1
|
Li X, Zhang W, Yu W, Yu Y, Cheng H, Lin Y, Feng J, Zhao M, Jin Y. Cutaneous wound healing functions of novel milk-derived antimicrobial peptides, hLFT-68 and hLFT-309 from human lactotransferrin, and bLGB-111 from bovine β-lactoglobulin. Sci Rep 2025; 15:9965. [PMID: 40121253 PMCID: PMC11929754 DOI: 10.1038/s41598-025-90685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
The absence of multi-functional antimicrobial agents in clinical settings hinders cutaneous wound healing. Milk-derived antimicrobial peptides (MAPs) may be the imperative solution to wound repair, combining the dermatic curative properties of antimicrobial peptides with the biological activity of milk. Three novel MAPs, which were hLFT-68 (IAENRADAV) and hLFT-309 (GSPSGQKDLLF) identified in human milk and bLGB-111 (LDTDYKKY) identified in bovine milk in our previous work, were initially investigated for their function in wound healing. In vitro, the antibacterial activity and cellular mechanism of the MAPs were examined. It was found that they presented inhibition for Staphylococcus aureus and Escherichia coli, decreased the secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), and promoted fibroblast and keratinocyte proliferation. An infected wound model was established to evaluate the in vivo anti-inflammatory and regeneration properties of the MAPs. The wound area shrank more rapidly, and the wound inflammation was reduced by MAP treatment. Especially on days 3-5 after mouse modeling, the wound repair rate increased by up to 35%. Furthermore, it was suggested that they encouraged collagen synthesis and deposition, and tissue regeneration. The presented results indicated that MAPs accelerated the recovery of infected wounds, possessing the potential for developing wound-healing therapy.
Collapse
Affiliation(s)
- Xixian Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wanning Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Huiyuan Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Jingwen Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China.
| |
Collapse
|
2
|
Porras M, Hernández D, Boto A. Antifungal Peptides with Unexpected Structure from a Library of Synthetic Analogs of Host-Defense Peptide Rigin. Int J Mol Sci 2025; 26:1900. [PMID: 40076526 PMCID: PMC11900302 DOI: 10.3390/ijms26051900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Rising antifungal resistance prompted the World Health Organization and the Food and Agriculture Organization to bring attention to the consequences of this threat to human, animal, and environmental health, and food security. In addition, there is an alarming cross-species pathogenicity. New antifungal agents are urgently needed, preferably with a low induction of antimicrobial resistance (AMR). Among the most promising novel antimicrobials are the host-defense peptides, which present potent anti-infective properties and elicit low or negligible AMR. The rapid creation of libraries of host-defense peptides is highlighted by the synthesis of analogs of the immunomodulator and antimicrobial peptide rigin. Starting from smaller fragments incorporating hydroxyproline customizable units, which can be selectively cleaved and modified to give different lateral chains and N-substituents, two fragment libraries were built. Then the fragments were combined to give a library of rigin analogs, some of which displayed a potent antifungal activity not observed in the natural peptide. Surprisingly, the most active ones were N-substituted and lateral-chain protected analogs, while the free cationic peptides displayed low direct activity. This work shows that the strategy of combining site-selective peptide modification and a combinatorial approach can provide peptide-diverse libraries, where unexpected drug leads may be identified.
Collapse
Affiliation(s)
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain;
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain;
| |
Collapse
|
3
|
Gajic I, Tomic N, Lukovic B, Jovicevic M, Kekic D, Petrovic M, Jankovic M, Trudic A, Mitic Culafic D, Milenkovic M, Opavski N. A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics (Basel) 2025; 14:221. [PMID: 40149033 PMCID: PMC11939824 DOI: 10.3390/antibiotics14030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, 11000 Belgrade, Serbia;
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, 11040 Belgrade, Serbia;
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Anika Trudic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, 21204 Novi Sad, Serbia
| | | | - Marina Milenkovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| |
Collapse
|
4
|
Liu S, Shi Z, Teng L, Nie J, Zhang L. Biocompatible Black Phosphorus Nanosheets-Antimicrobial Peptide Nanocomposites for Enhanced Anti-Infection Therapy. Molecules 2025; 30:872. [PMID: 40005182 PMCID: PMC11857953 DOI: 10.3390/molecules30040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial infections are one of the major problems affecting human health, which is exacerbated by increasing antibiotic resistance. Antimicrobial peptides (AMPs) are an ideal alternative to antibiotics, but their instability and toxicity to mammalian cells need to be addressed. Here, black phosphorus nanosheets (BPs) were successfully decorated with melittin (Mel), a kind of AMP, through electrostatic interaction. The size impacts of BPs on the antibacterial ability and biocompatibility of BPs/Mel nanocomposites were studied systematically. Results showed that the nanocomposites made from middle-sized BPs (BPs/Mel-7) have strong antibacterial ability as well as good biocompatibility. Moreover, BPs/Mel-7 could accelerate skin wound healing infected by Staphylococcus aureus. This study provides a facile strategy to expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin 301636, China; (L.T.); (J.N.)
| | - Zhishang Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Lin Teng
- School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin 301636, China; (L.T.); (J.N.)
| | - Junlian Nie
- School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin 301636, China; (L.T.); (J.N.)
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
5
|
Kiran NS, Singh S, Yashaswini C, Prajapati BG. Revisiting the potential of natural antimicrobial peptides against emerging respiratory viral disease: a review. 3 Biotech 2025; 15:40. [PMID: 39816617 PMCID: PMC11729606 DOI: 10.1007/s13205-024-04184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025] Open
Abstract
This review assesses the antiviral capabilities of antimicrobial peptides (AMPs) against SARS-CoV-2 and other respiratory viruses, focussing on their therapeutic potential. AMPs, derived from natural sources, exhibit promising antiviral properties by disrupting viral membranes, inhibiting viral entry, and modulating host immune responses. Preclinical studies demonstrate that peptides such as defensins, cathelicidins, and lactoferrin can effectively reduce SARS-CoV-2 replication and inhibit viral spread. In addition, AMPs have shown potential in enhancing the host's antiviral immunity. Despite these promising outcomes, several challenges require assessments before transforming into clinical translation. Several issues related to peptide stability, cytotoxicity, and efficient delivery systems pose significant limitations to their therapeutic application. Recent advancements in peptide engineering, nanotechnology-based delivery systems, and peptide conjugation strategies have improved AMPs stability and bioavailability; however, further optimization is essential. Moreover, whilst AMPs are safe, their effects on host cells and tissues need a thorough investigation to minimise potential adverse reactions. This review concludes that whilst AMPs present a promising route for antiviral therapies, particularly in targeting SARS-CoV-2, extensive clinical trials and additional studies are required to overcome current limitations. Future research should focus on developing more stable, less toxic AMPs formulations with enhanced delivery mechanisms, aiming to integrate AMPs into viable therapeutic options for respiratory viral diseases, including COVID-19 and other emerging infections.
Collapse
Affiliation(s)
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200 Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | - Bhupendra G. Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012 India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000 Thailand
| |
Collapse
|
6
|
Zheng L, Yang F, Wang C, Zafir M, Gao Z, Liu P, El-Gohary FA, Zhao X, Xue H. High-level biosynthesis and purification of the antimicrobial peptide Kiadin based on non-chromatographic purification and acid cleavage methods. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:5. [PMID: 39819334 PMCID: PMC11736983 DOI: 10.1186/s13068-025-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression. Leveraging the unique properties of the DAMP4 protein, we developed a non-chromatographic purification method to isolate the DAMP4-DPS-Kiadin fusion protein with high purity. The instability of the D-P peptide bond under acidic conditions, combined with the thermal and saline stability of DAMP4, enabled efficient separation of Kiadin through acid cleavage and isoelectric precipitation, yielding Kiadin with 96% purity and a production yield of 29.3 mg/L. Our optimization of acid cleavage temperature, duration, and isoelectric precipitation conditions proved critical for maximizing the purification efficiency and expression levels of Kiadin. The biosynthesized Kiadin exhibited robust bacteriostatic activity against Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Bacillus cereus and Staphylococcus aureus. Notably, Kiadin demonstrated significant post-antibiotic effects by disrupting bacterial membrane integrity, inducing cytoplasmic leakage, and inhibiting biofilm formation in E. coli K88 and S. aureus Mu50, without cytotoxicity towards mouse macrophages. In vivo studies further confirmed Kiadin's exceptional therapeutic efficacy against abdominal infections caused by E. coli K88. The acid cleavage and non-chromatographic purification techniques developed in this study offer a cost-effective and efficient strategy for the high-purity production of AMPs.
Collapse
Affiliation(s)
- Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
- Animal Disease-Resistant Nutrition, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 625014, China
| | - Fengyi Yang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Chen Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Muhammad Zafir
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Zishuo Gao
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Pilong Liu
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Fatma A El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Huping Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Kocot AM, Swebocki T, Ciemińska K, Łupkowska A, Kapusta M, Grimon D, Laskowska E, Kaczorowska AK, Kaczorowski T, Boukherroub R, Briers Y, Plotka M. Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii. Sci Rep 2025; 15:2047. [PMID: 39814769 PMCID: PMC11735859 DOI: 10.1038/s41598-024-80440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.97 ± 0.38 °C, significantly higher than their natural counterparts derived from mesophilic sources. The minimum inhibitory concentration (MIC) of MLE-15 was 100 µg/mL for a panel of Gram-positive and Gram-negative bacteria, while the MIC of reline ranged from 6.25 to 25% v/v for the same strains. The addition of reline effectively reduced the MIC of MLE-15 from 100 µg/mL to 3.15-50 µg/mL. This combination displayed additive effects for most strains and synergism for extensively antibiotic-resistant Acinetobacter baumannii and Bacillus subtilis. The subsequent evaluation revealed that MLE-15 eliminated planktonic cells of A. baumannii RUH134, but was ineffective against matured biofilms. However, combined with reline, MLE-15 reduced the bacterial load in the matured biofilm by 1.39 log units. Confocal fluorescence microscopy indicated that reline damaged the structure of the biofilm, allowing MLE-15 to penetrate it. Additionally, MLE-15 and its combination with reline eradicated meropenem-persistent cells of A. baumannii RUH134. Effectiveness in lowering the MIC value of MLE-15 as well as protection against antibiotic-tolerant persister cells, indicate that MLE-15 and reline combination is a promising candidate for effective therapies in bacterial infections, which is especially important in the light of the global crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland
| | - Karolina Ciemińska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Dennis Grimon
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Yves Briers
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000, Belgium
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
8
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
9
|
Jiang J, Kaysar K, Pan Y, Xia L, Li J. A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity. Pharmaceutics 2024; 16:1591. [PMID: 39771569 PMCID: PMC11678129 DOI: 10.3390/pharmaceutics16121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival. METHODS We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR). We characterized this system in terms of morphology, particle size, zeta potential, infrared (IR), x-ray diffraction (XRD), and transcriptome analysis, and examined the in vitro cytotoxicity and cellular uptake properties of CEC@ZIF-8 using cervical cancer cells. Lastly, we established a TC-1 tumor-bearing mouse model and evaluated its in vivo anti-cervical cancer activity. RESULTS The CEC@ZIF-8 nano-delivery system had favorable biocompatibility, heat stability, and pH responsiveness, with a CEC loading efficiency of 12%, a hydrated particle size of 174 ± 5.8 nm, a zeta potential of 20.57 mV, and slow and massive drug release in an acidic environment (pH 5.5), whereas release was 6% in a neutral environment (pH 7.4). At the same time, confocal imaging and cell viability assays demonstrated greater intracellular accumulation and more potent cytotoxicity against cancer cells compared to free CEC. The mechanism was analyzed by a series of transcriptome analyses, which revealed that CEC@ZIF-8 NPs differentially regulate the expression levels of 1057 genes in cancer cells, and indicated that the enriched pathways were mainly cell cycle and apoptosis-related pathways via the enrichment analysis of the differential genes. Flow cytometry showed that CEC@ZIF-8 NPs inhibited the growth of HeLa cells by arresting the cell cycle at the G0/G1 phase. Flow cytometry also revealed that CEC@ZIF-8 NPs induced greater apoptosis rates than CEC, while unloaded ZIF-8 had little inherent pro-apoptotic activity. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by CEC@ZIF-8 NPs while ROS inhibitors and caspase inhibitors reversed CEC@ZIF-8 NPs-induced apoptosis. Finally, CEC@ZIF-8 NPs also reduced the growth rate of xenograft tumors in mice without the systemic toxicity observed with cisplatin treatment. CONCLUSIONS The CEC@ZIF-8 nano-drug delivery system significantly enhanced the anti-cervical cancer effect of CEC both in vivo and in vitro, providing a more promising drug delivery system for clinical applications and tumor management. At the same time, this work demonstrates the clinical potential of CEC-loaded ZIF-8 nanoparticles for the selective destruction of tumor tissues.
Collapse
Affiliation(s)
| | | | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.J.); (K.K.); (Y.P.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.J.); (K.K.); (Y.P.)
| |
Collapse
|
10
|
Fernandes MCS, Branco R, Pereira P, Coelho JFJ, Morais PV, Serra AC. Antimicrobial Activity of Copolymer Structures from Bio-Based Monomers. Biomacromolecules 2024; 25:7915-7925. [PMID: 39540900 DOI: 10.1021/acs.biomac.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol-1). Hydrophobicity was evaluated using the theoretical Log Poct values and surface areas (SAs). Biological assays included antimicrobial activity against Escherichia coli and Staphylococcus aureus standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.
Collapse
Affiliation(s)
- Mónica C S Fernandes
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Rita Branco
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Patrícia Pereira
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Paula V Morais
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Arménio C Serra
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
11
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Muthu S, Jain VK. Combating antimicrobial resistance in osteoarticular infections: Current strategies and future directions. J Clin Orthop Trauma 2024; 58:102791. [PMID: 39564592 PMCID: PMC11570504 DOI: 10.1016/j.jcot.2024.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) has profoundly impacted the management of osteoarticular infections (OAIs), presenting significant challenges for healthcare systems worldwide. This review provides a comprehensive overview of the current landscape of AMR in OAIs, emphasizing the necessity for assertive and innovative strategies to combat this escalating health threat. It discusses the evolution of resistance among key pathogens, including ESKAPEE organisms, and the implications for treatment protocols and healthcare outcomes. The importance of antibiotic stewardship programs (ASPs) is highlighted as a core strategy to optimize antibiotic use and mitigate the development of resistance. Additionally, the review explores the potential of pharmacological approaches, including novel antibiotic regimens and combination therapies, alongside surgical interventions and alternative therapies such as bacteriophage-based treatments and probiotics, in managing these complex infections. The role of rapid diagnostic methods in improving treatment accuracy and the critical need for global surveillance to track AMR trends are also examined. By integrating insights from recent literature and expert recommendations, this review underscores the multifaceted approach required to address the challenge of AMR in OAIs effectively. It calls for a concerted effort among clinicians, researchers, and policymakers to foster innovation in treatment strategies, enhance diagnostic capabilities, and implement robust stewardship and surveillance programs. The goal is to adapt to the evolving landscape of OAIs and ensure optimal patient care in the face of rising AMR.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, 500032, Telangana, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, 609602, Puducherry, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| |
Collapse
|
13
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
14
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
15
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
16
|
Starcea IM, Lupu A, Nistor AM, Mocanu MA, Bogos RA, Azoicai A, Cira D, Beldie M, Lupu VV, Morariu ID, Munteanu V, Tepordei RT, Ioniuc I. A cutting-edge new framework for the pain management in children: nanotechnology. Front Mol Neurosci 2024; 17:1391092. [PMID: 39318422 PMCID: PMC11420925 DOI: 10.3389/fnmol.2024.1391092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Pain is a subjective concept which is ever-present in the medical field. Health professionals are confronted with a variety of pain types and sources, as well as the challenge of managing a patient with acute or chronic suffering. An even bigger challenge is presented in the pediatric population, which often cannot quantify pain in a numerical scale like adults. Infants and small children especially show their discomfort through behavioral and physiological indicators, leaving the health provider with the task of rating the pain. Depending on the pathophysiology of it, pain can be classified as neuropathic or nociceptive, with the first being defined by an irregular signal processing in the nervous system and the second appearing in cases of direct tissue damage or prolonged contact with a certain stimulant. The approach is generally either pharmacological or non-pharmacological and it can vary from using NSAIDs, local anesthetics, opiates to physical and psychological routes. Unfortunately, some pathologies involve either intense or chronic pain that cannot be managed with traditional methods. Recent studies have involved nanoparticles with special characteristics such as small dimension and large surface area that can facilitate carrying treatments to tissues and even offer intrinsic analgesic properties. Pediatrics has benefited significantly from the application of nanotechnology, which has enabled the development of novel strategies for drug delivery, disease diagnosis, and tissue engineering. This narrative review aims to evaluate the role of nanotechnology in current pain therapy, with emphasis on pain in children.
Collapse
Affiliation(s)
- Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ana Maria Nistor
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Maria Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Diana Cira
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Madalina Beldie
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valentin Munteanu
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
17
|
Sermkaew N, Atipairin A, Krobthong S, Aonbangkhen C, Yingchutrakul Y, Uchiyama J, Songnaka N. Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis. Antibiotics (Basel) 2024; 13:846. [PMID: 39335020 PMCID: PMC11428215 DOI: 10.3390/antibiotics13090846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2-14), surfactants, and temperatures up to 40 °C for 12 h. The AMP demonstrated 4 µg/mL of MIC and 4-8 µg/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Namfa Sermkaew
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
18
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
19
|
Bucataru C, Ciobanasu C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res 2024; 286:127822. [PMID: 38986182 DOI: 10.1016/j.micres.2024.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, antimicrobial peptides have emerged as promising candidates against resistant pathogens. Unlike traditional antibiotics with only one target, these peptides can use different mechanisms to destroy bacteria, with low toxicity to mammalian cells compared to many conventional antibiotics. Antimicrobial peptides (AMPs) have encouraging antibacterial properties and are currently employed in the clinical treatment of pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes the mechanisms of antimicrobial peptides against bacteria, discusses the mechanisms of drug resistance, the limitations and challenges of AMPs in peptide drug applications for combating drug-resistant bacterial infections, and strategies to enhance their capabilities.
Collapse
Affiliation(s)
- Cezara Bucataru
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania
| | - Corina Ciobanasu
- Alexandru I. Cuza University, Institute of Interdisciplinary Research, Department of Exact and Natural Sciences, Bulevardul Carol I, Nr.11, Iasi 700506, Romania.
| |
Collapse
|
20
|
Registre C, Silva LM, Registre F, Soares RDDOA, Rubio KTS, Carneiro SP, Dos Santos ODH. Targeting Leishmania Promastigotes and Amastigotes Forms through Amino Acids and Peptides: A Promising Therapeutic Strategy. ACS Infect Dis 2024; 10:2467-2484. [PMID: 38950147 DOI: 10.1021/acsinfecdis.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Luciana Miranda Silva
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Farah Registre
- School of Medicine, Goiás Federal University, Goiânia, Goiás 74605-050, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Immunopathology Laboratory, Center for Research in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina Taciana Santos Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone Pinto Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
21
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
22
|
Wang D, Yu P, She R, Wang K. Protective effects of rabbit sacculus-derived antimicrobial peptides on SPF chicken against infection with very virulent infectious bursal disease virus. Poult Sci 2024; 103:103797. [PMID: 38713990 PMCID: PMC11091692 DOI: 10.1016/j.psj.2024.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
Previous studies here have demonstrated that the rabbit sacculus rotundus-derived antimicrobial peptides (RSRP) could alter the intestinal mucosal immune responses in specific-pathogen-free (SPF) chickens, however, the protective effects of RSRP on chickens against infection remain questionable. In the present study, eighty SPF chickens were randomly divided into five groups and challenged with very virulent infectious bursal disease virus (vvIBDV) to determine the protective effects and its underlying mechanism of RSRP. Histopathology examination found that vvIBDV-infection caused severe damage in the bursa of Fabricius, especially the bursal lymphoid follicles underwent severe necrosis, depletion, hemorrhage, and edema. Unexpectedly, RSRP intervention significantly reduced the necrosis and depletion of lymphoid follicles in the vvIBDV-infected chickens. Moreover, RSRP treatment significantly decreased the expression of Bax (P < 0.01) as well as remarkably promoted the expression of Bcl-2 (P < 0.01), concomitantly alleviated the excessive apoptosis in the immune organs such as the bursa of Fabricius during vvIBDV infection. Notably, consistent with our previous reports that increased mast cell activation and degranulation in the bursa after vvIBDV infection, RSRP administration considerably reduced the mast cell density and the expression of tryptase, a marker for activated mast cells. Collectively, the present study indicates that rabbit sacculus rotundus-derived antimicrobial peptides could effectively protect the major immune organs including the bursa of Fabricius from the damage caused by vvIBDV infection, which provides the possibility and a promising perspective for the future application of antimicrobial peptides for poultry production.
Collapse
Affiliation(s)
- Decheng Wang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences; Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Pin Yu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Kezhou Wang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Kravchenko SV, Domnin PA, Grishin SY, Zakhareva AP, Zakharova AA, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Poshvina DV, Fadeev RS, Azev VN, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Optimizing Antimicrobial Peptide Design: Integration of Cell-Penetrating Peptides, Amyloidogenic Fragments, and Amino Acid Residue Modifications. Int J Mol Sci 2024; 25:6030. [PMID: 38892216 PMCID: PMC11173194 DOI: 10.3390/ijms25116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 μM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
| | - Alena P. Zakhareva
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Anastasiia A. Zakharova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Darya V. Poshvina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (A.P.Z.); (D.V.P.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.M.); (E.Y.G.); (V.N.A.)
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
24
|
Zimmermann C, Dähn S, Wagner AE. Effect of allyl-isothiocyanate on survival and antimicrobial peptide expression following oral bacterial infections in Drosophila melanogaster. Front Immunol 2024; 15:1404086. [PMID: 38803500 PMCID: PMC11128604 DOI: 10.3389/fimmu.2024.1404086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Since infections with antibiotic-resistant bacteria cause increasing problems worldwide, the identification of alternative therapies is of great importance. Plant-derived bioactives, including allyl-isothiocyanate (AITC), have received attention for their antimicrobial properties. The present study therefore investigates the impact of AITC on survival and antimicrobial peptide (AMP) levels in Drosophila melanogaster challenged with the fly pathogenic bacteria Pectobacterium carotovorum subsp. carotovorum and Leuconostoc pseudomesenteroides. AITC, a sulfur-containing compound derived from glucosinolates, exhibits antimicrobial properties and has been suggested to modulate AMP expression. By using D. melanogaster, we demonstrate that AITC treatment resulted in a concentration-dependent decrease of survival rates among female flies, particularly in the presence of the Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum, whereas AITC did not affect survival in male flies. Despite the ability of isothiocyanates to induce AMP expression in cell culture, we did not detect significant changes in AMP mRNA levels in infected flies exposed to AITC. Our findings suggest sex-specific differences in response to AITC treatment and bacterial infections, underlining the complexity of host-pathogen interactions and potential limitations of AITC as a preventive or therapeutic compound at least in D. melanogaster models of bacterial infections.
Collapse
Affiliation(s)
| | - Sonja Dähn
- Institute of Nutritional Science, Justus Liebig University, Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Giessen, Germany
- Centre for Sustainable Food Systems, Justus Liebig University, Giessen, Germany
| |
Collapse
|
25
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
26
|
Kim YM, Park SC, Yoon Y, Jang MK, Lee JR. Effect of tryptophan position and lysine/arginine substitution in antimicrobial peptides on antifungal action. Biochem Biophys Res Commun 2024; 704:149700. [PMID: 38401304 DOI: 10.1016/j.bbrc.2024.149700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Yongsang Yoon
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea.
| |
Collapse
|
27
|
Ahmad A, Khan JM, Bandy A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024; 16:e58178. [PMID: 38741875 PMCID: PMC11089580 DOI: 10.7759/cureus.58178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
The sources of antimicrobial peptides (AMPs), also known as peptide-based antibiotics, are diverse, such as plants, animals, microorganisms including human leukocytes, saliva, human defense peptides, and human sweat. These natural sources provide a rich variety of AMPs with unique characteristics and potential therapeutic applications, including wound-healing and antimicrobial properties. AMPs derived from these sources have shown promise in combating a wide range of pathogens, making them valuable targets for further research and potential clinical applications. The design of AMPs for wound healing involves a meticulous process of structurally optimizing peptides to possess a unique combination of antibacterial and wound-healing characteristics. This systematic review was produced to show the design and applications of AMPs in wound healing. The terms "antimicrobial peptides AND wound healing" were used to search for articles published between September 2023 and January 2010. In the search, we found a total of 12958 articles, of which 12898 were excluded, and the remaining 60 articles were chosen for further study. This systematic review underscores the potential of AMPs as valuable tools in infection control and wound healing, showcasing their versatility and effectiveness in combating a wide range of pathogens. Overall, AMPs in wound healing display a diverse mechanism of action, influencing the inflammatory response, encouraging tissue regeneration, and aiding tissue remodeling, along with strong antibacterial activity. Furthermore, this systematic review addresses AMP toxicity studies, which include rigorous in vitro and in vivo examinations to determine potential cytotoxic effects, systemic toxicity, and any adverse responses connected with its usage in wound-healing applications.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, SAU
| | - Javed M Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, SAU
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra, SAU
| |
Collapse
|
28
|
Li C, Li T, Tian X, An W, Wang Z, Han B, Tao H, Wang J, Wang X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Front Pharmacol 2024; 15:1353626. [PMID: 38523641 PMCID: PMC10960368 DOI: 10.3389/fphar.2024.1353626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
With the rapid advancement of genetic and protein engineering, proteins and peptides have emerged as promising drug molecules for therapeutic applications. Consequently, there has been a growing interest in the field of chemical modification technology to address challenges associated with their clinical use, including rapid clearance from circulation, immunogenicity, physical and chemical instabilities (such as aggregation, adsorption, deamination, clipping, oxidation, etc.), and enzymatic degradation. Polyethylene glycol (PEG) modification offers an effective solution to these issues due to its favorable properties. This review presents recent progress in the development and application of PEGylated therapeutic proteins and peptides (TPPs). For this purpose, firstly, the physical and chemical properties as well as classification of PEG and its derivatives are described. Subsequently, a detailed summary is provided on the main sites of PEGylated TPPs and the factors that influence their PEGylation. Furthermore, notable instances of PEG-modified TPPs (including antimicrobial peptides (AMPs), interferon, asparaginase and antibodies) are highlighted. Finally, we propose the chemical modification of TPPs with PEG, followed by an analysis of the current development status and future prospects of PEGylated TPPs. This work provides a comprehensive literature review in this promising field while facilitating researchers in utilizing PEG polymers to modify TPPs for disease treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
29
|
Dong Q, Wang S, Miao Y, Luo H, Weng Z, Yu L. Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning. Sci Rep 2024; 14:4529. [PMID: 38402320 PMCID: PMC10894229 DOI: 10.1038/s41598-024-55205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The increasing prevalence of antibiotic resistance in Cutibacterium acnes (C. acnes) requires the search for alternative therapeutic strategies. Antimicrobial peptides (AMPs) offer a promising avenue for the development of new treatments targeting C. acnes. In this study, to design peptides with the specific inhibitory activity against C. acnes, we employed a deep learning pipeline with generators and classifiers, using transfer learning and pretrained protein embeddings, trained on publicly available data. To enhance the training data specific to C. acnes inhibition, we constructed a phylogenetic tree. A panel of 42 novel generated linear peptides was then synthesized and experimentally evaluated for their antimicrobial selectivity and activity. Five of them demonstrated their high potency and selectivity against C. acnes with MIC of 2-4 µg/mL. Our findings highlight the potential of these designed peptides as promising candidates for anti-acne therapeutics and demonstrate the power of computational approaches for the rational design of targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Qichang Dong
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Shaohua Wang
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Ying Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Heng Luo
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lun Yu
- Metanovas Biotech Inc., Foster City, 94404, USA.
| |
Collapse
|
30
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
31
|
Gomes GDS, Espósito PC, Baracat-Pereira MC. Carboxypeptidase inhibitors from Solanaceae as a new subclass of pathogenesis related peptide aiming biotechnological targets for plant defense. Front Mol Biosci 2023; 10:1259026. [PMID: 38033385 PMCID: PMC10687636 DOI: 10.3389/fmolb.2023.1259026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Plant protease inhibitors play a crucial role in inhibiting proteases produced by phytopathogens and exhibiting inhibitory effects on nematodes, fungi, and insects, making them promising candidates for crop protection. Specifically, carboxypeptidase inhibitors, a subset of proteinase inhibitors, have been extensively studied in potato and tomato of Solanaceae plant family. However, further research is needed to fully understand the functions and biotechnological potential of those inhibitors in plants. This work aimed to in silico characterize carboxypeptidase inhibitors from Solanaceae as potential antimicrobial and defense agents focused on biotechnological targets. Methods: The methodology employed involved search in UniProt, PDB, KNOTTIN, NCBI, and MEROPS databases for solanaceous carboxypeptidase inhibitors, phylogenetic relationships and conservation patterns analyzes using MEGA-X software and Clustal Omega/MView tools, physicochemical properties and antimicrobial potential prediction using ProtParam, ToxinPred, iAMPred, and APD3 tools, and structural features prediction using PSIPRED. Results and discussion: A systematic literature search was conducted to identify relevant studies on Solanaceae carboxypeptidase inhibitors and their activities against pathogens. The selected studies were reviewed and the main findings compiled. The characterization of Solanaceae carboxypeptidase inhibitors proposed for the first time the global sequence consensus motif CXXXCXXXXDCXXXXXCXXC, shedding light on carboxypeptidase inhibitors distribution, sequence variability, and conservation patterns. Phylogenetic analysis showed evolutionary relationships within the Solanaceae family, particularly in Capsicum, Nicotiana, and Solanum genera. Physicochemical characteristics of those peptides indicated their similarity to antimicrobial peptides. Predicted secondary structures exhibited variations, suggesting a broad spectrum of action, and studies had been demonstrated their activities against various pathogens. Conclusion: Carboxypeptidase inhibitors are being proposed here as a new subclass of PR-6 pathogenesis-related proteins, which will aid in a focused understanding of their functional roles in plant defense mechanisms. These findings confirm the Solanaceae carboxypeptidase inhibitors potential as defense agents and highlight opportunities for their biotechnological applications in pathogen control.
Collapse
Affiliation(s)
| | | | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
32
|
Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11:10446-10454. [PMID: 37888956 DOI: 10.1039/d3tb01754k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Increased antibiotic resistance has made bacterial infections a global concern, which requires novel non-antibiotic-dependent antibacterial strategies to address the menace. Antimicrobial peptides (AMPs) are a promising antibiotic alternative, whose antibacterial mechanism is mainly to destroy the membrane of bacteria. Gallium ions exhibit an antibacterial effect by interfering with the iron metabolism of bacteria. With the rapid development of nanotechnology, it is worth studying the potential of gallium-AMP-based nanocomposites for treating bacterial infections. Herein, novel gallium-based metal-organic frameworks (MOFs) were synthesized at room temperature, followed by in situ loading of the model AMP melittin. The obtained nanocomposites exhibited stronger antibacterial activity than pure MEL and gallium ions, achieving the effects of "one plus one is greater than two". Moreover, the nanocomposites showed favorable biocompatibility and accelerated healing of a wound infected by methicillin-resistant Staphylococcus aureus by down-regulation of inflammatory cytokines IL-6 and TNF-α. This work presents an innovative antibacterial strategy to overcome the antibiotic resistance crisis and expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| | - Yuxin Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|
33
|
Chen B, Li Y, Bai H, Ji Y, Cong W, Hu H, He S. Unleashing the potential of natural biological peptide Macropin: Hydrocarbon stapling for effective breast cancer treatment. Bioorg Chem 2023; 140:106770. [PMID: 37604094 DOI: 10.1016/j.bioorg.2023.106770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
The identification of novel candidate molecules with the potential to revolutionize the treatment of breast cancer holds profound clinical significance. Macropin (Mac)-1, derived from the venom of wild bees, emerges as an auspicious therapeutic agent for combating breast cancers. Nevertheless, linear peptides have long grappled with the challenges of traversing cell membranes and succumbing to protease hydrolysis. To address this challenge, the present study employed hydrocarbon stapling modification to synthesize a range of stapled Mac-1 peptides, which were comprehensively evaluated for their chemical and biological properties. Significantly, Mac-1-sp4 exhibited a remarkable set of improvements, including enhanced helicity, proteolytic stability, cell membrane permeability, induction of cell apoptosis, in vivo antitumor activity, and inhibition of tubulin polymerization. This study explores the significant impact of the hydrocarbon stapling technique on the secondary structure, hydrolase stability, and biological activity of Mac-1, shedding light on its potential as a revolutionary and potent anti-breast cancer therapy. The findings establish a strong basis for the development of innovative and highly effective anti-tumor treatments.
Collapse
Affiliation(s)
- Baobao Chen
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Haohao Bai
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Yajing Ji
- Institute of Translational Medicine, Shanghai University, 200444, China
| | - Wei Cong
- School of Medicine, Shanghai University, 200444, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 200444, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 200444, China.
| |
Collapse
|
34
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
35
|
Palma F, Chianese A, Panico E, Greco G, Fusco A, Savio V, Ruocco E, Monti A, Doti N, Zannella C, Donnarumma G, De Filippis A, Galdiero M. Oreoch-1: A Peptide from Oreochromis niloticus as a Potential Tool against Staphylococci. Pathogens 2023; 12:1188. [PMID: 37887704 PMCID: PMC10610258 DOI: 10.3390/pathogens12101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Staphylococci, including Staphylococcus aureus and Staphylococcus epidermidis, are important human pathogens associated with potentially life-threatening infections. Their great biofilm-producing ability and the development of resistance mechanisms often account for therapeutic failure. Hence, the scientific community has devoted intensive efforts to the development of antimicrobial compounds active against both planktonic and sessile bacterial populations. Contextually, antimicrobial peptides (AMPs) are natural peptides produced by the innate immunity of every organism, representing a potential new therapeutic solution against human microbial pathogens. Our work focused on the in vitro activity of Oreoch-1, an AMP from the gills of Nile tilapia (Oreochromis niloticus), against standard and clinical S. aureus and S. epidermidis strains. Firstly, the cytotoxicity profile of Oreoch-1 was determined in human colon carcinoma cells. Secondly, its antibacterial spectrum was explored against staphylococcal strains to set up the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Our results highlighted an antibacterial activity in the range 6.25-25 μM, with a general bacteriostatic effect. Therefore, the biofilm-inhibitory property was assessed against S. aureus ATCC 25923 and S. epidermidis ATCC 35984, indicating a significant reduction in S. aureus biomass at sub-MIC concentrations. Overall, our study indicates Oreoch-1 as a promising new therapeutic weapon against staphylococcal infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Erica Panico
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.P.); (G.G.)
| | - Giuseppe Greco
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.P.); (G.G.)
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Vittoria Savio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Eleonora Ruocco
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.P.); (G.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (A.C.); (A.F.); (V.S.); (C.Z.); (G.D.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.P.); (G.G.)
| |
Collapse
|
36
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M. Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba;
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
37
|
Abe Y, Honda M. A Novel Control Method of Enterococcus faecalis by Co-Treatment with Protamine and Calcium Hydroxide. Pharmaceutics 2023; 15:1629. [PMID: 37376077 DOI: 10.3390/pharmaceutics15061629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Enterococcus faecalis (E. faecalis), a gram-positive facultative anaerobic bacterium, is likely to survive root canal treatment because of its extremely high alkaline tolerance, which may contribute to the refractory nature of apical periodontitis (AP). In this study, protamine was combined with calcium hydroxide to evaluate its efficacy in killing E. faecalis. First, the antibacterial activity of protamine against E. faecalis was investigated. Protamine reduced the E. faecalis growth rate at concentrations above the MIC (250 μg/mL), but was not bactericidal at any of the concentrations tested. Next, we investigated the calcium hydroxide tolerance of E. faecalis, using a 10% 310 medium, adjusted for pH by adding a calcium hydroxide solution. The results showed that E. faecalis could survive and proliferate in alkaline environments up to pH 10. However, the complete killing of E. faecalis was observed when protamine (250 μg/mL) was added. In addition, compared with treatment with protamine and calcium hydroxide alone, membrane damage and internalization of protamine into the cytoplasm of E. faecalis were enhanced. Therefore, the synergistic increase in antibacterial activity may be related to the action of both antimicrobial agents on the cell membrane. In conclusion, co-treatment with protamine and calcium hydroxide seems to be very effective in sterilizing E. faecalis, and has the potential to provide a novel control method against E. faecalis for root canal treatment.
Collapse
Affiliation(s)
- Yu Abe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|