1
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
2
|
Bingul MB, Gul M, Dundar S, Bozoglan A, Kirtay M, Ozupek MF, Ozcan EC, Habek O, Tasdemir I. Effects of the Application Local Zoledronic Acid On Different Dental Implants in Rats On Osseointegration. Drug Des Devel Ther 2024; 18:2249-2256. [PMID: 38895174 PMCID: PMC11185166 DOI: 10.2147/dddt.s459125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Objective Recently, a lot of research has been done around the world to popularize the osseointegration of dental implants. In this study, it was investigated the effect of local zoledronic acid application on implants with machined (MAC), resorbable blast materials (RBM), sandblasted and acid-etched (SLA) surface implants integrated in rat tibias. Methodology A total of 60 female Wistar rats weighing between 270 and 300 g were used in the study. The rats were passing divided into six classes: controls; MAC (n = 10), RBM (n = 10), SLA (n = 10), and local zoledronic acid (LZA) applied groups; LZA-MAC (n = 10), LZA-RBM (n=10) and LZA-SLA (n = 10) and implants were surgically placement into rat tibias in general anesthesia. After a four-week experimental period, the biomechanical bone implant connection level was determined with reverse torque analysis. Results Osseointegration levels were detected highly in SLA and RBM surface compared with the machined surfaced implants in both control and treatment groups (p < 0.05). Additionally, local application of zoledronic acid in both three groups; implants increased the biomechanic osseointegration level compared with the controls (p < 0.05). Conclusion In this research, we observe that the local application of the zoledronic acid could increase the osseointegration, and RBM and SLA surface could be better than machined surfaced implants in terms of bone implant connection. In addition, local application of zoledronic acid may be a safer method than systemic application.
Collapse
Affiliation(s)
- Muhammet Bahattin Bingul
- Department of Oral and Maxillofacial Surgery, Harran University, Faculty of Dentistry, Sanliurfa, Turkiye
| | - Mehmet Gul
- Department of Periodontology, Harran University, Faculty of Dentistry, Sanliurfa, Turkiye
| | - Serkan Dundar
- Department of Periodontology, Firat University, Faculty of Dentistry, Elazig, Turkiye
| | - Alihan Bozoglan
- Department of Periodontology, Firat University, Faculty of Dentistry, Elazig, Turkiye
| | - Mustafa Kirtay
- Private Practice, Oral and Maxillofacial Surgery, London, Ontario, Canada
| | - Muhammet Fatih Ozupek
- Department of Oral and Maxillofacial Surgery, Firat University, Faculty of Dentistry, Elazig, Turkiye
| | - Erhan Cahit Ozcan
- Department of Plastic, Aesthetic and Reconstructive Surgery, Firat University, Faculty of Medicine, Elazig, Turkiye
| | - Osman Habek
- Department of Oral and Maxillofacial Surgery, Harran University, Faculty of Dentistry, Sanliurfa, Turkiye
| | - Ismail Tasdemir
- Department of Periodontology, Karamanoglu Mehmet Bey University, Faculty of Dentistry, Karaman, Turkiye
| |
Collapse
|
3
|
Thu MK, Kang YS, Kwak JM, Jo YH, Han JS, Yeo ISL. Comparison between bone-implant interfaces of microtopographically modified zirconia and titanium implants. Sci Rep 2023; 13:11142. [PMID: 37429939 DOI: 10.1038/s41598-023-38432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
The aim of this study was to investigate the surface characteristics and evaluate the bone-implant interfaces of injection molded zirconia implants with or without surface treatment and compare them with those of conventional titanium implants. Four different zirconia and titanium implant groups (n = 14 for each group) were prepared: injection-molded zirconia implants without surface treatment (IM ZrO2); injection-molded zirconia implants with surface treatment via sandblasting (IM ZrO2-S); turned titanium implants (Ti-turned); and titanium implants with surface treatments via sandblasting with large-grit particles and acid-etching (Ti-SLA). Scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy were used to assess the surface characteristics of the implant specimens. Eight rabbits were used, and four implants from each group were placed into the tibiae of each rabbit. Bone-to-implant contact (BIC) and bone area (BA) were measured to evaluate the bone response after 10-day and 28-day healing periods. One-way analysis of variance with Tukey's pairwise comparison was used to find any significant differences. The significance level was set at α = 0.05. Surface physical analysis showed that Ti-SLA had the highest surface roughness, followed by IM ZrO2-S, IM ZrO2, and Ti-turned. There were no statistically significant differences (p > 0.05) in BIC and BA among the different groups according to the histomorphometric analysis. This study suggests that injection-molded zirconia implants are reliable and predictable alternatives to titanium implants for future clinical applications.
Collapse
Affiliation(s)
- Myint Kyaw Thu
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Young Suk Kang
- 618th Medical Company (Dental Area Support)/Dental Health Activity-Korea, Camp Humphreys, APO, AP, 96297, USA
| | - Jeong Min Kwak
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Ye-Hyeon Jo
- Dental Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Jung-Suk Han
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea.
| |
Collapse
|
4
|
Boldeanu LC, Popa-Wagner A, Boariu M, Stratul SI, Rusu D, Vela O, Roman A, Surlin P, Kardaras G, Chinnici S, Vaduva A. Influence of Section Thickness on the Accuracy and Specificity of Histometric Parameters Using Confocal Laser Scanning Microscopy in a Canine Model of Experimental Peri-Implantitis-A Proof of Concept. J Clin Med 2023; 12:jcm12072462. [PMID: 37048546 PMCID: PMC10095515 DOI: 10.3390/jcm12072462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVES Tissue breakdown was assessed by confocal laser scanning microscopy (CLSM) using autofluorescence around implants with ligatures, on a dog hemimandible. Influence of section thickness on the accuracy of histometrical observations was also evaluated, in comparison with thin sections in light microscopy. MATERIAL AND METHODS Three months after tooth extraction, implants were placed. Two months after abutment placement, ligatures were placed with no plaque control. 11 months post-implantation, the animal was sacrificed. Undecalcified thin (30 µm) sections were cut, stained and evaluated by light microscopy to be used as a reference. Additional sections were performed, so that another pair of unstained thick sections resulted (250-300 µm). Tissue loss was assessed using histomorphometric parameters under CLSM and was compared to the light microscopy reference ones. RESULTS Morphometry confirmed tissue loss more pronounced on the "thick" and quick sections, when compared to the time-consuming and technique-sensitive "thin" ones. CONCLUSIONS Within the limits of the present study, the adequacy of histometrical observations under CLSM reveal commensurable information about soft-tissue-bone-implant details, when compared to traditional light microscopy histological protocols. The CLSM investigation may seem demanding, yet the richness of data acquired may justify this approach, provided seatbacks caused by improper manipulation of "thick" sections are avoided.
Collapse
Affiliation(s)
- Lucia-Camelia Boldeanu
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Aurel Popa-Wagner
- Department of Neurology, Chair of Vascular Neurology and Dementia, University Hospital Essen, 45147 Essen, Germany
- Center for Experimental and Clinical Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Marius Boariu
- Department of Endodontics, Faculty of Dental Medicine, TADERP Research Center, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stefan-Ioan Stratul
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Darian Rusu
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Octavia Vela
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandra Roman
- Applicative Periodontal Regeneration Research Unit, Department of Peridontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Petra Surlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Georgios Kardaras
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Salvatore Chinnici
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Vaduva
- Department of Pathology, Faculty of Medicine, ANAPATMOL Research Center, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- County Emergency Hospital, L. Rebreanu Street, nr. 156, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Fraulob M, Le Cann S, Voumard B, Yasui H, Yano K, Vayron R, Matsukawa M, Zysset P, Haïat G. Multimodal Evaluation of the Spatiotemporal Variations of Periprosthetic Bone Properties. J Biomech Eng 2020; 142:121014. [PMID: 32909597 DOI: 10.1115/1.4048399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 07/25/2024]
Abstract
Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure. The aim of this study was to explore the spatiotemporal variation of the microscopic elastic properties of newly formed bone tissue close to an implant. Eight coin-shaped Ti6Al4V implants were inserted into rabbit tibiae for 7 and 13 weeks using an in vivo model allowing the distinction between mature and newly formed bone in a standardized configuration. Nanoindentation and micro-Brillouin scattering measurements were carried out in similar locations to measure the indentation modulus and the wave velocity, from which relative variations of bone mass density were extracted. The indentation modulus, the wave velocity and mass density were found to be higher (1) in newly formed bone tissue located close to the implant surface, compared to mature cortical bone tissue, and (2) after longer healing time, consistently with an increased mineralization. Within the bone chamber, the spatial distribution of elastic properties was more heterogeneous for shorter healing durations. After 7 weeks of healing, bone tissue in the bone chamber close to the implant surface was 12.3% denser than bone tissue further away. Bone tissue close to the chamber edge was 16.8% denser than in its center. These results suggest a bone spreading pathway along tissue maturation, which is confirmed by histology and consistent with contact osteogenesis phenomena.
Collapse
Affiliation(s)
- Manon Fraulob
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| | - Sophie Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| | - Benjamin Voumard
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland
| | - Hirokazu Yasui
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Keita Yano
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Romain Vayron
- Université Polytechnique Hauts de France, Laboratoire d'Automatique, de Mécanique et d'informatique Industrielles et Humaines, LAMIH UMR CNRS 8201, Valenciennes F-59300, France
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Philippe Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern CH-3010, Switzerland
| | - Guillaume Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, Creteil F-94010, France
| |
Collapse
|