1
|
Hamer MS, Rossi FMV. Multitasking muscle: engineering iPSC-derived myogenic progenitors to do more. Front Cell Dev Biol 2025; 12:1526635. [PMID: 39911186 PMCID: PMC11794491 DOI: 10.3389/fcell.2024.1526635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
The generation of myogenic progenitors from iPSCs (iMPs) with therapeutic potential for in vivo tissue regeneration has long been a goal in the skeletal muscle community. Today, protocols enable the production of potent, albeit immature, iMPs that resemble Pax7+ adult muscle stem cells. While muscular dystrophies are often the primary therapeutic target for these cells, an underexplored application is their use in treating traumatic muscle injuries. Notably absent from recent reviews on iMPs is the concept of engineering these cells to perform functions post-transplantation that non-transgenic cells cannot. Here, we highlight protocols to enhance the generation, purification, and maturation of iMPs, and introduce the idea of engineering these cells to perform functions beyond their normal capacities, envisioning novel therapeutic applications.
Collapse
Affiliation(s)
- Mark Stephen Hamer
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Zhang C, Jing Y, Wang J, Xia Z, Lai Y, Bai L, Su J. Skeletal organoids. BIOMATERIALS TRANSLATIONAL 2024; 5:390-410. [PMID: 39872931 PMCID: PMC11764188 DOI: 10.12336/biomatertransl.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 01/30/2025]
Abstract
The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens. Current treatment modalities, including surgical intervention, pharmacotherapy, and physical rehabilitation, often do not effectively restore the functionality of damaged tissues and are associated with high recurrence rates and long-term complications, highlighting significant limitations in their efficacy. Thus, there is a strong demand to develop novel and more effective therapeutic and reparative strategies. Organoid technology, as a three-dimensional micro-tissue model, can replicate the structural and functional properties of native tissues in vitro, providing a novel platform for in-depth studies of disease mechanisms, optimisation of drug screening, and promotion of tissue regeneration. In recent years, substantial advancements have been made in the research of bone, muscle, and joint organoids, demonstrating their broad application potential in personalised and regenerative medicine. Nonetheless, a comprehensive review of current research on skeletal organoids is still lacking. Therefore, this article aims to present an overview of the definition and technological foundation of organoids, systematically summarise the progress in the construction and application of skeletal organoids, and explore future opportunities and challenges in this field, offering valuable insights and references for researchers.
Collapse
Affiliation(s)
- Chen Zhang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yingying Jing
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jianhua Wang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhidao Xia
- Centre for Nanohealth, Swansea University Medical School, Swansea University, Swansea, UK
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
4
|
Wischnewski S, Thäwel T, Ikenaga C, Kocharyan A, Lerma-Martin C, Zulji A, Rausch HW, Brenner D, Thomas L, Kutza M, Wick B, Trobisch T, Preusse C, Haeussler M, Leipe J, Ludolph A, Rosenbohm A, Hoke A, Platten M, Weishaupt JH, Sommer CJ, Stenzel W, Lloyd TE, Schirmer L. Cell type mapping of inflammatory muscle diseases highlights selective myofiber vulnerability in inclusion body myositis. NATURE AGING 2024; 4:969-983. [PMID: 38834884 PMCID: PMC11257986 DOI: 10.1038/s43587-024-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.
Collapse
Grants
- R01 AR076390 NIAMS NIH HHS
- U41 HG002371 NHGRI NIH HHS
- European Research Council (DecOmPress ERC StG 950584), German Research Foundation grant (SCHI 1330/2-1, SCHI 1330/4-1, SCHI 1330/6-1, GRK 2727, SPP 2395), Hertie Foundation (P1180016), National Multiple Sclerosis Society (RFA-2203-39300, PA-2002-36405)
- The Myositis Association (90097118)
- German Cancer Aid
- National Human Genome Research Institute (5U41HG002371)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR076390), Muscular Dystrophy Association (MDA630399), The Peter and Carmen Lucia Buck Foundation, The Peter Frampton Myositis Research Fund
Collapse
Affiliation(s)
- Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Kocharyan
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amel Zulji
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Werner Rausch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Leonie Thomas
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kutza
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | | | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Clemens J Sommer
- Institute for Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Fowler A, Knaus KR, Khuu S, Khalilimeybodi A, Schenk S, Ward SR, Fry AC, Rangamani P, McCulloch AD. Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training. Exp Physiol 2024; 109:939-955. [PMID: 38643471 PMCID: PMC11140181 DOI: 10.1113/ep091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.
Collapse
Affiliation(s)
- Annabelle Fowler
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Katherine R. Knaus
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Stephanie Khuu
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Simon Schenk
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew C. Fry
- Department of Health, Sport and Exercise SciencesUniversity of KansasLawrenceKansasUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Shoji M, Ohashi T, Nagase S, Yuri H, Ichihashi K, Takagishi T, Nagata Y, Nomura Y, Fukunaka A, Kenjou S, Miyake H, Hara T, Yoshigai E, Fujitani Y, Sakurai H, Dos Santos HG, Fukada T, Kuzuhara T. Possible involvement of zinc transporter ZIP13 in myogenic differentiation. Sci Rep 2024; 14:8052. [PMID: 38609428 PMCID: PMC11014994 DOI: 10.1038/s41598-024-56912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takuto Ohashi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Saki Nagase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Haato Yuri
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Teruhisa Takagishi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuji Nagata
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuki Nomura
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Sae Kenjou
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Hatsuna Miyake
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Takafumi Hara
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Emi Yoshigai
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto-City, Kyoto, Japan
| | | | - Toshiyuki Fukada
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| |
Collapse
|
7
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
8
|
Lu X, Li L, Wu N, Chen W, Hong S, Xu M, Ding Y, Gao Y. BMP9 functions as a negative regulator in the myogenic differentiation of primary mouse myoblasts. Biosci Biotechnol Biochem 2023; 87:1255-1264. [PMID: 37553201 DOI: 10.1093/bbb/zbad104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
BMP9, a member of the TGF-β superfamily, reveals the great translational promise for it has been shown to have the strong effect of osteogenic activity in vitro and in vivo. However, the implantation of certain BMPs (bone morphogenetic proteins) into muscular tissues induces ectopic bone formation. BMPs induce osteoblastic differentiation in skeletal muscle, suggesting that myogenic stem cells, such as myoblasts, are the potential progenitors of osteoblasts during heterotopic bone differentiation. Here, we investigate the role of BMP9 during primary mouse myoblasts differentiation. We found BMP9 enhanced cell proliferation and reduced myogenic differentiation of primary mouse myoblasts. In addition, adenovirus-mediated overexpression of BMP9 delayed muscle regeneration after BaCl2-induced injury. ALK1 knockdown reversed the inhibition of myoblast differentiation induced by BMP9. Our data indicate that BMP9 inhibits myogenic differentiation in primary mouse myoblasts and delays skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Liang Li
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Shanghai, China
| | - Nanhui Wu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Wenjuan Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Sheng Hong
- Department of Dermatology, Changhai Hospital, Shanghai, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yunlu Gao
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
9
|
Cannone E, Guglielmi V, Marchetto G, Tobia C, Gnutti B, Cisterna B, Tonin P, Barbon A, Vattemi G, Schiavone M. Human Mutated MYOT and CRYAB Genes Cause a Myopathic Phenotype in Zebrafish. Int J Mol Sci 2023; 24:11483. [PMID: 37511242 PMCID: PMC10380269 DOI: 10.3390/ijms241411483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Myofibrillar myopathies (MFMs) are a group of hereditary neuromuscular disorders sharing common histological features, such as myofibrillar derangement, Z-disk disintegration, and the accumulation of degradation products into protein aggregates. They are caused by mutations in several genes that encode either structural proteins or molecular chaperones. Nevertheless, the mechanisms by which mutated genes result in protein aggregation are still unknown. To unveil the role of myotilin and αB-crystallin in the pathogenesis of MFM, we injected zebrafish fertilized eggs at the one-cell stage with expression plasmids harboring cDNA sequences of human wildtype or mutated MYOT (p.Ser95Ile) and human wildtype or mutated CRYAB (p.Gly154Ser). We evaluated the effects on fish survival, motor behavior, muscle structure and development. We found that transgenic zebrafish showed morphological defects that were more severe in those overexpressing mutant genes. which developed a myopathic phenotype consistent with that of human myofibrillar myopathy, including the formation of protein aggregates. Results indicate that pathogenic mutations in myotilin and αB-crystallin genes associated with MFM cause a structural and functional impairment of the skeletal muscle in zebrafish, thereby making this non-mammalian organism a powerful model to dissect disease pathogenesis and find possible druggable targets.
Collapse
Affiliation(s)
- Elena Cannone
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, 25123 Brescia, Italy
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy
| | - Giulia Marchetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, 25123 Brescia, Italy
| | - Barbara Gnutti
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, 25123 Brescia, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
10
|
Barruet E, Striedinger K, Marangoni P, Pomerantz JH. Loss of transcriptional heterogeneity in aged human muscle stem cells. PLoS One 2023; 18:e0285018. [PMID: 37192223 PMCID: PMC10187936 DOI: 10.1371/journal.pone.0285018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Age-related loss of muscle mass and function negatively impacts healthspan and lifespan. Satellite cells function as muscle stem cells in muscle maintenance and regeneration by self-renewal, activation, proliferation and differentiation. These processes are perturbed in aging at the stem cell population level, contributing to muscle loss. However, how representation of subpopulations within the human satellite cell pool change during aging remains poorly understood. We previously reported a comprehensive baseline of human satellite cell (Hu-MuSCs) transcriptional activity in muscle homeostasis describing functional heterogenous human satellite cell subpopulations such as CAV1+ Hu-MUSCs. Here, we sequenced additional satellite cells from new healthy donors and performed extended transcriptomic analyses with regard to aging. We found an age-related loss of global transcriptomic heterogeneity and identified new markers (CAV1, CXCL14, GPX3) along with previously described ones (FN1, ITGB1, SPRY1) that are altered during aging in human satellite cells. These findings describe new transcriptomic changes that occur during aging in human satellite cells and provide a foundation for understanding functional impact.
Collapse
Affiliation(s)
- Emilie Barruet
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Katharine Striedinger
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Jason H. Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
11
|
Kolliari-Turner A, Lima G, Wang G, Malinsky FR, Karanikolou A, Eichhorn G, Tanisawa K, Ospina-Betancurt J, Hamilton B, Kumi PY, Shurlock J, Skiadas V, Twycross-Lewis R, Kilduff L, Martin RP, Ash GI, Potter C, Guppy FM, Seto JT, Fossati C, Pigozzi F, Borrione P, Pitsiladis Y. An observational human study investigating the effect of anabolic androgenic steroid use on the transcriptome of skeletal muscle and whole blood using RNA-Seq. BMC Med Genomics 2023; 16:94. [PMID: 37138349 PMCID: PMC10157927 DOI: 10.1186/s12920-023-01512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/08/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The effects of Anabolic Androgenic Steroids (AAS) are largely illustrated through Androgen Receptor induced gene transcription, yet RNA-Seq has yet to be conducted on human whole blood and skeletal muscle. Investigating the transcriptional signature of AAS in blood may aid AAS detection and in muscle further understanding of AAS induced hypertrophy. METHODS Males aged 20-42 were recruited and sampled once: sedentary controls (C), resistance trained lifters (RT) and resistance trained current AAS users (RT-AS) who ceased exposure ≤ 2 or ≥ 10 weeks prior to sampling. RT-AS were sampled twice as Returning Participants (RP) if AAS usage ceased for ≥ 18 weeks. RNA was extracted from whole blood and trapezius muscle samples. RNA libraries were sequenced twice, for validation purposes, on the DNBSEQ-G400RS with either standard or CoolMPS PE100 reagents following MGI protocols. Genes were considered differentially expressed with FDR < 0.05 and a 1.2- fold change. RESULTS Cross-comparison of both standard reagent whole blood (N = 55: C = 7, RT = 20, RT-AS ≤ 2 = 14, RT-AS ≥ 10 = 10, RP = 4; N = 46: C = 6, RT = 17, RT-AS ≤ 2 = 12, RT-AS ≥ 10 = 8, RP = 3) sequencing datasets, showed that no genes or gene sets/pathways were differentially expressed between time points for RP or between group comparisons of RT-AS ≤ 2 vs. C, RT, or RT-AS ≥ 10. Cross-comparison of both muscle (N = 51, C = 5, RT = 17, RT-AS ≤ 2 = 15, RT-AS ≥ 10 = 11, RP = 3) sequencing (one standard & one CoolMPS reagent) datasets, showed one gene, CHRDL1, which has atrophying potential, was upregulated in RP visit two. In both muscle sequencing datasets, nine differentially expressed genes, overlapped with RT-AS ≤ 2 vs. RT and RT-AS ≤ 2 vs. C, but were not differentially expressed with RT vs. C, possibly suggesting they are from acute doping alone. No genes seemed to be differentially expressed in muscle after the long-term cessation of AAS, whereas a previous study found long term proteomic changes. CONCLUSION A whole blood transcriptional signature of AAS doping was not identified. However, RNA-Seq of muscle has identified numerous differentially expressed genes with known impacts on hypertrophic processes that may further our understanding on AAS induced hypertrophy. Differences in training regimens in participant groupings may have influenced results. Future studies should focus on longitudinal sampling pre, during and post-AAS exposure to better control for confounding variables.
Collapse
Affiliation(s)
- Alexander Kolliari-Turner
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Giscard Lima
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Muscle Research, Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guan Wang
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| | - Fernanda Rossell Malinsky
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
| | - Antonia Karanikolou
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
| | - Gregor Eichhorn
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Blair Hamilton
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- The Gender Identity Clinic, Tavistock and Portman NHS Foundation Trust, London, UK
| | - Paulette Y.O. Kumi
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Vasileios Skiadas
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- St Mary’s University, Twickenham, London, UK
| | - Liam Kilduff
- Applied Sports, Technology, Exercise, and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Swansea University, Swansea, Wales
| | - Renan Paulo Martin
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Garrett I. Ash
- Veterans Affairs Connecticut Healthcare System, West Haven, CT USA
- Center for Medical Informatics, Yale University, New Haven, CT USA
| | | | - Fergus M. Guppy
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Jane T. Seto
- Muscle Research, Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Yannis Pitsiladis
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| |
Collapse
|
12
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
13
|
Sautchuk R, Kalicharan BH, Escalera-Rivera K, Jonason JH, Porter GA, Awad HA, Eliseev RA. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. eLife 2022; 11:e75023. [PMID: 35635445 PMCID: PMC9191891 DOI: 10.7554/elife.75023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Brianna H Kalicharan
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | | | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of RochesterRochesterUnited States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of RochesterRochesterUnited States
- Department of Pathology, University of RochesterRochesterUnited States
- Department of Pharmacology & Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
14
|
Tyagi N, Gambhir K, Sharma D, Gangenahalli G, Verma YK. Data mining and structural analysis for multi-tissue regeneration potential of BMP-4 and activator drugs. J Biomol Struct Dyn 2022:1-16. [DOI: 10.1080/07391102.2022.2067899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Delhi, India
| | - Kirtida Gambhir
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Delhi, India
| | - Deepak Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Delhi, India
| |
Collapse
|
15
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
16
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
Affiliation(s)
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010, Creteil, France.
| |
Collapse
|
17
|
Deng J, Wang S, Li N, Chen X, Wang B, Liu H, Zhu L, Cong W, Xiao J, Liu C. Noggin Overexpression Impairs the Development of Muscles, Tendons, and Aponeurosis in Soft Palates by Disrupting BMP-Smad and Shh-Gli1 Signaling. Front Cell Dev Biol 2021; 9:711334. [PMID: 34557486 PMCID: PMC8453081 DOI: 10.3389/fcell.2021.711334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The roles of bone morphogenetic protein (BMP) signaling in palatogenesis were well documented in the developing hard palate; however, little is known about how BMP signaling regulates the development of soft palate. In this study, we overexpressed Noggin transgene via Osr2-cre KI allele to suppress BMP signaling in the developing soft palate. We found that BMP-Smad signaling was detected in the palatal muscles and surrounding mesenchyme. When BMP-Smad signaling was suppressed by the overexpressed Noggin, the soft palatal shelves were reduced in size with the hypoplastic muscles and the extroversive hypophosphatasia (HPP). The downregulated cell proliferation and survival in the Osr2-cre KI ;pMes-Noggin soft palates were suggested to result from the repressed Shh transcription and Gli1 activity, implicating that the BMP-Shh-Gli1 network played a similar role in soft palate development as in the hard palate. The downregulated Sox9, Tenascin-C (TnC), and Col1 expression in Osr2-cre KI ;pMes-Noggin soft palate indicated the impaired differentiation of the aponeurosis and tendons, which was suggested to result in the hypoplasia of palatal muscles. Intriguingly, in the Myf5-cre KI ;pMes-Noggin and the Myf5-cre KI ;Rosa26R-DTA soft palates, the hypoplastic or abrogated muscles affected little the fusion of soft palate. Although the Scx, Tnc, and Co1 transcription was significantly repressed in the tenogenic mesenchyme of the Myf5-cre KI ;pMes-Noggin soft palate, the Sox9 expression, and the Tnc and Col1 transcription in aponeurosis mesenchyme were almost unaffected. It implicated that the fusion of soft palate was controlled by the mesenchymal clues at the tensor veli palatini (TVP) and levator veli palatini (LVP) levels, but by the myogenic components at the palatopharyngeus (PLP) level.
Collapse
Affiliation(s)
- Jiamin Deng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Biying Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wei Cong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Zhang J, Lin C, Song Y, Zhang Y, Chen J. Augmented BMP4 signal impairs tongue myogenesis. J Mol Histol 2021; 52:651-659. [PMID: 34076834 DOI: 10.1007/s10735-021-09987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Tongue muscles are derived from mesodermal cells, while signals driven by cranial neural crest cells (CNCCs) regulate tongue myogenesis via tissue-tissue interaction. Based on such mechanisms of interaction, congenital tongue defects occur in CNC-related syndromes in humans. This study utilized a pathologic model for the syndrome of congenital bony syngnathia, Wnt1-Cre;pMes-Bmp4 mouse line, to explore impacts of enhanced CNCCs-originated BMP4 signal on tongue myogenesis via tissue-tissue interaction. Our results revealed that microglossia, a clinical phenotype of congenital bony syngnathia in humans exhibited in Wnt1-Cre;pMes-Bmp4 mice due to impaired myogenesis. The augmented BMP4 signal affected the distal distribution, proliferation, and differentiation of myogenic cells as well as tendon patterning, resulting in disarrangement and atrophy of tongue muscles and the loss of the anterior digastric muscle. This study demonstrated how a CNCCs-originated ligand impaired tongue myogenesis via a non-autonomous way, which provided potential formation mechanisms for understanding tongue abnormalities in CNC-related syndromes.
Collapse
Affiliation(s)
- Jian Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|