1
|
Manoria P, Noor MT. Correlation of serum vitamin D levels with serum interleukin-23 levels in patients of ulcerative colitis. Hum Immunol 2025; 86:111305. [PMID: 40199019 DOI: 10.1016/j.humimm.2025.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition resulting from an abnormal immune response to gut microbiota, leading to cytokine dysregulation, including elevated interleukin-23 (IL-23) levels. Emerging evidence suggests that vitamin D (VD) plays a crucial role in immune modulation. However, its correlation with IL-23 in UC is not well addressed. This study aims to elucidate the relationship between serum VD and IL-23 levels in UC patients. We included forty-four UC patients and forty-four healthy controls. VD insufficiency was more common in UC patients (n = 14) compared to controls (n = 5). Significant increases in IL-23 levels were observed from remission (46.6 ± 4.3 pg/mL) to severe stages (218.5 ± 62.41 pg/mL), while VD levels did not show a similar trend. IL-23 levels also rose significantly with disease extent, from proctitis to pancolitis. A significant negative correlation was found between VD and IL-23 levels (r = -0.3175; P = 0.035). IL-23 and pulse rate were significant predictors of UC in our cohort. Our findings highlight VD insufficiency to be prevalent in UC patients, with VD levels negatively correlating with IL-23 levels, which increase with disease severity and extent. Further, understanding the interplay between VD and IL-23 will help design therapeutic interventions to modulate immune response and disease progression.
Collapse
Affiliation(s)
- Piyush Manoria
- Department of Gastroenterology and Hepatology, Manoria Hospital, Bhopal, Madhya Pradesh, India.
| | - Mohd T Noor
- Department of Gastroenterology, Sri Aurobindo Medical College and PG Institute, Indore, Madhya Pradesh, India.
| |
Collapse
|
2
|
Kafel A, Rodriguez de Castro Zalona C, Seiz C, Schnoy E. [Advanced therapies: Un update on medical treamtent options in Crohn`s disease]. Dtsch Med Wochenschr 2025; 150:405-411. [PMID: 40164094 DOI: 10.1055/a-2368-7173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Crohn's disease is a chronic inflammatory bowel disease (IBD) that can manifest throughout the entire gastrointestinal tract from mouth to anus. It is characterized by so-called "skip lesions", which are affected sections of the intestine interspersed with healthy sections. In recent years, there have been significant progress and an expansion of medical treatment options for Crohn's disease with the approval of many new substances. Treatment goals have also become more ambitious, going beyond clinical symptom control to mucosal healing and, according to the STRIDE II criteria, to transmural healing in Crohn's disease in the future. If these goals are achieved, patients with Crohn's disease have a good chance of remaining in long-term remission and can expect fewer complications such as disease progression, hospitalization, anemia, fistulas, strictures, or surgeries. Despite having access to a variety of different substance classes in the treatment of Crohn's disease, in everyday practice we can see that these medications are not effective for some patients in the long-term. There is a so-called "therapeutic ceiling" in IBD, meaning that only about 40-50% of those affected are successfully managed long-term with one substance. Therefore, new medical treatment options for Crohn's disease always represent an opportunity to treat patients even better.
Collapse
|
3
|
Hart A, Panaccione R, Steinwurz F, Danese S, Hisamatsu T, Cao Q, Ritter T, Seidler U, Olurinde M, Vetter ML, Yee J, Yang Z, Wang Y, Johanns J, Han C, Sahoo A, Terry NA, Sands BE, D'Haens G. Efficacy and Safety of Guselkumab Subcutaneous Induction and Maintenance in Participants With Moderately to Severely Active Crohn's Disease: Results From the Phase 3 GRAVITI Study. Gastroenterology 2025:S0016-5085(25)00522-0. [PMID: 40113101 DOI: 10.1053/j.gastro.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND AIMS Subcutaneous (SC) induction and maintenance with guselkumab was evaluated in adult participants with moderately to severely active Crohn's disease. METHODS The Phase 3 double-blind, placebo-controlled, treat-through GRAVITI study randomized 347 participants 1:1:1 to guselkumab 400 mg SC every 4 weeks→100 mg SC every 8 weeks (n = 115), guselkumab 400 mg SC every 4 weeks→200 mg SC every 4 weeks (n = 115), or placebo (n = 117). Placebo participants meeting rescue criteria received guselkumab from week 16 onward. Co-primary endpoints were clinical remission at week 12 and endoscopic response at week 12. Additional multiplicity-controlled endpoints were Patient-Reported Outcome-2 remission (week 12), clinical response (week 12), clinical remission (week 24), clinical remission (week 48), and endoscopic response (week 48). Safety was assessed through week 48. RESULTS All multiplicity-controlled endpoints were met. At week 12, significantly greater proportions of participants receiving guselkumab 400 mg achieved clinical remission vs placebo (56.1% vs 21.4%; Δ = 34.9; P < .001), and endoscopic response vs placebo (41.3% vs 21.4%; Δ = 19.9; P < .001). At week 48, significantly greater proportions of participants in both guselkumab groups (100 mg SC every 8 weeks: 60.0%, Δ = 42.8; 200 mg SC every 4 weeks: 66.1%, Δ = 48.9) achieved clinical remission vs placebo (17.1%; P < .001 each) and endoscopic response (44.3%, Δ = 37.5; 51.3%, Δ = 44.6; vs placebo 6.8%; P < .001 each). Efficacy was observed in both bionaive participants and those with inadequate response/intolerance to biologics. Adverse event rates were not greater in guselkumab groups vs placebo. CONCLUSION Subcutaneous guselkumab for both induction and maintenance was efficacious in treating participants with moderately to severely active Crohn's disease. Safety findings were consistent with those of guselkumab in approved indications, including ulcerative colitis. (ClinicalTrials.gov, Number: NCT05197049).
Collapse
Affiliation(s)
- Ailsa Hart
- London North-West University Healthcare NHS Trust, London, UK
| | | | | | - Silvio Danese
- IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | | | - Qian Cao
- Sir Run Run Shaw Hospital Affiliated with School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Yuhua Wang
- Johnson & Johnson, Spring House, Pennsylvania
| | | | | | | | | | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Geert D'Haens
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Ouranos K, Saleem H, Vassilopoulos S, Vassilopoulos A, Mylona EK, Shehadeh F, Kalligeros M, Abraham BP, Mylonakis E. Risk of Infection in Patients With Inflammatory Bowel Disease Treated With Interleukin-Targeting Agents: A Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2025; 31:37-51. [PMID: 38427714 DOI: 10.1093/ibd/izae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are at increased risk of infection. The aim of this study was to assess the cumulative incidence and risk of infection in patients with IBD treated with interleukin (IL)-targeting agents. METHODS We searched PubMed, EMBASE, and Web of Science for randomized controlled trials including patients with IBD receiving IL-targeting agents compared with patients receiving placebo or treatment that only differed from the intervention arm in the absence of an IL-targeting agent. The primary outcome of interest was the relative risk (RR) of any-grade and severe infection during the induction phase. RESULTS There was no difference in risk of any-grade (RR, 0.98; 95% confidence interval [CI], 0.89-1.09) or severe (RR, 0.64; 95% CI, 0.38-1.10) infection in patients receiving any IL-targeting agent compared with the control group. During the maintenance period, the cumulative incidence of any-grade infection in patients receiving IL-12/23p40-targeting agents (mean follow-up 29 weeks) was 34.82% (95% CI, 26.78%-43.32%), while the cumulative incidence of severe infection was 3.07% (95% CI, 0.93%-6.21%). The cumulative incidence of any-grade infection in patients receiving IL-23p19-targeting agents (mean follow-up 40.9 weeks) was 32.16% (95% CI, 20.63%-44.88%), while the cumulative incidence of severe infection was 1.75% (95% CI, 0.60%-3.36%). During the maintenance phase of the included studies, the incidence of infection was 30.66% (95% CI, 22.12%-39.90%) for any-grade and 1.59% (95% CI, 0.76%-2.63%) for severe infection in patients in the control group. CONCLUSIONS There was no difference in risk of infection between patients with IBD who received IL-targeting agents compared with the control group. Case registries and randomized controlled trials reporting the safety of IL inhibitors should provide detailed information about the risk of specific infectious complications in patients with IBD receiving IL-targeting agents.
Collapse
Affiliation(s)
| | - Hira Saleem
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Stephanos Vassilopoulos
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Athanasios Vassilopoulos
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Evangelia K Mylona
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Fadi Shehadeh
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Electrical and Computer Engineering, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Markos Kalligeros
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bincy P Abraham
- Division of Gastroenterology and Hepatology, Department of Medicine, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, TX, USA
| | - Eleftherios Mylonakis
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Nicolò S, Faggiani I, Errico C, D'Amico F, Parigi TL, Danese S, Ungaro F. Translational characterization of immune pathways in inflammatory bowel disease: insights for targeted treatments. Expert Rev Clin Immunol 2025; 21:55-72. [PMID: 39313992 DOI: 10.1080/1744666x.2024.2400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The pathogenesis of inflammatory bowel disease (IBD) involves the dysregulation of multiple inflammatory pathways. The understanding of these mechanisms allows their selective targeting for therapeutic purposes. The discovery of Tumor Necrosis Factor-alpha's (TNF-α) role in mucosal inflammation ushered an exciting new era of drug development which now comprises agents targeting multiple pro-inflammatory signaling pathways, integrins, and leukocyte trafficking regulators. AREA COVERED This review provides an overview of the main molecular players of IBD, their translation into therapeutic targets and the successful development of the advanced agents modulating them. We combine basic science with clinical trials data to present a critical review of both the successful and failed drug development programs. A PubMed literature search was conducted to delve into the available literature and clinical trials. EXPERT OPINION The treatment landscape for IBD has rapidly expanded, particularly with the development of biologics targeting TNF-α, integrins, and S1P modulators, as well as newer agents such as IL-12/IL-23 inhibitors and JAK inhibitors, offering robust efficacy and safety profiles. However, challenges persist in understanding and effectively treating difficult-to-treat IBD, highlighting the need for continued research to uncover novel therapeutic targets and optimize patient outcomes.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ilaria Faggiani
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Carmela Errico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Aebisher D, Bartusik-Aebisher D, Przygórzewska A, Oleś P, Woźnicki P, Kawczyk-Krupka A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int J Mol Sci 2024; 26:121. [PMID: 39795980 PMCID: PMC11719876 DOI: 10.3390/ijms26010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder of the gastrointestinal tract with a complex aetiopathogenesis, whose development is influenced by many factors. The prevalence of IBD is increasing worldwide, in both industrialized and developing countries, making IBD a global health problem that seriously affects quality of life. In 2019, there were approximately 4.9 million cases of IBD worldwide. Such a large number of patients entails significant healthcare costs. In the treatment of patients with IBD, the current therapeutic target is mucosal healing, as intestinal inflammation often persists despite resolution of abdominal symptoms. Treatment strategies include amino salicylates, corticosteroids, immunosuppressants, and biologic therapies that focus on reducing intestinal mucosal inflammation, inducing and prolonging disease remission, and treating complications. The American College of Gastroenterology (ACG) guidelines also indicate that nutritional therapies may be considered in addition to other therapies. However, current therapeutic approaches are not fully effective and are associated with various limitations, such as drug resistance, variable efficacy, and side effects. As the chronic inflammation that accompanies IBD is characterized by infiltration of a variety of immune cells and increased expression of a number of pro-inflammatory cytokines, including IL-6, TNF-α, IL-12, IL-23 and IFN-γ, new therapeutic approaches are mainly targeting immune pathways. Interleukins are one of the molecular targets in IBD therapy. Interleukins and related cytokines serve as a means of communication for innate and adaptive immune cells, as well as nonimmune cells and tissues. These cytokines play an important role in the pathogenesis and course of IBD, making them promising targets for current and future therapies. In our work, we review scientific studies published between January 2022 and November 2024 describing the most important interleukins involved in the pathogenesis of IBD. Some of the papers present new data on the precise role that individual interleukins play in IBD. New clinical data have also been provided, particularly on blocking interleukin 23 and interleukin 1beta. In addition, several new approaches to the use of different interleukins in the treatment of IBD have been described in recent years.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| |
Collapse
|
7
|
Biagioli M, Di Giorgio C, Massa C, Marchianò S, Bellini R, Bordoni M, Urbani G, Roselli R, Lachi G, Morretta E, Piaz FD, Charlier B, Fiorillo B, Catalanotti B, Cari L, Nocentini G, Ricci P, Distrutti E, Festa C, Sepe V, Zampella A, Monti MC, Fiorucci S. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORγt inverse agonism. Biomed Pharmacother 2024; 181:117731. [PMID: 39657506 DOI: 10.1016/j.biopha.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
The interplay between the dysbiotic microbiota and bile acids is a critical determinant for development of a dysregulated immune system in inflammatory bowel disease (IBD). Here we have investigated the fecal bile acid metabolome, gut microbiota composition, and immune responses in IBD patients and murine models of colitis and found that IBD associates with an elevated excretion of primary bile acids while secondary, allo- and oxo- bile acids were reduced. These changes correlated with the disease severity, mucosal expression of pro-inflammatory cytokines and chemokines, and reduced inflow of anti-inflammatory macrophages and Treg in the gut. Analysis of bile acids metabolome in the feces allowed the identification of five bile acids: 3-oxo-DCA, 3-oxo-LCA, allo-LCA, iso-allo-LCA and 3-oxo-UDCA, whose excretion was selectively decreased in IBD patients and diseased mice. By transactivation assay and docking calculations all five bile acids were shown to act as GPBAR1 agonists and RORγt inverse agonists, skewing Th17/Treg ratio and macrophage polarization toward an M2 phenotype. In a murine model of colitis, administration of 3-oxo-DCA suffices to reverse colitis development and intestinal dysbiosis in a GPBAR1-dependent manner. In vivo administration of 3-oxo-DCA to colitic mice also reverses disease severity and RORγt activation induced by a RORγt agonist and IL-23, a Th17 inducing cytokine. These results demonstrated that intestinal excretion of 3-oxoDCA, a dual GPBAR1 agonist and RORγt inverse agonist, is reduced in IBD and in models of colitis and its restitution protects against colitis development, highlighting a potential role for this agent in IBD management.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Bar Pharmaceuticals s.r.l., Via Gramsci 88/A, Reggio Emilia 42124, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Bruno Charlier
- University hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Guo X, Niu Z, Zhuang Y, Zhao Y, Ding Z, Shi J, Hou S, Fan H, Lv Q. Bone marrow mesenchymal stromal cells attenuate smoke inhalation injury by regulating the M1/M2-Th17/Treg immune homeostasis axis. Int Immunopharmacol 2024; 141:112986. [PMID: 39182266 DOI: 10.1016/j.intimp.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Smoke inhalation injury (SII) is the leading cause of death in fire burn patients. The inflammatory response induced by smoke inhalation is a significant factor in the development of acute lung injury or acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) can alleviate various inflammatory diseases by regulating the polarization of macrophages from the M1 to the M2 phenotype. Moreover, MSCs can facilitate the inflammatory response by regulating Th17/Treg homeostasis. However, little is known about the associations among MSCs, M1/M2 macrophages and Th17/Treg homeostasis. Therefore, the purpose of this study was to evaluate whether MSCs affect subsequent Th17/Treg differentiation and immune homeostasis by regulating M1/M2 polarization in SII. Our results showed that bone marrow mesenchymal stem cells (BMSCs) ameliorated lung inflammatory injury and fibrosis after SII by affecting the polarization of alveolar macrophages (AMs) from the M1 to the M2 phenotype. Moreover, BMSCs maintain Th17/Treg immune homeostasis by increasing the proportion of Treg cells and decreasing the proportion of Th17 cells. In vitro, we further demonstrated that BMSCs promoted the polarization of AMs from the M1 to the M2 phenotype and decreased IL-23 levels. Reduced IL-23 decreased Th17 differentiation and promoted Th17/Treg balance. Therefore, BMSCs ameliorate the inflammatory response and lung damage after SII through regulating M1/M2 polarization and subsequent Th17/Treg immune homeostasis, which are linked to alveolar macrophage-derived IL-23. These findings provide novel insight into how BMSCs regulate the M1/M2-Th17/Treg immune homeostasis axis and provide new therapeutic targets for more effective control of the inflammatory response after SII.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Yong Zhuang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Yunlong Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| |
Collapse
|
9
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
10
|
Shao A, Zhao Q, Chen M. Homocysteine Promotes Intestinal Inflammation in Colitis Mice Through the PGE2/STAT3 Signaling Pathway. Dig Dis Sci 2024; 69:3742-3752. [PMID: 39141200 PMCID: PMC11489288 DOI: 10.1007/s10620-024-08588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Our previous study indicated that Hcy exacerbated DSS-induced colitis by facilitating the differentiation of intestinal T helper cell 17 (Th17), but the precise mechanism remains unidentified. Therefore, our current research aims to elucidate the signaling pathway through which Hcy promotes the differentiation of Th17 cells. METHODS BALb/c mice were randomly assigned into six groups. The model of mice colitis was induced using 3% DSS, while the model of Hyperhomocysteinemia was induced using 1.7% methionine. The concentrations of Hcy and prostaglandin E2 (PGE2) were measured using enzyme-linked immunosorbent assay (ELISA). The protein expressions of cytosolic phospholipase A2 (cPLA2), phosphorylated-cPLA2 (p-cPLA2), cyclooxygenase 2 (COX2), cyclic adenosine monophosphate (cAMP), signal transducer and activator of transcription 3 (STAT3), phosphorylated-STAT3 (p-STAT3), interleukin-17A (IL-17A), and retinoid-related orphan nuclear receptor-γt (RORγt) were assessed using western blot analysis. RESULTS Compared to the DSS + HHcy group, the addition of the COX inhibitor did not significantly alter the protein expression of p-PLA2/PLA2, but led to significant decreases in serum PGE2 concentration, cAMP, and p-STAT3/STAT3 protein expression. The protein expressions of p-PLA2/PLA2, COX2, and cAMP upstream of STAT3 inhibitor addition did not exhibit significant changes. However, PGE2 concentration and p-STAT3/STAT3 protein expression were notably reduced. After the COX inhibitor and STAT3 inhibitor added, the protein expression of IL-17A and RORγt and the levels of IL-17A and IL-23R in CD4+ T cells were significantly reduced. CONCLUSION HHcy aggravated DSS-induced colitis by promoting the differentiation and proliferation of Th17 cells through the PGE2 / STAT3 signaling pathway.
Collapse
Affiliation(s)
- Akang Shao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
- The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
11
|
Rezaee MA, Shobeiri SS, Moghadam M, Mashayekhi K, Sankian M. In vitro identification of single-stranded DNA aptamers targeting human IL-23 using the protein-SELEX strategy. J Pharm Biomed Anal 2024; 247:116245. [PMID: 38810331 DOI: 10.1016/j.jpba.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Interleukin (IL)-23 inhibitor monoclonal antibodies shown significant efficacy in treating autoimmune diseases. DNA or RNA aptamers exhibit comparable specificity to antibodies, are cost-effective, non-immunogenic, and do not have batch to batch variation. This study aimed to characterize a single-stranded DNA (ssDNA) aptamer targeting human IL-23. The alpha subunit of IL-23 (P19) and intact IL-23 were cloned, expressed, and the proteins finally were purified through Ni2+-iminodiacetic acid affinity chromatography. The selection and characterization of ssDNA aptamer against P19 were conducted using the protein-systematic evolution of ligands by exponential enrichment (SELEX). Dot blot assay was carried out to monitor binding of the aptamer output of SELEX rounds, to P19 protein. The dissociation constant (Kd) of aptamers with positive results in dot blot assay, determined based on their binding to IL-23 using an ELISA method. Recombinant P19 and IL-23 proteins were 26 and 72 kDa, respectively, observed on SDS-PAGE .12 %. The aptamers output from 7, 8, 9, 10, 11, and 12 rounds of the SELEX was monitored by dot blot assay, revealing that the aptamer from the round 8 has stronger luminescent signal and was selected for TA-cloning. After analyzing the biotinylated aptamers from clones, positive clones in dot blot assay and ELISA were sequenced. Finally, the Kd calculation revealed three aptamers with high affinity, named A23P3, A23P6, and A23P15 with Kd values of 1.37, 2.139, and 2.88 nM, respectively. Results of this study introduced three specific anti-IL-23 ssDNA aptamers with high affinity, which could be utilized for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Mohammad Ali Rezaee
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saeideh Sadat Shobeiri
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Malihe Moghadam
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Jaber F, Ayyad M, Alsakarneh S, Alsharaeh T, Salahat AJ, Jaber M, Gangwani MK, Abboud Y, Mohamed I, Ali H, Kilani Y, Farraye FA, Hashash JG. Efficacy and Safety of Interleukin-12/23 and Interleukin-23 Inhibitors for Ulcerative Colitis: A Systematic Review Ad Meta-Analysis of Randomized Controlled Trials. Am J Ther 2024:00045391-990000000-00217. [PMID: 39212744 DOI: 10.1097/mjt.0000000000001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Targeting interleukin-23 (IL-23) represents a significant therapeutic avenue for treating ulcerative colitis (UC). STUDY QUESTION What are the effectiveness and safety of selective inhibitors targeting IL-23p19 and IL-12/23p40 in individuals with moderate-to-severe UC? DATA SOURCES MEDLINE, Embase, Scopus, and Cochrane databases. STUDY DESIGN A systematic search of MEDLINE, Embase, Scopus, and Cochrane databases till January 15, 2024, to identify randomized controlled trials comparing IL-23p19 and IL-12/23p40 inhibitors against placebo or active comparators in UC patients. The primary outcome was clinical remission, with secondary outcomes including clinical response, endoscopic remission, and safety profiles during induction and maintenance phases. Using a fixed-effect model, we pooled dichotomous data with risk ratio (RR) and 95% confidence interval (CI) for analysis. RESULTS In 5 trials involving 1120 patients with moderate to severe UC, targeting IL-23 showed significant superiority in inducing clinical remission [RR: 2.08, 95% CI, (1.66-2.61)], endoscopic remission [RR: 1.73, 95% CI, (1.39-2.16)], and histologic remission [RR: 1.88, 95% CI, (1.34-2.64)]. Additionally, individuals treated with IL-12/23p40 or IL-23p19 antagonists maintained clinical remission [RR: 1.85, 95% CI, (1.53-2.23)], endoscopic remission [RR: 2.03, 95% CI, (1.60-2.57)], and histologic remission [RR: 1.66, 95% CI, (1.11-2.48)]. Targeting IL-23 was linked with a reduced risk of any adverse events (AE) during both induction [RR: 0.94, 95% CI, (0.86-1.02)] and maintenance phases [RR: 0.93, 95% CI, (0.86-0.99)], any serious AE during the induction phase [RR: 0.53, 95% CI, (0.36-0.78)], and withdrawal due to AEs compared to patients receiving placebo during induction [RR: 0.24, 95% CI (0.14, 0.43)]. CONCLUSION Targeting IL-23 demonstrates efficacy and safety for inducing and maintaining clinical and endoscopic remission in moderate-to-severe UC patients.
Collapse
Affiliation(s)
- Fouad Jaber
- Department of Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Mohammed Ayyad
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Saqr Alsakarneh
- Department of Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Tala Alsharaeh
- Department of Medicine, The University of Jordan-Faculty of Medicine, Amman, Jordan
| | - Ahmed-Jordan Salahat
- Department of Medicine, The University of Jordan-Faculty of Medicine, Amman, Jordan
| | - Mohammad Jaber
- Department of Medicine, Al-Azhar University-Faculty of Medicine, Gaza, Palestine
| | | | - Yazan Abboud
- Department of Internal Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Islam Mohamed
- Department of Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Hassam Ali
- Department of Gastroenterology, ECU Health Medical Center, Greenville, NC
| | - Yassine Kilani
- Department of Internal Medicine, NYC Health + Hospitals | Lincoln-Weill Cornell Medical College, Bronx, NY; and
| | - Francis A Farraye
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL
| | - Jana G Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
13
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Gu Y, Lou Y, Zhou Z, Zhao X, Ye X, Wu S, Li H, Ji Y. Resveratrol for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1411566. [PMID: 38948464 PMCID: PMC11211549 DOI: 10.3389/fphar.2024.1411566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic condition that can be managed with treatment, but it is challenging to get IBD cured. Resveratrol, a non-flavonoid polyphenolic organic compound derived from various plants, has a potential effect on IBD. The current research was set out to investigate the therapeutic effects of resveratrol on animal models of IBD. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Chinese databases was performed. The literature search process was completed independently by two people and reviewed by a third person. The risk of bias in the included literature was assessed using the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Stroke (CAMARADES) 10-point quality checklist. The meta-analysis utilized Review Manager 5.4 software to evaluate the efficacy of resveratrol, with histopathological index as the primary outcome measure. Subgroup analysis was conducted based on this indicator. Additionally, meta-analyses were carried out on different outcomes reported in the literature, including final disease activity index, final body weight change, colon length, splenic index, and inflammatory factors. Results: After conducting a thorough literature search and selection process, a total of 28 studies were ultimately included in the analysis. It was found that over half of the selected studies had more than five items with low risk of bias in the bias risk assessment. Relevant datas from included literature indicated that the histopathological index of the resveratrol group was significantly lower than that of the control group (WMD = -2.58 [-3.29, -1.87]). Subgroup analysis revealed that higher doses of resveratrol (>80 mg/kg) had a better efficacy (WMD = -3.47 [-4.97, -1.98]). Furthermore, The data summary and quantitative analysis results of SI and colon length also showed that resveratrol was effective in alleviating intestinal mucosal pathological injury of IBD. In terms of biochemical indicators, the summary analysis revealed that resveratrol affected interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interferon-γ (IFN-γ), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) significantly. These effects may be attributed to the mechanism of resveratrol in regulating immune response and inhibiting oxidative stress. Conclusion: This review suggests that resveratrol demonstrated a notable therapeutic impact in preclinical models of IBD, particularly at doses exceeding 80 mg/kg. This efficacy is attributed to the protective mechanisms targeting the intestinal mucosa involved in the pathogenesis of IBD through various pathways. As a result, resveratrol holds promising prospects for potential clinical use in the future.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwen Wu
- Department of Acupuncture and Moxibustion, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhenjiang, China
| | - Haitao Li
- Department of Digestive System, Jinhua Municipal Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
16
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
17
|
Leccese G, Chiara M, Dusetti I, Noviello D, Billard E, Bibi A, Conte G, Consolandi C, Vecchi M, Conte MP, Barnich N, Caprioli F, Facciotti F, Paroni M. AIEC-dependent pathogenic Th17 cell transdifferentiation in Crohn's disease is suppressed by rfaP and ybaT deletion. Gut Microbes 2024; 16:2380064. [PMID: 39069911 PMCID: PMC11290758 DOI: 10.1080/19490976.2024.2380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.
Collapse
Affiliation(s)
- G. Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - M. Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - I. Dusetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - D. Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - E. Billard
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - A. Bibi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - G. Conte
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - C. Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - M. Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - MP Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - N. Barnich
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - F. Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - F. Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - M. Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Fanizza J, D’Amico F, Lusetti F, Fasulo E, Allocca M, Furfaro F, Zilli A, Parigi TL, Radice S, Peyrin-Biroulet L, Danese S, Fiorino G. The Role of IL-23 Inhibitors in Crohn's Disease. J Clin Med 2023; 13:224. [PMID: 38202231 PMCID: PMC10779938 DOI: 10.3390/jcm13010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Promoting a Th17 pathogenic response, the interleukin (IL)-23 pathway is crucial in the pathophysiology of inflammatory bowel disease (IBD). With a favorable safety profile, ustekinumab, a monoclonal antibody targeting the shared p40 component of IL-12/23, is currently approved for the treatment of IBD in patients with disease refractory to corticosteroids and biologic drugs. Risankizumab, mirikizumab, and guselkumab are specific IL-23p19 antagonists tested for the treatment of Crohn's disease (CD). However, only risankizumab currently has been approved for its treatment. Trials with guselkumab and mirikizumab are currently ongoing, with promising preliminary efficacy and safety results. In this review, we provide a summary of the current knowledge about selective IL-23 inhibitors, focusing on their positioning in the therapeutic algorithm of patients with moderate to severe CD.
Collapse
Affiliation(s)
- Jacopo Fanizza
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Ferdinando D’Amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Francesca Lusetti
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
- Department of Gastroenterology, IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Ernesto Fasulo
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Simona Radice
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France;
- Inserm, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly-sur-Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
| | - Gionata Fiorino
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (J.F.); (F.D.); (F.L.); (E.F.); (M.A.); (F.F.); (A.Z.); (T.L.P.); (S.R.); (S.D.)
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
19
|
da Silva Júnior RT, Apolonio JS, de Souza Nascimento JO, da Costa BT, Malheiro LH, Silva Luz M, de Carvalho LS, da Silva Santos C, Freire de Melo F. Crohn's disease and clinical management today: How it does? World J Methodol 2023; 13:399-413. [PMID: 38229938 PMCID: PMC10789097 DOI: 10.5662/wjm.v13.i5.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
Crohn's Disease (CD) is an Inflammatory Bowel Disease and is characterized by an immune-mediated nature. Its etiology results from the interaction between genetic, enviromental and microbial factors. Regarding pathophysiology, it involves high levels of interleukin (IL)-12, IL-17, and Th1 profile, along with loss of tolerance mechanisms, an increase in pro-inflammatory interleukins, beyond the possibility to affect any part of the gastrointestinal tract. Its symptoms include abdominal pain, chronic diarrhea, weight loss, anorexia, and fatigue, as well as blood in the stool or rectum. Additionally, conditions comprising musculoskeletal, cutaneous, ocular, hepatic, and hematological alterations may be associated with this scenario and extra-intestinal presentation, such as erythema nodosum, anterior uveitis, osteoporosis, and arthritis can also occur. Today, clinical history, exams as fecal calprotectin, ileocolonocopy, and capsule endoscopy can be performed in the diagnosis investigation, along with treatments to induce and maintain remission. In this sense, anti-inflammatory drugs, such as corticosteroids, immunomodulators, and biological agents, as well as surgery and non-pharmacological interventions plays a role in its therapy. The aim of this review is to bring more current evidence to clinical management of CD, as well as to briefly discuss aspects of its pathophysiology, surveillance, and associated disorders.
Collapse
Affiliation(s)
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cleiton da Silva Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
20
|
Sisto M, Lisi S. Interleukin-23 Involved in Fibrotic Autoimmune Diseases: New Discoveries. J Clin Med 2023; 12:5699. [PMID: 37685766 PMCID: PMC10489062 DOI: 10.3390/jcm12175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Interleukin (IL)-23 is a central pro-inflammatory cytokine with a broad range of effects on immune responses. IL-23 is pathologically linked to the induction of the production of the pro-inflammatory cytokines IL-17 and IL-22, which stimulate the differentiation and proliferation of T helper type 17 (Th17) cells. Recent discoveries suggest a potential pro-fibrotic role for IL-23 in the development of chronic inflammatory autoimmune diseases characterized by intense fibrosis. In this review, we summarized the biological features of IL-23 and gathered recent research on the role of IL-23 in fibrotic autoimmune conditions, which could provide a theoretical basis for clinical targeting and drug development.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70123 Bari, Italy;
| | | |
Collapse
|