1
|
Yang L, Zeng XT, Luo RH, Tang Y, Ren SX, Long XY, Fu XH, Zhang WJ, Ren HY, Zheng YT, Cheng W. CRTC3 restricts SARS-CoV-2 replication and is antagonized by CREB. Virol Sin 2025; 40:92-108. [PMID: 39736320 PMCID: PMC11963146 DOI: 10.1016/j.virs.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Virus-encoding RNA-dependent RNA polymerase (RdRp) is essential for genome replication and gene transcription of human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3 (CRTC3), a member of the CRTC family that regulates cyclic AMP response element-binding protein (CREB)-mediated transcriptional activation. Currently, the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood. Herein, we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication, therefore reducing the production of progeny viruses. The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity. Furthermore, we expanded the suppressive effects of two other CRTC family members (CRTC1 and CRTC2) on the RdRp activities of lethal HCoVs, including SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), along with the CREB antagonization. Overall, our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB, which not only provides new insights into the replication regulation of HCoVs, but also offers important information for the development of anti-HCoV interventions.
Collapse
Affiliation(s)
- Li Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao-Tao Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Research and Innovation Center, Pengzhou People's Hospital, Pengzhou 610000, China
| | - Rong-Hua Luo
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Tang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Si-Xue Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin-Yan Long
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Hui Fu
- Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832003, China
| | - Hai-Yan Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
3
|
Yao YL, Luo Y, Wang Q, Geng R, Chen Y, Liu MQ, Li B, Chen J, Wu CG, Jia JK, Luo JY, He YT, Jiang TT, Zhu Y, Hu B, Zhou P, Shi ZL. Identification of TMEM53 as a novel SADS-CoV restriction factor that targets viral RNA-dependent RNA polymerase. Emerg Microbes Infect 2023; 12:2249120. [PMID: 37584551 PMCID: PMC10467534 DOI: 10.1080/22221751.2023.2249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ABSTRACTZoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable. Identifying the cellular proteins that restrict viral infection is imperative for developing effective interventions and therapeutics. We utilized a large-scale human cDNA screening and identified transmembrane protein 53 (TMEM53) as a novel cell-intrinsic SADS-CoV restriction factor. The inhibitory effect of TMEM53 on SADS-CoV infection was found to be independent of canonical type I interferon responses. Instead, TMEM53 interacts with non-structural protein 12 (NSP12) and disrupts viral RNA-dependent RNA polymerase (RdRp) complex assembly by interrupting NSP8-NSP12 interaction, thus suppressing viral RdRp activity and RNA synthesis. Deleting the transmembrane domain of TMEM53 resulted in the abrogation of TMEM53-NSP12 interaction and TMEM53 antiviral activity. Importantly, TMEM53 exhibited broad antiviral activity against multiple HKU2-related CoVs. Our findings reveal a novel role of TMEM53 in SADS-CoV restriction and pave the way to host-directed therapeutics against HKU2-related CoV infection.
Collapse
Affiliation(s)
- Yu-Lin Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Geng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chun-Guang Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Yi Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yan-Tong He
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ting-Ting Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Huang ZX, Zhou ST, Wang J, Yang ZB, Wang Z. Remdesivir inhibits Porcine epidemic diarrhea virus infection in vitro. Heliyon 2023; 9:e21468. [PMID: 38027806 PMCID: PMC10663732 DOI: 10.1016/j.heliyon.2023.e21468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious and pathogenic virus that causes symptoms such as diarrhea, vomiting, weight loss, and even death in piglets. Due to its high transmission rate, PEDV has resulted in significant global losses. Although some vaccines have been developed and utilized to prevent PEDV, their effectiveness is limited due to the virus's mutations. Therefore, it is imperative to investigate new strategies to combat PEDV. Remdesivir, a classic antiviral drug for coronaviruses, has been proven in our experiment to effectively suppress PEDV replication in Vero and LLC-PK1 cells. Additionally, the cell experiment demonstrated its direct inhibition of PEDV RNA-dependent RNA polymerase (RdRp) enzyme activity. Molecular docking simulations were employed to predict the binding site of remdesivir and PEDV RdRp. Moreover, we observed that remdesivir does not impact the production of inflammatory factors and exhibits antagonistic effects with exogenous nucleosides. Furthermore, we conducted RNA-Seq analysis to investigate the global changes in transcriptome of infected cells treated with remdesivir. Overall, our findings indicate that remdesivir holds promise as a potential candidate for the treatment of PEDV infection.
Collapse
Affiliation(s)
- Zi-Xin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Ting Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
| | - Zhi-Biao Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Kim SM, Kim EH, Casel MAB, Kim YI, Sun R, Kwak MJ, Yoo JS, Yu M, Yu KM, Jang SG, Rollon R, Choi JH, Gil J, Eun K, Kim H, Ensser A, Hwang J, Song MS, Kim MH, Jung JU, Choi YK. SARS-CoV-2 variants with NSP12 P323L/G671S mutations display enhanced virus replication in ferret upper airways and higher transmissibility. Cell Rep 2023; 42:113077. [PMID: 37676771 PMCID: PMC11550895 DOI: 10.1016/j.celrep.2023.113077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
With the emergence of multiple predominant SARS-CoV-2 variants, it becomes important to have a comprehensive assessment of their viral fitness and transmissibility. Here, we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmissibility. Specifically, SARS-CoV-2 variants containing the NSP12 mutations P323L or P323L/G671S exhibit enhanced RNA-dependent RNA polymerase (RdRp) activity at 33°C compared with 37°C and high transmissibility. Molecular dynamics simulations and microscale thermophoresis demonstrate that the NSP12 P323L and P323L/G671S mutations stabilize the NSP12-NSP7-NSP8 complex through hydrophobic effects, leading to increased viral RdRp activity. Furthermore, competitive transmissibility assay reveals that reverse genetic (RG)-P323L or RG-P323L/G671S NSP12 outcompetes RG-WT (wild-type) NSP12 for replication in the upper respiratory tract, allowing markedly rapid transmissibility. This suggests that NSP12 P323L or P323L/G671S mutation of SARS-CoV-2 is associated with increased RdRp complex stability and enzymatic activity, promoting efficient transmissibility.
Collapse
Affiliation(s)
- Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Eun-Ha Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Mark Anthony B Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Rong Sun
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogens and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogens and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Mina Yu
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jungwon Hwang
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogens and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
6
|
Leonard RA, Rao VN, Bartlett A, Froggatt HM, Luftig MA, Heaton BE, Heaton NS. A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases. J Virol 2023; 97:e0059723. [PMID: 37578235 PMCID: PMC10506478 DOI: 10.1128/jvi.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple coronaviruses (CoVs) can cause respiratory diseases in humans. While prophylactic vaccines designed to prevent infection are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), incomplete vaccine efficacy, vaccine hesitancy, and the threat of other pathogenic CoVs for which vaccines do not exist have highlighted the need for effective antiviral therapies. While antiviral compounds targeting the viral polymerase and protease are already in clinical use, their sensitivity to potential resistance mutations as well as their breadth against the full range of human and preemergent CoVs remain incompletely defined. To begin to fill that gap in knowledge, we report here the development of an improved, noninfectious, cell-based fluorescent assay with high sensitivity and low background that reports on the activity of viral proteases, which are key drug targets. We demonstrate that the assay is compatible with not only the SARS-CoV-2 Mpro protein but also orthologues from a range of human and nonhuman CoVs as well as clinically reported SARS-CoV-2 drug-resistant Mpro variants. We then use this assay to define the breadth of activity of two clinically used protease inhibitors, nirmatrelvir and ensitrelvir. Continued use of this assay will help define the strengths and limitations of current therapies and may also facilitate the development of next-generation protease inhibitors that are broadly active against both currently circulating and preemergent CoVs. IMPORTANCE Coronaviruses (CoVs) are important human pathogens with the ability to cause global pandemics. Working in concert with vaccines, antivirals specifically limit viral disease in people who are actively infected. Antiviral compounds that target CoV proteases are already in clinical use; their efficacy against variant proteases and preemergent zoonotic CoVs, however, remains incompletely defined. Here, we report an improved, noninfectious, and highly sensitive fluorescent method of defining the sensitivity of CoV proteases to small molecule inhibitors. We use this approach to assay the activity of current antiviral therapies against clinically reported SARS-CoV-2 protease mutants and a panel of highly diverse CoV proteases. Additionally, we show this system is adaptable to other structurally nonrelated viral proteases. In the future, this assay can be used to not only better define the strengths and limitations of current therapies but also help develop new, broadly acting inhibitors that more broadly target viral families.
Collapse
Affiliation(s)
- Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vishwas N. Rao
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
7
|
Kandeel M. An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opin Drug Discov 2023; 18:385-400. [PMID: 36971501 DOI: 10.1080/17460441.2023.2192921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The Middle East respiratory syndrome coronavirus (MERS-CoV) has remained a public health concern since it first emerged in 2012. Although many potential treatments for MERS-CoV have been developed and tested, none have had complete success in stopping the spread of this deadly disease. MERS-CoV replication comprises attachment, entry, fusion and replication steps. Targeting these events may lead to the creation of medications that effectively treat MERS-CoV infection. AREAS COVERED This review updates the research on the development of inhibitors of MERS-CoV. The main topics are MERS-CoV‒related proteins and host cell proteins that are involved in viral protein activation and infection. EXPERT OPINION Research on discovering drugs that can inhibit MERS-CoV started at a slow pace, and although efforts have steadily increased, clinical trials for new drugs specifically targeting MERS-CoV have not been extensive enough. The explosion in efforts to find new medications for the SARS-CoV-2 virus indirectly enhanced the volume of data on MERS-CoV inhibition by including MERS-CoV in drug assays. The appearance of COVID-19 completely transformed the data available on MERS-CoV inhibition. Despite the fact that new infected cases are constantly being diagnosed, there are currently no approved vaccines for or inhibitors of MERS-CoV.
Collapse
|
8
|
Liu X, Jiang Y, Zhou H, Zhao X, Li M, Bao Z, Wang Z, Zhang C, Xie Z, Zhao J, Dong Z, Liu K, Guo Z. Dasabuvir suppresses esophageal squamous cell carcinoma growth in vitro and in vivo through targeting ROCK1. Cell Death Dis 2023; 14:118. [PMID: 36781836 PMCID: PMC9924867 DOI: 10.1038/s41419-023-05633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Hao Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Xiaokun Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Mingzhu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zitong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenliang Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China.
| | - Zhiping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- Fuwai Central China Cardiovascular Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Zhu J, Li Y, Liang J, Mubareka S, Slutsky AS, Zhang H. The Potential Protective Role of GS-441524, a Metabolite of the Prodrug Remdesivir, in Vaccine Breakthrough SARS-CoV-2 Infections. INTENSIVE CARE RESEARCH 2022; 2:49-60. [PMID: 36407474 PMCID: PMC9645326 DOI: 10.1007/s44231-022-00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease (COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in breakthrough SARS-CoV-2 infections. Supplementary Information The online version contains supplementary material available at 10.1007/s44231-022-00021-4.
Collapse
Affiliation(s)
- JiaYi Zhu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON Canada
| | - Arthur S. Slutsky
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
10
|
Kim SM, Kim EH, Casel MAB, Kim YI, Sun R, Kwack MJ, Yoo JS, Yu MA, Yu KM, Jang SG, Rollon R, Choi JH, Gil J, Eun K, Kim H, Ensser A, Hwang J, Song MS, Kim MH, Jung JU, Choi YK. SARS-CoV-2 variants show temperature-dependent enhanced polymerase activity in the upper respiratory tract and high transmissibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509689. [PMID: 36203545 PMCID: PMC9536035 DOI: 10.1101/2022.09.27.509689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the convergent global emergence of SARS-CoV-2 variants of concern (VOC), a precise comparison study of viral fitness and transmission characteristics is necessary for the prediction of dominant VOCs and the development of suitable countermeasures. While airway temperature plays important roles in the fitness and transmissibility of respiratory tract viruses, it has not been well studied with SARS-CoV-2. Here we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmission. Specifically, SARS-COV-2 variants containing the P323L or P323L/G671S mutation in the NSP12 RNA-dependent RNA polymerase (RdRp) exhibited enhanced RdRp enzymatic activity at 33°C compared to 37°C and high transmissibility in ferrets. MicroScale Thermophoresis demonstrated that the NSP12 P323L or P323L/G671S mutation stabilized the NSP12-NSP7-NSP8 complex interaction. Furthermore, reverse genetics-derived SARS-CoV-2 variants containing the NSP12 P323L or P323L/G671S mutation displayed enhanced replication at 33°C, and high transmission in ferrets. This suggests that the evolutionarily forced NSP12 P323L and P323L/G671S mutations of recent SARS-CoV-2 VOC strains are associated with increases of the RdRp complex stability and enzymatic activity, promoting the high transmissibility.
Collapse
|
11
|
Qin G, Zhao C, Liu Y, Zhang C, Yang G, Yang J, Wang Z, Wang C, Tu C, Guo Z, Ren J, Qu X. RNA G-quadruplex formed in SARS-CoV-2 used for COVID-19 treatment in animal models. Cell Discov 2022; 8:86. [PMID: 36068208 PMCID: PMC9447362 DOI: 10.1038/s41421-022-00450-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
The ongoing COVID-19 pandemic has continued to affect millions of lives worldwide, leading to the urgent need for novel therapeutic strategies. G-quadruplexes (G4s) have been demonstrated to regulate life cycle of multiple viruses. Here, we identify several highly conservative and stable G4s in SARS-CoV-2 and clarify their dual-function of inhibition of the viral replication and translation processes. Furthermore, the cationic porphyrin compound 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) targeting SARS-CoV-2 G4s shows excellent antiviral activity, while its N-methyl-2-pyridyl positional isomer TMPyP2 with low affinity for G4 has no effects on SARS-CoV-2 infection, suggesting that the antiviral activity of TMPyP4 attributes to targeting SARS-CoV-2 G4s. In the Syrian hamster and transgenic mouse models of SARS-CoV-2 infection, administration of TMPyP4 at nontoxic doses significantly suppresses SARS-CoV-2 infection, resulting in reduced viral loads and lung lesions. Worth to note, the anti-COVID-19 activity of TMPyP4 is more potent than remdesivir evidenced by both in vitro and in vivo studies. Our findings highlight SARS-CoV-2 G4s as a novel druggable target and the compelling potential of TMPyP4 for COVID-19 therapy. Different from the existing anti-SARS-CoV-2 therapeutic strategies, our work provides another alternative therapeutic tactic for SARS-CoV-2 infection focusing on targeting the secondary structures within SARS-CoV-2 genome, and would open a new avenue for design and synthesis of drug candidates with high selectivity toward the new targets.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,Hebei Agricultural University, College of Veterinary Medicine, 2596 Lucky South Street, Baoding, Hebei, China
| | - Guang Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China. .,University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Bai X, Sun H, Wu S, Li Y, Wang L, Hong B. Identifying Small-Molecule Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase by Establishing a Fluorometric Assay. Front Immunol 2022; 13:844749. [PMID: 35464436 PMCID: PMC9021610 DOI: 10.3389/fimmu.2022.844749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), a member of the coronavirus family, appeared in 2019 and has caused the largest global public health and economic emergency in recent history, affecting almost all sectors of society. SARS-CoV-2 is a single-stranded positive-sense RNA virus that relies on RNA-dependent RNA polymerase (RdRp) activity in viral transcription and replication. Due to its high sequence and structural conservation in coronavirus and new SARS-CoV-2 variants, RdRp has been recognized as the key therapeutic target to design novel antiviral strategies. Nucleotide analogs (NAs), such as remdesivir, is the most promising class of RdRp inhibitors to be used in the treatment of COVID-19. However, the presence of exonucleases in SARS-CoV-2 caused a great challenge to NAs; the excision of incorporated NAs will lead to viral resistance to this group of inhibitors. Here, we expressed active RdRp protein in both a eukaryotic expression system of baculovirus-infected insect cells and a prokaryotic expression system of Escherichia coli cells. Nsp7 and nsp8 of the functional RdRp holoenzyme were generated in E. coli. An in vitro RdRp activity assay has been established with a reconstituted nsp12/nsp7/nsp8 complex and biotin-labeled self-priming RNAs, and the activity of the RdRp complex was determined by detecting binding and extension of RNAs. Moreover, to meet the needs of high-throughput drug screening, we developed a fluorometric approach based on dsRNA quantification to assess the catalytic activity of the RdRp complex, which is also suitable for testing in 96-well plates. We demonstrated that the active triphosphate form of remdesivir (RTP) and several reported non-nucleotide analog viral polymerase inhibitors blocked the RdRp in the in vitro RdRp activity assay and high-throughput screening model. This high-throughput screening model has been applied to a custom synthetic chemical and natural product library of thousands of compounds for screening SARS-CoV-2 RdRp inhibitors. Our efficient RdRp inhibitor discovery system provides a powerful platform for the screening, validation, and evaluation of novel antiviral molecules targeting SARS-CoV-2 RdRp, particularly for non-nucleotide antivirals drugs (NNAs).
Collapse
Affiliation(s)
- Xiaoming Bai
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Sun
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhuan Li
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Wang
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Low ZY, Yip AJW, Lal SK. Repositioning anticancer drugs as novel COVID-19 antivirals: targeting structural and functional similarities between viral proteins and cancer. Expert Rev Mol Med 2022; 24:1-23. [PMID: 35450545 PMCID: PMC9114731 DOI: 10.1017/erm.2022.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic contributed by the SARS-CoV-2 has put in place an urgent need for new and promising antiviral therapeutics. The viral RNA-dependent RNA polymerase (RdRp) enzyme plays a vital role in viral replication for all RNA viruses, including SARS-CoV-2, thereby making it a prime and promising candidate for novel antiviral targeting. Interestingly, the human telomerase reverse transcriptase (hTERT), a common catalytic subunit of the telomerase enzyme in many cancers, has also been identified with structural and functional similarities to the viral RdRp. Therefore, it becomes essential to evaluate and consider anticancer drugs that target hTERT towards antiviral RdRp activity, and vice versa. For instance, Floxuridine, an hTERT inhibitor, and VX-222, a hepatitis C virus RdRp inhibitor, are now gaining recognition as a potential antiviral against SARS-CoV-2 and anti-hTERT for cancer, simultaneously. While limited studies on hTERT inhibitors for use as viral RdRp, and anti-RdRp inhibitors as hTERT inhibitors are available, in this review, we aim at bringing to light this close structural and functional relationship between both these enzymes. We punctuate this idea with specific examples on how potential anticancer inhibitors can effectively be brought to use as inhibitors against the SARS-CoV-2 virus, a relatively new pathogen, compared to the very well-studied field of cancer research.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
14
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
15
|
Wu J, Chen Z, Han X, Chen Q, Wang Y, Feng T. SARS-CoV-2 RNA-dependent RNA polymerase as a target for high-throughput drug screening. Future Virol 2022:10.2217/fvl-2021-0335. [PMID: 36794167 PMCID: PMC9910510 DOI: 10.2217/fvl-2021-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 has necessitated rapid development of drug screening tools. RNA-dependent RNA polymerase (RdRp) is a promising target due to its essential functions in replication and transcription of viral genome. To date, through minimal RNA synthesizing machinery established from cryo-electron microscopy structural data, there has been development of high-throughput screening assays for directly screening inhibitors that target the SARS-CoV-2 RdRp. Here, we analyze and present verified techniques that could be used to discover potential anti-RdRp agents or repurposing of approved drugs to target the SARS-CoV-2 RdRp. In addition, we highlight the characteristics and application value of cell-free or cell-based assays in drug discovery.
Collapse
Affiliation(s)
- Jiahui Wu
- 1Institute of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Zhiqiang Chen
- 1Institute of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou, 215123, Jiangsu Province, China,2Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Xue Han
- 3Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong Province, China
| | - Qiaoqiao Chen
- 1Institute of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Yintao Wang
- 1Institute of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Tingting Feng
- 1Institute of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou, 215123, Jiangsu Province, China,Author for correspondence: Tel.: +86 512 6588 2429;
| |
Collapse
|
16
|
Wang J, Zhang Y, Hu S, Bai H, Xue Z, Liu Y, Ma W. Antiviral drugs suppress infection of 2019-nCoV spike pseudotyped virus by interacting with ACE2 protein. J Biochem Mol Toxicol 2021; 36:e22948. [PMID: 34755435 PMCID: PMC8646714 DOI: 10.1002/jbt.22948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID‐19) has induced a large number of deaths worldwide. Angiotensin‐converting enzyme 2 (ACE2) is the entry receptor for the 2019 novel coronavirus (2019‐nCoV) to infect the host cells. Therefore, ACE2 may be an important target for the prevention and treatment of COVID‐19. The aim of this study was to investigate the inhibition effect of valaciclovir hydrochloride (VACV), zidovudine (ZDV), saquinavir (SQV), and efavirenz (EFV) on 2019‐nCoV infection. The results of molecule docking and surface plasmon resonance showed that VACV, ZDV, SQV, and EFV could bind to ACE2 protein, with the KD value of (4.33 ± 0.09) e−8, (6.29 ± 1.12) e−6, (2.37 ± 0.59) e−5, and (4.85 ± 1.57) e−5 M, respectively. But only ZDV and EFV prevent the 2019‐nCoV spike pseudotyped virus to enter ACE2‐HEK293T cells with an EC50 value of 4.30 ± 1.46 and 3.92 ± 1.36 μM, respectively. ZDV and EFV also have a synergistic effect on preventing entry of virus into cells. In conclusion, ZDV and EFV suppress 2019‐nCoV infection of ACE2‐HEK293T cells by interacting with ACE2.
Collapse
Affiliation(s)
- Jue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongjing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiling Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoyun Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuoyin Xue
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanhong Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Abstract
Human noroviruses (HuNoVs) are acute viral gastroenteritis pathogens that affect all age groups, yet no approved vaccines and drugs to treat HuNoV infection are available. In this study, we screened an antiviral compound library to identify compound(s) showing anti-HuNoV activity using a human intestinal enteroid (HIE) culture system in which HuNoVs are able to replicate reproducibly. Dasabuvir (DSB), which has been developed as an anti-hepatitis C virus agent, was found to inhibit HuNoV infection in HIEs at micromolar concentrations. Dasabuvir also inhibited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human rotavirus A (RVA) infection in HIEs. To our knowledge, this is the first study to screen an antiviral compound library for HuNoV using HIEs, and we successfully identified dasabuvir as a novel anti-HuNoV inhibitor that warrants further investigation. IMPORTANCE Although there is an urgent need to develop effective antiviral therapy directed against HuNoV infection, compound screening to identify anti-HuNoV drug candidates has not been reported so far. Using a human HIE culture system, our compound screening successfully identified dasabuvir as a novel anti-HuNoV inhibitor. Dasabuvir's inhibitory effect was also demonstrated in the cases of SARS-CoV-2 and RVA infection, highlighting the usefulness of the HIE platform for screening antiviral agents against various viruses that target the intestines.
Collapse
|
18
|
Horio Y, Shichiri M, Isegawa Y. Development of a method for evaluating the mRNA transcription activity of influenza virus RNA-dependent RNA polymerase through real-time reverse transcription polymerase chain reaction. Virol J 2021; 18:177. [PMID: 34454523 PMCID: PMC8401337 DOI: 10.1186/s12985-021-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background The development of an influenza RNA-dependent RNA polymerase (RdRp) inhibitor is required; therefore, a method for evaluating the activity of influenza RdRp needs to be developed. The current method uses an ultracentrifuge to separate viral particles and quantifies RdRp activity with radioisotope-labeled nucleosides, such as 32P-GTP. This method requires special equipment and radioisotope management, so it cannot be implemented in all institutions. We have developed a method to evaluate the mRNA transcription activity of RdRp without using ultracentrifugation and radioisotopes. Results RdRp was extracted from viral particles that were purified from the culture supernatant using anionic polymer-coated magnetic beads that can concentrate influenza virus particles from the culture supernatant in approximately 30 min. A strand-specific real-time reverse transcription polymerase chain reaction (RT-PCR) method was developed based on reverse transcription using tagged primers. RT primers were designed to bind to a sequence near the 3' end of mRNA containing a poly A tail for specific recognition of the mRNA, with an 18-nucleotide tag attached to the 5' end of the sequence. The RT reaction was performed with this tagged RT primer, and the amount of mRNA was analyzed using real-time qPCR. Real-time qPCR using the tag sequence as the forward primer and a segment-specific reverse primer ensured the specificity for quantifying the mRNA of segments 1, 4, and 5. The temperature, reaction time, and Mg2+ concentration were determined to select the optimum conditions for in vitro RNA synthesis by RdRp, and the amount of synthesized mRNAs of segments 1, 4, and 5 was determined with a detection sensitivity of 10 copies/reaction. In addition, mRNA synthesis was inhibited by ribavirin triphosphate, an RdRp inhibitor, thus indicating the usefulness of this evaluation method for screening RdRp inhibitors. Conclusion This method makes it possible to analyze the RdRp activity even in a laboratory where ultracentrifugation and radioisotopes cannot be used. This novel method for measuring influenza virus polymerase activity will further promote research to identify compounds that inhibit viral mRNA transcription activity of RdRp. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01644-7.
Collapse
Affiliation(s)
- Yuka Horio
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan. .,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8562, Japan.
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan. .,Institute for Biosciences, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
19
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
20
|
SARS-CoV-2 RdRp Inhibitors Selected from a Cell-Based SARS-CoV-2 RdRp Activity Assay System. Biomedicines 2021; 9:biomedicines9080996. [PMID: 34440200 PMCID: PMC8392292 DOI: 10.3390/biomedicines9080996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), urgently needs effective prophylactic and therapeutic drugs. RNA-dependent RNA polymerase (RdRp), essential for replicating and transcribing a viral RNA genome, is highly conserved in coronaviruses; thus, it is a potential target for inhibiting coronavirus infection. In this study, we generated the cell-based SARS-CoV-2 RdRp activity assay system by modifying a previously reported cell-based MERS-CoV RdRp activity assay system to screen for SARS-CoV-2 RdRp inhibitors. The assay system consisted of an expression plasmid encoding SARS-CoV-2 RdRp and an RdRp activity reporter plasmid. RdRp activity in the cells could be conveniently detected by luminescence after transfection. We confirmed that SARS-CoV-2 RdRp replicated double-stranded RNA using immunofluorescence staining and the inhibition of RdRp activity by remdesivir and lycorine using this system. Moreover, the Z-factor of this system was calculated to be 0.798, suggesting the reproducibility and reliability of the high-throughput screening system. Finally, we screened nucleoside and nucleotide analogs and identified adefovir dipivoxil, emtricitabine, telbivudine, entecavir hydrate, moroxydine and rifampin as novel SARS-CoV-2 RdRp inhibitors and therapeutic candidates for COVID-19 This system provides an effective high-throughput screening system platform for developing potential prophylactic and therapeutic drugs for COVID-19 and emerging coronavirus infections.
Collapse
|
21
|
Jin YH, Min JS, Jeon S, Lee J, Kim S, Park T, Park D, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153440. [PMID: 33376043 PMCID: PMC7738280 DOI: 10.1016/j.phymed.2020.153440] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 μM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 μM, compared with remdesivir's IC50 value of 6.335 ± 0.731 μM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Jung Sun Min
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Daeui Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
22
|
Li Q, Yi D, Lei X, Zhao J, Zhang Y, Cui X, Xiao X, Jiao T, Dong X, Zhao X, Zeng H, Liang C, Ren L, Guo F, Li X, Wang J, Cen S. Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase. Acta Pharm Sin B 2021; 11:1555-1567. [PMID: 33614402 PMCID: PMC7883726 DOI: 10.1016/j.apsb.2021.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become one major threat to human population health. The RNA-dependent RNA polymerase (RdRp) presents an ideal target of antivirals, whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus. Herein, we report that corilagin (RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp, binds directly to RdRp, effectively inhibits the polymerase activity in both cell-free and cell-based assays, fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration (EC50) value of 0.13 μmol/L. Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp. In addition, combination of RAI-S-37 with remdesivir exhibits additive activity against anti-SARS-CoV-2 RdRp. Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent, these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.
Collapse
|
23
|
Zhao J, Guo S, Yi D, Li Q, Ma L, Zhang Y, Wang J, Li X, Guo F, Lin R, Liang C, Liu Z, Cen S. A cell-based assay to discover inhibitors of SARS-CoV-2 RNA dependent RNA polymerase. Antiviral Res 2021; 190:105078. [PMID: 33894278 PMCID: PMC8059291 DOI: 10.1016/j.antiviral.2021.105078] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Antiviral therapeutics is one effective avenue to control and end this devastating COVID-19 pandemic. The viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 has been recognized as a valuable target of antivirals. However, the cell-free SARS-CoV-2 RdRp biochemical assay requires the conversion of nucleotide prodrugs into the active triphosphate forms, which regularly occurs in cells yet is a complicated multiple-step chemical process in vitro, and thus hinders the utility of this cell-free assay in the rapid discovery of RdRp inhibitors. In addition, SARS-CoV-2 exoribonuclease provides the proof-reading capacity to viral RdRp, thus creates relatively high resistance threshold of viral RdRp to nucleotide analog inhibitors, which must be examined and evaluated in the development of this class of antivirals. Here, we report a cell-based assay to evaluate the efficacy of nucleotide analog compounds against SARS-CoV-2 RdRp and assess their tolerance to viral exoribonuclease-mediated proof-reading. By testing seven commonly used nucleotide analog viral polymerase inhibitors, Remdesivir, Molnupiravir, Ribavirin, Favipiravir, Penciclovir, Entecavir and Tenofovir, we found that both Molnupiravir and Remdesivir showed the strong inhibition of SARS-CoV-2 RdRp, with EC50 value of 0.22 μM and 0.67 μM, respectively. Moreover, our results suggested that exoribonuclease nsp14 increases resistance of SARS-CoV-2 RdRp to nucleotide analog inhibitors. We also determined that Remdesivir presented the highest resistance to viral exoribonuclease activity in cells. Therefore, we have developed a cell-based SARS-CoV-2 RdRp assay which can be deployed to discover SARS-CoV-2 RdRp inhibitors that are urgently needed to treat COVID-19 patients.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - SaiSai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
24
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Zhang Y, Gargan S, Lu Y, Stevenson NJ. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses 2021; 13:560. [PMID: 33810391 PMCID: PMC8066579 DOI: 10.3390/v13040560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a large family of zoonotic RNA viruses, whose infection can lead to mild or lethal respiratory tract disease. Severe Acute Respiratory Syndrome-Coronavirus-1 (SARS-CoV-1) first emerged in Guangdong, China in 2002 and spread to 29 countries, infecting 8089 individuals and causing 774 deaths. In 2012, Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) emerged in Saudi Arabia and has spread to 27 countries, with a mortality rate of ~34%. In 2019, SARS-CoV-2 emerged and has spread to 220 countries, infecting over 100,000,000 people and causing more than 2,000,000 deaths to date. These three human coronaviruses cause diseases of varying severity. Most people develop mild, common cold-like symptoms, while some develop acute respiratory distress syndrome (ARDS). The success of all viruses, including coronaviruses, relies on their evolved abilities to evade and modulate the host anti-viral and pro-inflammatory immune responses. However, we still do not fully understand the transmission, phylogeny, epidemiology, and pathogenesis of MERS-CoV and SARS-CoV-1 and -2. Despite the rapid application of a range of therapies for SARS-CoV-2, such as convalescent plasma, remdesivir, hydroxychloroquine and type I interferon, no fully effective treatment has been determined. Remarkably, COVID-19 vaccine research and development have produced several offerings that are now been administered worldwide. Here, we summarise an up-to-date understanding of epidemiology, immunomodulation and ongoing anti-viral and immunosuppressive treatment strategies. Indeed, understanding the interplay between coronaviruses and the anti-viral immune response is crucial to identifying novel targets for therapeutic intervention, which may even prove invaluable for the control of future emerging coronavirus.
Collapse
Affiliation(s)
- Yamei Zhang
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
- Viral Immunology Group, Royal College of Surgeons in Ireland—Medical University of Bahrain, Adliya 15503, Bahrain
| |
Collapse
|
26
|
Borbone N, Piccialli G, Roviello GN, Oliviero G. Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules 2021; 26:986. [PMID: 33668428 PMCID: PMC7918729 DOI: 10.3390/molecules26040986] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.
Collapse
Affiliation(s)
- Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| |
Collapse
|