1
|
Gao Y, Wang J, Mu X, Liu B, Xia M, Wang F, Tong Z. Carbon quantum dots in spectrofluorimetric analysis: A comprehensive review of synthesis, mechanisms and multifunctional applications. Talanta 2025; 293:128066. [PMID: 40194462 DOI: 10.1016/j.talanta.2025.128066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Carbon quantum dots (CQDs), as a representative nanomaterial, have demonstrated promising applications in fluorescence analysis owing to their unique optical properties, low cytotoxicity and exceptional biocompatibility. This review systematically summarizes recent advances in synthesis strategies, detection mechanisms and applications of CQDs for sensing metal ions (e.g., Hg2+, Fe3+, Cu2+), small molecules (e.g., biomolecules, pharmaceuticals, azo dyes) and proteins. Hybridization of CQDs with functional materials has been shown to significantly enhance their photoluminescence properties while optimizing detection sensitivity and selectivity. The article critically examines fundamental detection mechanisms, especially fluorescence quenching and further outlines design strategies for fluorescence probes based on "on-off" switching or ratio signaling. Moreover, current challenges are analyzed, such as the need for synthetic protocol standardization, in-depth exploration of heteroatom-doped CQDs, expansion of detectable analytes and rational design of fluorescence turn-on probes. Future prospects in environmental monitoring, biomedical diagnostics and pharmaceutical analysis are also highlighted. This comprehensive review offers critical insights to guide the rational design and application of advanced CQD-based hybrid systems.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
2
|
Shen J, Zhou M, Xiao N, Tan Z, Liang X. Unveiling the Mystery of the Stimulatory Effects of Arecoline: Its Relevance to the Regulation of Neurotransmitters and the Microecosystem in Multi-Ecological Intestinal Sites. Int J Mol Sci 2025; 26:3150. [PMID: 40243919 PMCID: PMC11989758 DOI: 10.3390/ijms26073150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The dried ripe seeds and pericarp of Areca catechu L., a palm species, possess significant economic value. Masticating betel nut is also a long-standing and widely prevalent lifestyle habit rooted in history, known for its stimulating effect. This effect stems primarily from arecoline, the principal active compound in betel nut. This study investigates the potential mechanisms underlying the stimulating effects of arecoline, focusing on neurotransmitters, neurotrophic factors, and the microecosystem in multi-ecological intestinal sites. After arecoline intervention in mice, significant changes were observed in locomotor activity. The levels of dopamine (DA) in liver tissue and 5-hydroxytryptamine (5-HT) in brain tissue were significantly reduced. There was a significant increase in microbial activity in the feces and in the level of n-valeric acid in the intestinal content. At the genus level, the relative abundance of Clostridium was significantly reduced, whereas the relative abundances of Helicobacter and Aquincola were markedly increased. Helicobacter, Aquincola, Faecalibaculum, and Liquorilactobacillus were signature genera in the arecoline-treated group. The 5-HT level was significantly negatively correlated with the abundance of the signature genera Aquincola, Helicobacter, and Liquorilactobacillus in the arecoline group. The ingestion of arecoline can alter the behavioral patterns of mice, causing significant changes in the 5-HT levels in brain tissue and exerting regulatory effects on the microecosystem in multi-ecological intestinal sites. These findings will provide a reference for the future development and utilization of betel nut.
Collapse
Affiliation(s)
- Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Mengsi Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Nenqun Xiao
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Xuejuan Liang
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
3
|
Abella LMR, Neumann J, Hofmann B, Kirchhefer U, Gergs U. Clebopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04075-1. [PMID: 40128365 DOI: 10.1007/s00210-025-04075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Clebopride resembles in its structural formula metoclopramide. Clebopride, an approved drug, is used to treat gastrointestinal diseases. Here, we tested the hypothesis that clebopride like metoclopramide acts as a partial agonist at human cardiac 5-HT4-serotonin-receptors. Clebopride enhanced the force of contraction (FOC) in isolated, electrically stimulated (1 Hz) left atrial preparations (LA) from transgenic mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Subsequently applied GR125487 (1 µM), a specific 5-HT4-serotonin-receptor antagonist, diminished this positive inotropic effect (PIE) of clebopride in LA from 5-HT4-TG. Clebopride failed to heighten FOC in LA from littermate wild-type mouse hearts (WT). Clebopride augmented the beating rate in isolated right atrial preparations (RA) from 5-HT4-TG but unable to do so in RA from WT. Clebopride alone (up to 10 µM) failed to augment FOC in isolated electrically stimulated (1Hz) human right atrial preparations (HAP) obtained during open heart surgery from adult patients with severe coronary heart disease. Interestingly, in the presence of the phosphodiesterase III inhibitor cilostamide, clebopride heightened FOC in HAP. GR125487 attenuated this PIE in HAP. Furthermore, when 1 µM serotonin had raised FOC in HAP, additionally applied 10 µM clebopride diminished FOC in HAP. We conclude that clebopride can act as an agonist and as an antagonist at 5-HT4-serotonin receptors in the human atrium.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Medical Faculty, Institute for Pharmacology and Toxicology, University Münster, Münster, Germany
| | - Ulrich Gergs
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
4
|
Abella LMR, Neumann J, Hofmann B, Gergs U. Bromopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04013-1. [PMID: 40095050 DOI: 10.1007/s00210-025-04013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Bromopride, an analogue of metoclopramide, is approved in some countries to treat gastrointestinal diseases. These therapeutic effects of bromopride are explained by antagonism at D2-dopamine receptors in the gut and the brain. We tested here the hypothesis that bromopride acts as an agonist or antagonist at the human cardiac 5-HT4-serotonin receptors. To this end, the force of contraction (FOC) was measured in isolated human atrial preparations (HAP), in isolated left atrial preparations (LA), and in isolated spontaneously beating right atrial (RA) preparations from mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Bromopride concentration dependently increased FOC in LA from 5-HT4-TG. The positive inotropic effect (PIE) of bromopride in LA from 5-HT4-TG was abolished by GR125487, a 5-HT4-serotonin receptor antagonist. Only in the presence of the phosphodiesterase III inhibitor cilostamide did bromopride raise FOC under isometric conditions in HAP. The PIE of 10 µM bromopride in HAP was extinguished by 1 µM GR125487. When serotonin had elevated FOC in HAP, additionally applied bromopride reduced FOC. These data suggest that bromopride is a partial agonist at human cardiac 5-HT4-serotonin receptors.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
5
|
Fan Q, Wang Y, An Q, Ling Y. Right ventricular dysfunction following surgical repair of tetralogy of Fallot: Molecular pathways and therapeutic prospects. Biomed Pharmacother 2025; 184:117924. [PMID: 39983432 DOI: 10.1016/j.biopha.2025.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CHD). Although surgical correction of TOF is possible, patients often face challenges related to right ventricle dysfunction (RVD) post-surgery, which can significantly impact their long-term survival. The causes of RVD in TOF patients are complex, involving both the unique structural characteristics of the TOF heart and damage resulting from surgical interventions. Residual anatomical issues following TOF repair are often unavoidable, placing the RV under stress and leading to the activation of multiple molecular pathways. This review comprehensively outlines the causes of RVD in patients after TOF surgery, particularly focusing the molecular pathways that contribute to RVD, including established signaling pathways as well as emerging pathways identified through transcriptomic analysis of RV myocardium in TOF patients. We also highlight the features of these molecular pathways concerning RVD, as well as the influence of gender disparities on these molecular pathways. By interpreting the causes and molecular mechanisms underlying RVD after TOF surgery, this review provides new insights for managing RVD in repaired TOF, potentially paving the way for targeted therapies aimed at improving long-term outcomes for those affected by RVD.
Collapse
Affiliation(s)
- Qiang Fan
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yabo Wang
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Gergs U, Pham TH, Rayo Abella LM, Hesse C, Grundig P, Dhein S, Hofmann B, Neumann J. Contractile effects of stimulation of D 1-dopamine receptors in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1497-1508. [PMID: 39102031 PMCID: PMC11825631 DOI: 10.1007/s00210-024-03340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Dopamine receptors have been claimed not to directly increase contractility in the human heart. Therefore, we performed contraction experiments in isolated electrically driven human atrial preparations (HAP). For comparison, we performed contraction experiments with left atrial preparations of transgenic mice which harbor a cardiac overexpression of human D1-dopamine receptors (D1-TG). In D1-TG, first we noted that dopamine (10 nM-10 µM cumulatively applied) in the presence of propranolol exerted a concentration- and time-dependent positive inotropic effect in D1-TG. In a similar fashion, dopamine increased force of contraction in the presence of 0.4 µM propranolol in HAP and these effects were amplified by pre-treatment with inhibitor of phosphodiesterase III (1 µM) cilostamide. Moreover, contractile effects of dopamine in the presence of propranolol 0.4 µM in HAP were antagonized by odapipam, haloperidol, or raclopride. Ten micromolars of fenoldopam in the presence of cilostamide increased force of contraction in HAP and this effect was antagonized by SCH 23390. We conclude that stimulation of human D1-dopamine receptors can increase force of contraction in the HAP.
Collapse
Affiliation(s)
- U Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - T H Pham
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - L M Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - C Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - P Grundig
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - S Dhein
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University Leipzig, Leipzig, Germany
| | - B Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - J Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany.
| |
Collapse
|
7
|
Steinkamp R, Tsitsiridis G, Brauner B, Montrone C, Fobo G, Frishman G, Avram S, Oprea T, Ruepp A. CORUM in 2024: protein complexes as drug targets. Nucleic Acids Res 2025; 53:D651-D657. [PMID: 39526397 PMCID: PMC11701639 DOI: 10.1093/nar/gkae1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
CORUM (https://mips.helmholtz-muenchen.de/corum/) is a public database that offers comprehensive information about mammalian protein complexes, including their subunits, functions and associations with human diseases. The newly released CORUM 5.0, encompassing 7193 protein complexes, is the largest dataset of manually curated mammalian protein complexes publicly available. This update represents the most significant upgrade to the database in >15 years. At present, the molecular processes in cells that are influenced by drugs are only incompletely understood. In this latest release, we have begun systematically investigating the impact of drugs on protein complexes. Our studies are based on a dataset from DrugCentral comprising 725 protein drug targets with approved drugs and known mechanisms of action. To date, we have identified 1975 instances from the literature where a drug affects the formation and/or function of a protein complex. Numerous examples highlight the crucial role of understanding drug-protein complex relationships in drug efficacy. The expanded dataset and the inclusion of drug effects on protein complexes are expected to significantly enhance the utility and application potential of CORUM 5.0 in fields such as network medicine and pharmacological research.
Collapse
Affiliation(s)
- Ralph Steinkamp
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - George Tsitsiridis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - Barbara Brauner
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - Corinna Montrone
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - Gisela Fobo
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - Goar Frishman
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| | - Sorin Avram
- Department of Computational Chemistry, “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazu Blvd, Timisoara, Timis 300223, Romania
| | - Tudor I Oprea
- Expert Systems Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA
| | - Andreas Ruepp
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg D-85764, Germany
| |
Collapse
|
8
|
Liu Q, Wu J, Chen M, Zhong J, Huang J, Wang B, Li J, Zhao Z, Qi F. Unraveling the Molecular Determinants of Catalytic Efficiency and Substrate Specificity in l-Amino Acid Decarboxylases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39567248 DOI: 10.1021/acs.jafc.4c08560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
l-Tryptophan decarboxylase (TDC) and l-3,4-dihydroxyphenylalanine decarboxylase (DDC) catalyze the decarboxylation of l-tryptophan, 5-hydroxytryptophan, and l-3,4-dihydroxyphenylalanine. In this study, we analyzed the amino acid compositions of the substrate-binding pockets of TDC from Catharanthus roseus (CrTDC) and DDC from Sus scrofa (SsDDC), explored the specificity of key amino acids within these pockets, and elucidated mechanisms influencing substrate selectivity and catalytic activity in both enzymes, using whole-cell catalysis to screen mutants and determine enzymatic kinetic parameters. The results demonstrated that residues Ala-103 and Val-122 in CrTDC, along with their corresponding sites Thr-82 and Ile-101 in SsDDC, significantly influence substrate selectivity and catalytic efficiency. Molecular dynamics simulations revealed that substrate selectivity and catalytic efficiency depends on the nucleophilic attack distance between the substrate's amino group and the C4' of pyridoxal 5'-phosphate. This study elucidates the catalytic mechanisms and structural bases of TDC and DDC, guiding enhancements in the related aromatic monoamine biosynthesis.
Collapse
Affiliation(s)
- Qinghao Liu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Maosen Chen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jie Zhong
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Bingmei Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhibin Zhao
- Yuelushan Laboratory, Chunlin (Hunan) Institute of Synthetic Biology Co., Ltd., Changsha, Hunan 410125, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
9
|
Gómez-Del Arco P, Isern J, Jimenez-Carretero D, López-Maderuelo D, Piñeiro-Sabarís R, El Abdellaoui-Soussi F, Torroja C, Vera-Pedrosa ML, Grima-Terrén M, Benguria A, Simón-Chica A, Queiro-Palou A, Dopazo A, Sánchez-Cabo F, Jalife J, de la Pompa JL, Filgueiras-Rama D, Muñoz-Cánoves P, Redondo JM. The G4 resolvase Dhx36 modulates cardiomyocyte differentiation and ventricular conduction system development. Nat Commun 2024; 15:8602. [PMID: 39366945 PMCID: PMC11452623 DOI: 10.1038/s41467-024-52809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes. Dhx36 deficiency directly influences cardiomyocyte gene networks by disrupting the resolution of promoter G-quadruplexes in key cardiac genes, impacting cardiomyocyte differentiation and CCS morphogenesis, and ultimately leading to dilated cardiomyopathy and atrioventricular block. These findings further identify crucial genes and pathways that regulate the development and function of the VCS/Purkinje fiber (PF) network.
Collapse
Affiliation(s)
- Pablo Gómez-Del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain.
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Joan Isern
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Linarejos Vera-Pedrosa
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mercedes Grima-Terrén
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Antonio Queiro-Palou
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- University of Michigan, Ann Arbor, MI, USA
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Filgueiras-Rama
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pura Muñoz-Cánoves
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA.
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF)/CIBERNED, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Andersen S, Axelsen JS, Nielsen‐Kudsk AH, Schwab J, Jensen CD, Ringgaard S, Andersen A, Smal R, Llucià‐Valldeperas A, Handoko de Man F, Igreja B, Pires N. Effects of dopamine β-hydroxylase inhibition in pressure overload-induced right ventricular failure. Pulm Circ 2024; 14:e70008. [PMID: 39539945 PMCID: PMC11558268 DOI: 10.1002/pul2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Activation of the sympathetic nervous system is observed in pulmonary arterial hypertension patients. This study investigates whether inhibiting the conversion of dopamine into noradrenaline by dopamine β-hydroxylase (DβH) inhibition with BIA 21-5337 improved right ventricular (RV) function or remodeling in pressure overload-induced RV failure. RV failure was induced in male Wistar rats by pulmonary trunk banding (PTB). Two weeks after the procedure, PTB rats were randomized to vehicle (n = 8) or BIA 21-5337 (n = 11) treatment. An additional PTB group treated with ivabradine (n = 11) was included to control for the potential heart rate-reducing effects of BIA 21-5337. A sham group (n = 6) received vehicle treatment. After 5 weeks of treatment, RV function was assessed by echocardiography, magnetic resonance imaging, and invasive pressure-volume measurements before rats were euthanized. RV myocardium was analyzed to evaluate RV remodeling. PTB caused a fourfold increase in RV afterload which led to RV dysfunction, remodeling, and failure. Treatment with BIA 21-5337 reduced adrenal gland DβH activity and 24-h urinary noradrenaline levels confirming relevant physiological response to the treatment. At end-of-study, there were no differences in RV function or RV remodeling between BIA 21-5337 and vehicle-treated rats. In conclusion, treatment with BIA 21-5337 did not have any beneficial-nor adverse-effects on the development of RV failure after PTB despite reduced adrenal gland DβH activity.
Collapse
Affiliation(s)
- Stine Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Julie Sørensen Axelsen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anders H. Nielsen‐Kudsk
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Janne Schwab
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Caroline D. Jensen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research CentreAarhus UniversityAarhusDenmark
| | - Asger Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rowan Smal
- Department of PulmonologyAmsterdam University Medical CentreAmsterdamThe Netherlands
| | | | | | - Bruno Igreja
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| | - Nuno Pires
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| |
Collapse
|
11
|
Chen W, Liu M, Tsou Y, Wu H, Lin H, Liang C, Wang C. Extensive Dysregulation of Phenylalanine Metabolism Is Associated With Stress Hyperphenylalaninemia and 30-Day Death in Critically Ill Patients With Acute Decompensated Heart Failure. J Am Heart Assoc 2024; 13:e035821. [PMID: 39258552 PMCID: PMC11935636 DOI: 10.1161/jaha.124.035821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Stress hyperphenylalaninemia predicts elevated mortality rates in patients with acute decompensated heart failure (ADHF). This study investigated the metabolic pathways underlying this association and identified a unique metabolic phenotype underlying the association between stress hyperphenylalaninemia and adverse outcomes in ADHF. METHODS AND RESULTS This was a retrospective cohort study. We enrolled 120 patients with ADHF in an intensive care unit (60 with a phenylalanine level ≥112 μM, 60 with a phenylalanine level <112 μM), and 30 controls. Plasma phenylalanine-derived metabolites were measured, and participants were evaluated for 30-day death. Patients with ADHF had extensive activations of the alternative pathways for metabolizing phenylalanine, leading to the levels of phenylalanine-derived downstream metabolites 1.5 to 6.1 times higher in patients with ADHF than in the controls (all P<0.001). Extensive dysregulation of these alternative pathways significantly increased phenylalanine levels and contributed to a distinct metabolic phenotype, characterized by increased phenylalanine, tyrosine, homogentisic acid, and succinylacetone levels but decreased benzoic acid and 3,4-dihydroxyphenylalanine levels. Throughout the 30-day follow-up period, 47 (39.2%) patients died. This distinct metabolic phenotype was associated with an increased mortality rate (odds ratio, 1.59 [95% CI, 1.27-1.99]; P<0.001). A multivariable analysis confirmed the independent association of this metabolic phenotype, in addition to phenylalanine and tyrosine levels, with 30-day death. CONCLUSIONS In patients with ADHF, extensive dysregulation of the alternative pathways for metabolizing phenylalanine was correlated with stress hyperphenylalaninemia and a distinct metabolic phenotype on the phenylalanine-tyrosine-homogentisic acid-succinylacetone axis. Both stress hyperphenylalaninemia and metabolic dysregulation on this axis were associated with poor outcomes.
Collapse
Affiliation(s)
- Wei‐Siang Chen
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Min‐Hui Liu
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Department of NursingChang Gung Memorial HospitalKeelungTaiwan
| | - Yi‐Liang Tsou
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Huang‐Ping Wu
- Division of Pulmonary, Critical Care and Sleep MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Hsuan‐Ching Lin
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chung‐Yu Liang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Intensive Care UnitDivision of CardiologyDepartment of Internal MedicineChang Gung Memorial HospitalKeelungTaiwan
| | - Chao‐Hung Wang
- Heart Failure Research CenterDepartment of CardiologyChang Gung Memorial HospitalKeelungTaiwan
- Chang Gung University College of MedicineTaoyuanTaiwan
| |
Collapse
|
12
|
Shen J, Valentim W, Friligkou E, Overstreet C, Choi K, Koller D, O’Donnell CJ, Stein MB, Gelernter J, Lv H, Sun L, Falcone GJ, Polimanti R, Pathak GA. Genetics of posttraumatic stress disorder and cardiovascular conditions using Life's Essential 8, Electronic Health Records, and Heart Imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.20.24312181. [PMID: 39228734 PMCID: PMC11370495 DOI: 10.1101/2024.08.20.24312181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Patients with post-traumatic stress disorder (PTSD) experience higher risk of adverse cardiovascular (CV) outcomes. This study explores shared loci, and genes between PTSD and CV conditions from three major domains: CV diagnoses from electronic health records (CV-EHR), cardiac and aortic imaging, and CV health behaviors defined in Life's Essential 8 (LE8). METHODS We used genome-wide association study (GWAS) of PTSD (N=1,222,882), 246 CV diagnoses based on EHR data from Million Veteran Program (MVP; N=458,061), UK Biobank (UKBB; N=420,531), 82 cardiac and aortic imaging traits (N=26,893), and GWAS of traits defined in the LE8 (N = 282,271 ~ 1,320,016). Shared loci between PTSD and CV conditions were identified using local genetic correlations (rg), and colocalization (shared causal variants). Overlapping genes between PTSD and CV conditions were identified from genetically regulated proteome expression in brain and blood tissues, and subsequently tested to identify functional pathways and gene-drug targets. Epidemiological replication of EHR-CV diagnoses was performed in AllofUS cohort (AoU; N=249,906). RESULTS Among the 76 PTSD-susceptibility risk loci, 33 loci exhibited local rg with 45 CV-EHR traits (|rg|≥0.4), four loci with eight heart imaging traits(|rg|≥0.5), and 44 loci with LE8 factors (|rg|≥0.36) in MVP. Among significantly correlated loci, we found shared causal variants (colocalization probability > 80%) between PTSD and 17 CV-EHR (in MVP) at 11 loci in MVP, that also replicated in UKBB and/or other cohorts. Of the 17 traits, the observational analysis in the AoU showed PTSD was associated with 13 CV-EHR traits after accounting for socioeconomic factors and depression diagnosis. PTSD colocalized with eight heart imaging traits on 2 loci and with LE8 factors on 31 loci. Leveraging blood and brain proteome expression, we found 33 and 122 genes, respectively, shared between PTSD and CVD. Blood proteome genes were related to neuronal and immune processes, while the brain proteome genes converged on metabolic and calcium-modulating pathways (FDR p <0.05). Drug repurposing analysis highlighted DRD2, NOS1, GFAP, and POR as common targets of psychiatric and CV drugs. CONCLUSION PTSD-CV comorbidities exhibit shared risk loci, and genes involved in tissue-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Jie Shen
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wander Valentim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, State of Minas Gerais, Brazil
| | - Eleni Friligkou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Cassie Overstreet
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Karmel Choi
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Christopher J. O’Donnell
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Murray B. Stein
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Haitao Lv
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Guido J. Falcone
- Center for Brain and Mind Health Yale University New Haven CT USA; Department of Neurology Yale University New Haven CT USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Gita A. Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
13
|
Abella LMR, Jacob H, Hesse C, Hofmann B, Schneider S, Schindler L, Keller M, Buchwalow IB, Jin C, Panula P, Dhein S, Klimas J, Hadova K, Gergs U, Neumann J. Initial characterization of a transgenic mouse with overexpression of the human D 1-dopamine receptor in the heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4939-4959. [PMID: 38177456 PMCID: PMC11166794 DOI: 10.1007/s00210-023-02901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Dopamine can exert effects in the mammalian heart via five different dopamine receptors. There is controversy whether dopamine receptors increase contractility in the human heart. Therefore, we have generated mice that overexpress the human D1-dopamine receptor in the heart (D1-TG) and hypothesized that dopamine increases force of contraction and beating rate compared to wild-type mice (WT). In D1-TG hearts, we ascertained the presence of D1-dopamine receptors by autoradiography using [3H]SKF 38393. The mRNA for human D1-dopamine receptors was present in D1-TG hearts and absent in WT. We detected by in-situ-hybridization mRNA for D1-dopamine receptors in atrial and ventricular D1-TG cardiomyocytes compared to WT but also in human atrial preparations. We noted that in the presence of 10 µM propranolol (to antagonize β-adrenoceptors), dopamine alone and the D1- and D5-dopamine receptor agonist SKF 38393 (0.1-10 µM cumulatively applied) exerted concentration- and time-dependent positive inotropic effects and positive chronotropic effects in left or right atrial preparations from D1-TG. The positive inotropic effects of SKF 38393 in left atrial preparations from D1-TG led to an increased rate of relaxation and accompanied by and probably caused by an augmented phosphorylation state of the inhibitory subunit of troponin. In the presence of 0.4 µM propranolol, 1 µM dopamine could increase left ventricular force of contraction in isolated perfused hearts from D1-TG. In this model, we have demonstrated a positive inotropic and chronotropic effect of dopamine. Thus, in principle, the human D1-dopamine receptor can couple to contractility in the mammalian heart.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Dopamine/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Atria/metabolism
- Heart Atria/drug effects
- Heart Rate/drug effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, D-06097, Halle (Saale), Germany
| | - Sarah Schneider
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Lisa Schindler
- Institute of Pharmacy, University of Regensburg, D-93053, Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, D-93053, Regensburg, Germany
| | - Igor B Buchwalow
- Institute for Hematopathology, D-22547, Hamburg, Germany
- Scientific and Educational Resource Center for Molecular Morphology, Peoples' Friendship University of Russia, RU-117198, Moscow, Russia
| | - CongYu Jin
- Department of Anatomy, University of Helsinki, FI-00290, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, FI-00290, Helsinki, Finland
| | - Stefan Dhein
- Rudolf-Boehm Institute for Pharmacology and Toxicology, University Leipzig, D-04107, Leipzig, Germany
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232, Bratislava, Slovak Republic
| | - Katarína Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232, Bratislava, Slovak Republic
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany.
| |
Collapse
|
14
|
Zhao R, Yan B, Li D, Guo Z, Huang Y, Wang D, Yao X. An Ultramicroelectrode Electrochemistry and Surface Plasmon Resonance Coupling Method for Cell Exocytosis Study. Anal Chem 2024; 96:10228-10236. [PMID: 38867346 DOI: 10.1021/acs.analchem.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Exocytosis of a single cell has been extensively researched in recent years due to its close association with numerous diseases. However, current methods only investigate exocytosis at either the single-cell or multiple-cell level, and a method for simultaneously studying exocytosis at both levels has yet to be established. In this study, a combined device incorporating ultramicroelectrode (UME) electrochemistry and surface plasmon resonance (SPR) was developed, enabling the simultaneous monitoring of single-cell and multiple-cell exocytosis. PC12 cells were cultured directly on the SPR sensing Au film, with a carboxylated carbon nanopipette (c-CNP) electrode employed for electrochemical detection in the SPR reaction cell. Upon exocytosis, the released dopamine diffuses onto the inner wall of c-CNP, undergoing an electrochemical reaction to generate a current peak. Concurrently, exocytosis can also induce changes in the refractive index of the Au film surface, leading to the SPR signal. Consequently, the device enables real-time monitoring of exocytosis from both single and multiple cells with a high spatiotemporal resolution. The c-CNP electrode exhibited excellent resistance to protein contamination, high sensitivity for dopamine detection, and the capability to continuously monitor dopamine exocytosis over an extended period. Analysis of both SPR and electrochemical signals revealed a positive correlation between changes in the SPR signal and the frequency of exocytosis. This study introduces a novel method and platform for the simultaneous investigation of single-cell and multiple-cell exocytosis.
Collapse
Affiliation(s)
- Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Bei Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environment Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Zhao Z, Hou Y, Zhang H, Guo J, Wang J. A PEDOT: PSS/GO fiber microelectrode fabricated by microfluidic spinning for dopamine detection in human serum and PC12 cells. Mikrochim Acta 2024; 191:362. [PMID: 38822867 DOI: 10.1007/s00604-024-06415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.
Collapse
Affiliation(s)
- Zexu Zhao
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yang Hou
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hao Zhang
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiahao Guo
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jinyi Wang
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
17
|
Hosny EN, Sawie HG, Abou-Seif HS, Khadrawy YA. Effect of caffeine-chitosan nanoparticles and α-lipoic acid on the cardiovascular changes induced in rat model of obesity. Int Immunopharmacol 2024; 129:111627. [PMID: 38309094 DOI: 10.1016/j.intimp.2024.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The current research aims to study the therapeutic efficacy of alpha-lipoic acid (α-LA) and caffeine-loaded chitosan nanoparticles (Caf-CNs) against cardiovascular complications induced by obesity. Rats were divided randomly into: control, high fat diet (HFD) induced obesity rat model, obese rats treated with α-LA and/or Caf-CNs. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) significantly increased in the serum of obese rats. In addition, plasma atherogenic index, atherogenic coefficient and Castelli's risk indices I and II showed a significant increase. Additionally, levels of malondialdehyde (MDA) and nitric oxide (NO) and activity of monoamine oxidase (MAO) were significantly elevated in heart tissues of obese rats. However, cardiac Na+/K+-ATPase and acetylcholinesterase (AchE) activities and reduced glutathione (GSH), serotonin (5-HT), norepinephrine (NE) and dopamine (DA) as well as serum high-density lipoprotein cholesterol (HDL-C) were significantly reduced in obese rats. Treatment with α-LA and/or Caf-CNs ameliorated almost all the biochemical and histopathological alterations caused by obesity. In conclusion, the present data revealed that α-LA and/or Caf-CNs may be an effective therapeutic approach against cardiac complications caused by obesity through their antilipemic, anti-atherogenic, antioxidant, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Howida S Abou-Seif
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
18
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of hallucinogenic drugs on the human heart. Front Pharmacol 2024; 15:1334218. [PMID: 38370480 PMCID: PMC10869618 DOI: 10.3389/fphar.2024.1334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Hallucinogenic drugs are used because they have effects on the central nervous system. Their hallucinogenic effects probably occur via stimulation of serotonin receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close study reveals that they also act on the heart, possibly increasing the force of contraction and beating rate and may lead to arrhythmias. Here, we will review the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and 5-methoxy-N,N-dimethyltryptamine in the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Münster, Münster, Germany
| | - Britt Hofmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
19
|
Lisco G, De Tullio A, Iovino M, Disoteo O, Guastamacchia E, Giagulli VA, Triggiani V. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023; 11:2993. [PMID: 38001993 PMCID: PMC10669051 DOI: 10.3390/biomedicines11112993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine regulates several functions, such as voluntary movements, spatial memory, motivation, sleep, arousal, feeding, immune function, maternal behaviors, and lactation. Less clear is the role of dopamine in the pathophysiology of type 2 diabetes mellitus (T2D) and chronic complications and conditions frequently associated with it. This review summarizes recent evidence on the role of dopamine in regulating insular metabolism and activity, the pathophysiology of traditional chronic complications associated with T2D, the pathophysiological interconnection between T2D and chronic neurological and psychiatric disorders characterized by impaired dopamine activity/metabolism, and therapeutic implications. Reinforcing dopamine signaling is therapeutic in T2D, especially in patients with dopamine-related disorders, such as Parkinson's and Huntington's diseases, addictions, and attention-deficit/hyperactivity disorder. On the other hand, although specific trials are probably needed, certain medications approved for T2D (e.g., metformin, pioglitazone, incretin-based therapy, and gliflozins) may have a therapeutic role in such dopamine-related disorders due to anti-inflammatory and anti-oxidative effects, improvement in insulin signaling, neuroinflammation, mitochondrial dysfunction, autophagy, and apoptosis, restoration of striatal dopamine synthesis, and modulation of dopamine signaling associated with reward and hedonic eating. Last, targeting dopamine metabolism could have the potential for diagnostic and therapeutic purposes in chronic diabetes-related complications, such as diabetic retinopathy.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Michele Iovino
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Olga Disoteo
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| |
Collapse
|
20
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
21
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|