Z, Wang X, Zhang Y, Wei J, Tian Y, Ling R, Duan Y. Simultaneous detection of volatile and non-volatile metabolites in urine using UPLC-Q-Exactive Orbitrap-MS and HS-SPME/GC-HRMS: A promising strategy for improving the breast cancer diagnosis accuracy. Talanta 2025; 291:127812. [PMID: 40023122 DOI: 10.1016/j.talanta.2025.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) is the primary cause of cancer-related deaths in women. Currently, the discovery of biomarkers primarily relies on single platform, which might overlook other potential biomarkers and lead to inaccurate diagnoses. This study aims to: (1) expand the detection range of biomarkers through multiple analytical techniques, thereby improving the accuracy of BC diagnosis, and (2) analyze the metabolic pathways of the biomarkers to explore the metabolic mechanisms underlying BC. Urine samples from BC patients and healthy controls were analyzed using two techniques: Ultra-high performance liquid chromatography combined with Quadrupole-Exactive-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS), and headspace solid-phase microextraction combined with gas chromatography-high resolution mass spectrometry (HS-SPME/GC-HRMS). Data from each platform was analyzed independently using both univariate and multivariate statistical approaches to identify candidate biomarkers. Subsequently, a mid-level data fusion approach was applied to integrate the candidate biomarkers identified by each platform. The fused data were used to construct orthogonal partial least squares discriminant analysis (OPLS-DA) models and random forest (RF) models, which were then compared against models based on individual platform. The fused RF and OPLS-DA models demonstrated enhanced diagnostic accuracy compared to the individual model. Integrating GC-HRMS and UPLC-Q-Exactive Orbitrap-MS achieved the best performance, with an AUC value of 0.967, sensitivity of 86.37 %, and specificity of 89.19 %. Metabolic pathway analysis revealed that 10 metabolic pathways exert an impact on BC. Four pathways-pyruvate metabolism, sulfur metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were found to be associated with BC in both metabolomics and volatolomics studies, indicating that these pathways play pivotal roles in BC. This study confirmed the potential of merging multi-platforms to enhance the accuracy of BC diagnosis, offering new avenues for understanding the metabolic mechanisms of BC.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China; Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yilin Zhang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Jing Wei
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, 726000, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Xi'an, 710032, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
2
|
Zhao H, Xiao Q, An Y, Wang M, Zhong J. Phospholipid metabolism and drug resistance in cancer. Life Sci 2025; 372:123626. [PMID: 40210119 DOI: 10.1016/j.lfs.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Phospholipids, complex lipids prevalent in the human body, play crucial roles in various pathophysiological processes. Beyond their synthesis and degradation, phospholipids can influence chemoresistance by participating in ferroptosis. Extensive evidence highlights the significant link between tumor drug resistance and phospholipids. Therefore, drugs targeting phospholipid metabolism itself or the synthesis of corresponding composite materials will effectively overcome the difficulties of clinical tumor treatment.
Collapse
Affiliation(s)
- Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yangfang An
- Yiyang Central Hospital, Yiyang, Hunan 413099, PR China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
3
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
4
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Markotić A, Omerović J, Marijan S, Režić-Mužinić N, Čikeš Čulić V. Biochemical Pathways Delivering Distinct Glycosphingolipid Patterns in MDA-MB-231 and MCF-7 Breast Cancer Cells. Curr Issues Mol Biol 2024; 46:10200-10217. [PMID: 39329960 PMCID: PMC11430773 DOI: 10.3390/cimb46090608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The complex structure of glycosphingolipids (GSLs) supports their important role in cell function as modulators of growth factor receptors and glutamine transporters in plasma membranes. The aberrant composition of clustered GSLs within signaling platforms, so-called lipid rafts, inevitably leads to tumorigenesis due to disturbed growth factor signal transduction and excessive uptake of glutamine and other molecules needed for increased energy and structural molecule cell supply. GSLs are also involved in plasma membrane processes such as cell adhesion, and their transition converts cells from epithelial to mesenchymal with features required for cell migration and metastasis. Glutamine activates the mechanistic target of rapamycin complex 1 (mTORC1), resulting in nucleotide synthesis and proliferation. In addition, glutamine contributes to the cancer stem cell GD2 ganglioside-positive phenotype in the triple-negative breast cancer cell line MDA-MB-231. Thieno[2,3-b]pyridine derivative possesses higher cytotoxicity against MDA-MB-231 than against MCF-7 cells and induces a shift to aerobic metabolism and a decrease in S(6)nLc4Cer GSL-positive cancer stem cells in the MDA-MB-231 cell line. In this review, we discuss findings in MDA-MB-231, MCF-7, and other breast cancer cell lines concerning their differences in growth factor receptors and recent knowledge of the main biochemical pathways delivering distinct glycosphingolipid patterns during tumorigenesis and therapy.
Collapse
Affiliation(s)
- Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Jasminka Omerović
- Department of Immunology, University of Split School of Medicine, 21000 Split, Croatia
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
7
|
Ari Yuka S, Yilmaz A. Decoding dynamic miRNA:ceRNA interactions unveils therapeutic insights and targets across predominant cancer landscapes. BioData Min 2024; 17:11. [PMID: 38627780 PMCID: PMC11022475 DOI: 10.1186/s13040-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, there are no comprehensive studies investigating the ceRNA interactions in normal tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared to healthy lung, prostate, and breast tissues, respectively. Our observations pertaining to tumor-specific competing endogenous RNA (ceRNA) interactions revealed that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, engage in post-transcriptional intercommunication within tumor tissues, in contrast to their absence in corresponding healthy samples. We also found that 90 ceRNAs are shared by the three cancer types and that these ceRNAs participate in ceRNA interactions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches in future studies and could be used in these three aggressive cancer types. More specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential as common targets in the three critical cancers. In contrast to conventional methods that construct ceRNA networks using differentially expressed genes compared to normal tissues, our proposed approach identifies ceRNA players by considering their context within the ceRNA:miRNA interactions. Our results have the potential to reveal distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, thereby paving the way for RNA-based strategies in the battle against cancer.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
8
|
Barros YVR, de Andrade AO, da Silva LPD, Pedroza LAL, Bezerra IC, Cavalcanti IDL, de Britto Lira Nogueira MC, Mousinho KC, Antoniolli AR, Alves LC, de Lima Filho JL, Moura AV, Rosini Silva ÁA, de Melo Porcari A, Gubert P. Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and Caenorhabditis Elegans. Anticancer Agents Med Chem 2024; 24:798-811. [PMID: 38500290 DOI: 10.2174/0118715206291634240312062957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.
Collapse
Affiliation(s)
| | | | | | | | | | - Iago Dillion Lima Cavalcanti
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Academic Center of Vitória, Federal University of Pernambuco, Pernambuco, Brazil
| | | | | | - Luiz Carlos Alves
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology and Experimental Therapy, Recife, Brazil.cr
| | - José Luiz de Lima Filho
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Alexandre Varão Moura
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Álex Aparecido Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Andréia de Melo Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Codini M, Fiorani F, Mandarano M, Cataldi S, Arcuri C, Mirarchi A, Ceccarini MR, Beccari T, Kobayashi T, Tomishige N, Sidoni A, Albi E. Sphingomyelin Metabolism Modifies Luminal A Breast Cancer Cell Line under a High Dose of Vitamin C. Int J Mol Sci 2023; 24:17263. [PMID: 38139092 PMCID: PMC10743617 DOI: 10.3390/ijms242417263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Cataldo Arcuri
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Alessandra Mirarchi
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Nario Tomishige
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| |
Collapse
|
10
|
Çubuk C, Loucera C, Peña-Chilet M, Dopazo J. Crosstalk between Metabolite Production and Signaling Activity in Breast Cancer. Int J Mol Sci 2023; 24:7450. [PMID: 37108611 PMCID: PMC10138666 DOI: 10.3390/ijms24087450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The reprogramming of metabolism is a recognized cancer hallmark. It is well known that different signaling pathways regulate and orchestrate this reprogramming that contributes to cancer initiation and development. However, recent evidence is accumulating, suggesting that several metabolites could play a relevant role in regulating signaling pathways. To assess the potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic models. Gaussian Processes, powerful machine learning methods, were used in combination with SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain potential causal relationships between the production of metabolites and the regulation of signaling pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The results presented here point to the existence of a complex crosstalk between signaling and metabolic pathways more complex than previously was thought.
Collapse
Affiliation(s)
- Cankut Çubuk
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| |
Collapse
|