1
|
Ordiales H, Olano C, Martín C, Blanco-Agudín N, Alcalde I, Merayo-Lloves J, Quirós LM. Phosphoglycerate mutase and methionine synthase act as adhesins of Candida albicans to the corneal epithelium, altering their expression during the tissue adhesion process. Exp Eye Res 2025; 254:110322. [PMID: 40057112 DOI: 10.1016/j.exer.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/08/2025]
Abstract
The yeast form of Candida albicans uses glycosaminoglycans (GAGs), primarily heparan sulfate, as adhesion receptors for corneal epithelial cells. However, during the transition to the hyphal form, the fungus shifts to using alternative receptors. This study aims to identify fungal adhesins involved in GAG binding and examine their expression dynamics during tissue adhesion. Using chromatography, three proteins from the C. albicans cell wall with high affinity for heparin were identified: methionine synthase, phosphoglycerate mutase, and cytochrome c. These proteins were overexpressed in Escherichia coli and tested in adhesion assays. Methionine synthase and phosphoglycerate mutase partially inhibited yeast adhesion to corneal epithelial cells in a concentration-dependent manner, while cytochrome c enhanced adhesion. Transcriptional analysis of the genes encoding these proteins (MET6, GMP1, and CYC1), along with other genes related to adhesion and yeast-to-hypha transition (ALS3, HWP1, and INT1), revealed that exposure to exosomes or GAGs increased GMP1, CYC1, and ALS3 expression, while reducing HWP1 and INT1. In contrast, direct contact with epithelial cells decreased MET6 and GMP1 expression, but increased HWP1 expression. These results suggest that methionine synthase and phosphoglycerate mutase act as adhesins for GAGs, with their expression modulated by GAG or exosome interaction to promote adhesion. However, epithelial cell contact alters the expression of adhesins and molecules linked to hyphal formation, highlighting their dynamic role in corneal adhesion.
Collapse
Affiliation(s)
- Helena Ordiales
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Carlos Olano
- Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Carla Martín
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Noelia Blanco-Agudín
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain; Department of Surgery, University of Oviedo, 33006, Oviedo, Spain.
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
2
|
Liu Z, Yang H, Huang R, Li X, Sun T, Zhu L. Vaginal mycobiome characteristics and therapeutic strategies in vulvovaginal candidiasis (VVC): differentiating pathogenic species and microecological features for stratified treatment. Clin Microbiol Rev 2025:e0028424. [PMID: 40261031 DOI: 10.1128/cmr.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYVulvovaginal candidiasis (VVC) is a prevalent global health burden, particularly among reproductive-aged women. Recurrent VVC affects a significant proportion of this population, presenting therapeutic challenges. The predominant pathogen, Candida albicans, opportunistically transitions from a commensal organism to a pathogen when microenvironmental conditions become dysregulated. Recently, non-albicans Candida species have gained attention for their reduced antifungal susceptibility and recurrence tendencies. Diagnosis is constrained by the limitations of conventional microbiological techniques, while emerging molecular assays offer enhanced pathogen detection yet lack established thresholds to differentiate between commensal and pathogenic states. Increasing resistance issues are encountered by traditional azole-based antifungals, necessitating innovative approaches that integrate microbiota modulation and precision medicine. Therefore, this review aims to systematically explore the pathogenic diversity, drug resistance mechanisms, and biofilm effects of Candida species. Vaginal microbiota (VMB) alterations associated with VVC were also examined, focusing on the interaction between Lactobacillus spp. and pathogenic fungi, emphasizing the role of microbial dysbiosis in disease progression. Finally, the potential therapeutic approaches for VVC were summarized, with a particular focus on the use of probiotics to modulate the VMB composition and restore a healthy microbial ecosystem as a promising treatment strategy. This review addresses antifungal resistance and adopts a microbiota-centric approach, proposing a comprehensive framework for personalized VVC management to reduce recurrence and improve patient outcomes.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaochuan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianshu Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Clinical Biobank, Center for Biomedical Technology, Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
4
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Lin YT, Tsai WC, Lu HY, Fang SY, Chan HW, Huang CH. Enhancing Therapeutic Efficacy of Cinnamon Essential Oil by Nanoemulsification for Intravaginal Treatment of Candida Vaginitis. Int J Nanomedicine 2024; 19:4941-4956. [PMID: 38828194 PMCID: PMC11144005 DOI: 10.2147/ijn.s458593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Background Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application. Purpose To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro. Materials and Methods CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans. Results CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 μg/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 μg/mL, 20 μL/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines. Conclusion This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Chung Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsueh-Yu Lu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shih-Yuan Fang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Wen Chan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
6
|
Yang Z, Zhang S, Ji N, Li J, Chen Q. The evil companion of OSCC: Candida albicans. Oral Dis 2024; 30:1873-1886. [PMID: 37530513 DOI: 10.1111/odi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Microbial dysbiosis and microbiome-induced inflammation may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). Candida albicans (C. albicans) is the most prevalent opportunistic pathogenic fungus in the oral cavity, and Candida infection is considered as one of its high-risk factors. Although oral microbiota-host interactions are closely associated with the development of OSCC, the interrelationship between fungi and OSCC is poorly understood compared to that between bacteria and viruses. RESULTS We accumulated knowledge of the evidence, pathogenic factors, and possible multiple mechanisms by which C. albicans promotes malignant transformation of OSCC, focusing on the induction of epithelial damage, production of carcinogens, and regulation of the tumor microenvironment. In addition, we highlight the latest treatment strategies for Candida infection. CONCLUSION This review provides a new perspective on the interrelationship between C. albicans and OSCC and contributes to the establishment of a systematic and reliable clinical treatment system for OSCC patients with C. albicans infection.
Collapse
Affiliation(s)
- Zhixin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
7
|
Silao FGS, Valeriano VD, Uddström E, Falconer E, Ljungdahl PO. Diverse mechanisms control amino acid-dependent environmental alkalization by Candida albicans. Mol Microbiol 2024; 121:696-716. [PMID: 38178569 DOI: 10.1111/mmi.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Collapse
Affiliation(s)
- Fitz Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Erika Uddström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Emilie Falconer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - June L Round
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
10
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
11
|
Kabir AR, Chaudhary AA, Aladwani MO, Podder S. Decoding the host-pathogen interspecies molecular crosstalk during oral candidiasis in humans: an in silico analysis. Front Genet 2023; 14:1245445. [PMID: 37900175 PMCID: PMC10603195 DOI: 10.3389/fgene.2023.1245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: The objective of this study is to investigate the interaction between Candida albicans and human proteins during oral candidiasis, with the aim of identifying pathways through which the pathogen subverts host cells. Methods: A comprehensive list of interactions between human proteins and C. albicans was obtained from the Human Protein Interaction Database using specific screening criteria. Then, the genes that exhibit differential expression during oral candidiasis in C. albicans were mapped with the list of human-Candida interactions to identify the corresponding host proteins. The identified host proteins were further compared with proteins specific to the tongue, resulting in a final list of 99 host proteins implicated in oral candidiasis. The interactions between host proteins and C. albicans proteins were analyzed using the STRING database, enabling the construction of protein-protein interaction networks. Similarly, the gene regulatory network of Candida proteins was reconstructed using data from the PathoYeastract and STRING databases. Core module proteins within the targeted host protein-protein interaction network were identified using ModuLand, a Cytoscape plugin. The expression levels of the core module proteins under diseased conditions were assessed using data from the GSE169278 dataset. To gain insights into the functional characteristics of both host and pathogen proteins, ontology analysis was conducted using Enrichr and YeastEnrichr, respectively. Result: The analysis revealed that three Candida proteins, HHT21, CYP5, and KAR2, interact with three core host proteins, namely, ING4 (in the DNMT1 module), SGTA, and TOR1A. These interactions potentially impair the immediate immune response of the host against the pathogen. Additionally, differential expression analysis of fungal proteins and their transcription factors in Candida-infected oral cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate transcription factors involved in instigating the pathogenesis of oral candidiasis during host infection. Conclusion: Our study provides a molecular map of the host-pathogen interaction during oral candidiasis, along with potential targets for designing regimens to overcome oral candidiasis, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Ali Rejwan Kabir
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Malak O Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Soumita Podder
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
12
|
Sztafrowski D, Muraszko J, Jasiura A, Bryk P, Urbanek AK, Krasowska A. The alternating 50 Hz magnetic field depending on the hydrophobicity of the strain affects the viability, filamentation and sensitivity to drugs of Candida albicans. PLoS One 2023; 18:e0291438. [PMID: 37796949 PMCID: PMC10553255 DOI: 10.1371/journal.pone.0291438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/26/2023] [Indexed: 10/07/2023] Open
Abstract
In recent decades, Candida albicans have been the main etiological agent of life-threatening invasive infections, characterized by various mechanisms of resistance to commonly used antifungals. One of the strategies to fight Candida infections may be the use of an electromagnetic field. In this study, we examined the influence of the alternating magnetic field of 50 Hz on the cells of C. albicans. We checked the impact of the alternating magnetic field of 50 Hz on the viability, filamentation and sensitivity to fluconazole and amphotericin B of two, differing in hydrophobicity, strains of C. albicans, CAF2-1 and CAF 4-2. Our results indicate that using the alternating magnetic field of 50 Hz reduces the growth of C. albicans. Interestingly, it presents a stronger effect on the hydrophobic strain CAF4-2 than on the hydrophilic CAF2-1. The applied electromagnetic field also affects the permeabilization of the cell membrane. However, it does not inhibit the transformation from yeast to hyphal forms. AMF is more effective in combination with fluconazole rather than amphotericin B. Our findings confirm the hypothesis that the application of the alternating magnetic field of 50 Hz in antifungal therapy may arise as a new option to support the treatment of Candida infections.
Collapse
Affiliation(s)
- Dariusz Sztafrowski
- Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jakub Muraszko
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Adam Jasiura
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patrycja Bryk
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aneta K. Urbanek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Anna Krasowska
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
13
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
14
|
Gaziano R, Sabbatini S, Monari C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023; 11:1211. [PMID: 37317186 DOI: 10.3390/microorganisms11051211] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Vulvovaginal candidiasis (VVC), which is primarily caused by Candida albicans, is an infection that affects up to 75% of all reproductive-age women worldwide. Recurrent VVC (RVVC) is defined as >3 episodes per year and affects nearly 8% of women globally. At mucosal sites of the vagina, a delicate and complex balance exists between Candida spp., host immunity and local microbial communities. In fact, both immune response and microbiota composition play a central role in counteracting overgrowth of the fungus and maintaining homeostasis in the host. If this balance is perturbed, the conditions may favor C. albicans overgrowth and the yeast-to-hyphal transition, predisposing the host to VVC. To date, the factors that affect the equilibrium between Candida spp. and the host and drive the transition from C. albicans commensalism to pathogenicity are not yet fully understood. Understanding the host- and fungus-related factors that drive VVC pathogenesis is of paramount importance for the development of adequate therapeutic interventions to combat this common genital infection. This review focuses on the latest advances in the pathogenic mechanisms implicated in the onset of VVC and also discusses novel potential strategies, with a special focus on the use of probiotics and vaginal microbiota transplantation in the treatment and/or prevention of recurrent VVC.
Collapse
Affiliation(s)
- Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
15
|
Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, Keizer D, Abu-Taha H, Schwartz S, Kaboub K, Baram L, Sadot E, White I, Wasserberg N, Wolff-Bar M, Levy-Barda A, Dotan I. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol 2023; 14:1142492. [PMID: 36969163 PMCID: PMC10030769 DOI: 10.3389/fimmu.2023.1142492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the β-glucan receptor Dectin-1, and respond to commensal fungi and β-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of β-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose β-glucan-containing fungal particles via LAP. METHODS Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (β-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. RESULTS zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. CONCLUSIONS Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Masha Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liran Baram
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sadot
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Ian White
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Russell CM, Rybak JA, Miao J, Peters BM, Barrera FN. Candidalysin: Connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties. J Biol Chem 2023; 299:102829. [PMID: 36581211 PMCID: PMC9852700 DOI: 10.1016/j.jbc.2022.102829] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Candida albicans is a deadly pathogen responsible for millions of mucosal and systemic infections per year. The pathobiology of C. albicans is largely dependent on the damaging and immunostimulatory properties of the peptide candidalysin (CL), a key virulence factor. When CL forms pores in the plasma membrane of epithelial cells, it activates a response network grounded in activation of the epidermal growth factor receptor. Prior reviews have characterized the resulting CL immune activation schemas but lacked insights into the molecular mechanism of CL membrane damage. We recently demonstrated that CL functions by undergoing a unique self-assembly process; CL forms polymers and loops in aqueous solution prior to inserting and forming pores in cell membranes. This mechanism, the first of its kind to be observed, informs new therapeutic avenues to treat Candida infections. Recently, variants of CL were identified in other Candida species, providing an opportunity to identify the residues that are key for CL to function. In this review, we connect the ability of CL to damage cell membranes to its immunostimulatory properties.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jennifer A Rybak
- School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
17
|
Alwaily ER, Abood MS, Flaih MH. Identification of Candida Krusei by 18S rRNA Gene and Investigation of SAP1 Gene in Samples Isolated from Female Genital Tract Infection. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:315-319. [DOI: 10.1109/ismsit56059.2022.9932855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Meethaq S. Abood
- College of Education for Pure Science, Thi-Qar University,Department of Biology,Thi-Qar,Iraq
| | - Mohammed H. Flaih
- Nasiriyah Technical Institute, Southern Technical University,Department of Nursing Techniques,Nasiriyah,Iraq
| |
Collapse
|
18
|
Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol 2022; 13:988734. [PMID: 36246294 PMCID: PMC9554461 DOI: 10.3389/fmicb.2022.988734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus, which tends to infect the host with defective immune function including cancer patients. A growing number of studies have shown that C. albicans infection increases the host susceptibility to cancer such as oral, gastric, and colorectal cancer. Cancer and anti-cancer treatment may also affect the colonization of C. albicans. C. albicans may promote the development of cancer by damaging mucosal epithelium, inducing the production of carcinogens, triggering chronic inflammation including Th17 cell-mediated immune response. In this article, we aim to elaborate the interaction between C. albicans and cancers development and summarize the potential molecular mechanisms, so as to provide theoretical basis for prevention, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Zhiping Liu,
| |
Collapse
|
19
|
Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun 2022; 13:3781. [PMID: 35773250 PMCID: PMC9246882 DOI: 10.1038/s41467-022-31237-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
Collapse
Affiliation(s)
- Joy Lachat
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Alice Pascault
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Delphine Thibaut
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Allon Weiner
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France.
| |
Collapse
|
20
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal 2022; 15:eabj6915. [PMID: 35380879 PMCID: PMC7612652 DOI: 10.1126/scisignal.abj6915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.
Collapse
Affiliation(s)
- Spyridoula-Angeliki Nikou
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Bianca M. Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Mary J. Green
- Experimental Histopathology Lab, The Francis Crick Institute; London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Peter J. Parker
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- School of Cancer and Pharmaceutical Sciences, New Hunt’s House, King’s College London; London, UK
| |
Collapse
|
21
|
He H, Wang Y, Fan Y, Li C, Han J. Hypha essential genes in Candida albicans pathogenesis of oral lichen planus: an in-vitro study. BMC Oral Health 2021; 21:614. [PMID: 34852796 PMCID: PMC8638143 DOI: 10.1186/s12903-021-01975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hypha essential genes (HEGs) of Candida Albicans have been emerging into scholar's attention, little known about their functions in oral lichen planus (OLP) with an uncovered etiology. This research aimed to observe necessary genes in biphasic C. albicans from OLP and study their relevance in pathogenesis, so as to evaluate possible roles of morphologic switching in etiology of OLP. METHODS Samples were collected from OLP lesions of patients, mycelia were cultured and total RNA was extracted then subjected to reverse transcription-PCR and real-time PCR. RESULTS HWP1 and HGC1 were significantly expressed in hyphae phase and weakly detected in yeast phase, while there was no significant difference of EFG1, ALS3, and ECE1 between in yeast and mycelia. CONCLUSION HGC1 and HWP1 were confirmed to be hypha essential genes, with HGC1 for hypha morphogenesis and HWP1 for adhesion invasion in pathogenesis of C. albicans in OLP. ALS3, ECE1 and EFG1 played minor roles in hyphae maintenance and adhesion for hyphae. These might be deemed as hints for the etiology of OLP and indicate HGC1 and HWP1 to be a priority of potential drug target.
Collapse
Affiliation(s)
- Hong He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yan Fan
- Hangzhou Stomatology Hospital, Pinghai Road, Hangzhou, 310000, China.
| | - Congcong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
22
|
He Y, Tang R, Deng J, Cai T, He P, Wu J, Cao Y. Effects of oestrogen on vulvovaginal candidosis. Mycoses 2021; 65:4-12. [PMID: 34699636 DOI: 10.1111/myc.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
As a frequently occurring infectious disease mainly caused by Candida albicans, vulvovaginal candidosis (VVC) affects more than 100 million women worldwide every year. Multiple factors that influence C. albicans colonisation have been linked to the incidence of VVC, including high levels of circulating oestrogen due to pregnancy, the use of oral contraceptives, and hormone replacement therapy. This review provides an overview of the current understanding of the mechanism(s) by which oestrogen contributes to VVC, which might provide meaningful guidance to the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Yufei He
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoyu Tang
- Department of Immunology and Pathogen Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tongkai Cai
- Shanghai Diacart Biomedical Science and Technology Limited Company, Shanghai, China
| | - Ping He
- Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, Bell R, Catanzaro JR, Song D, Singh S, Call DH, Hwang-Wong E, Hanson KE, Valentine JF, Christensen KA, O’Connell RM, Cormack B, Ibrahim AS, Palm NW, Noble SM, Round JL. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 2021; 596:114-118. [PMID: 34262174 PMCID: PMC8904204 DOI: 10.1038/s41586-021-03722-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.
Collapse
Affiliation(s)
- Kyla S. Ost
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - W. Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tyson Chiaro
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Haoyang Zhou
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jourdan Penman
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason R. Catanzaro
- Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shakti Singh
- The Lundquist Institute of Biomedical Innovation, Harbor–UCLA Medical Center, Torrance, CA, USA
| | - Daniel H. Call
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Elizabeth Hwang-Wong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly E. Hanson
- Department of Pathology, Division of Clinical Microbiology, University of Utah, Salt Lake City, UT, USA
| | - John F. Valentine
- Department of Internal Medicine, Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brendan Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashraf S. Ibrahim
- The Lundquist Institute of Biomedical Innovation, Harbor–UCLA Medical Center, Torrance, CA, USA.,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Correspondence and requests for materials should be addressed to J.L.R.,
| |
Collapse
|
24
|
Blagojevic M, Camilli G, Maxson M, Hube B, Moyes DL, Richardson JP, Naglik JR. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol 2021; 23:e13371. [PMID: 34085369 DOI: 10.1111/cmi.13371] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.
Collapse
Affiliation(s)
- Mariana Blagojevic
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michelle Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Ordiales H, Vázquez-López F, Pevida M, Vázquez-Losada B, Vázquez F, Quirós LM, Martín C. Glycosaminoglycans Are Involved in the Adhesion of Candida albicans and Malassezia Species to Keratinocytes But Not to Dermal Fibroblasts. ACTAS DERMO-SIFILIOGRAFICAS 2021:S1578-2190(21)00161-X. [PMID: 34052141 DOI: 10.1016/j.adengl.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Superficial mycoses are some of the most common diseases worldwide. The usual culprits-yeasts belonging to the genera Malassezia and Candida-are commensal species in the skin that can cause opportunistic infections. We aimed to determine whether these yeasts use glycosaminoglycans (GAGs) as adhesion receptors to mediate binding to epithelial cells. MATERIAL AND METHODS In keratinocyte and dermal fibroblast cultures, we used rhodamine B and genistein to inhibit GAG synthesis to study the role these molecules play in the adhesion of Candida albicans and Malassezia species to cells. We also analyzed GAG involvement by means of enzyme digestion, using specific lyases. RESULTS Rhodamine B partially inhibited the adhesion of both fungi to keratinocytes but not to fibroblasts. Selective digestion of heparan sulfate enhanced the binding of Malassezia species to keratinocytes and of both fungi to fibroblasts. Chondroitin sulfate digestion decreased Calbicans adhesion to keratinocytes, but increased the adhesion of the filamentous forms of this species to fibroblasts. CONCLUSIONS Cell surface GAGs appear to play a role in the adhesion of Calbicans and Malasezzia species to keratinocytes. In contrast, their adhesion to fibroblasts appears to be enhanced by GAG inhibition, suggesting that some other type of receptor is the mediator.
Collapse
Affiliation(s)
- H Ordiales
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - F Vázquez-López
- Servicio de Dermatología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - M Pevida
- Centro Comunitario de Sangre y Tejidos del Principado de Asturias y CIBERER, U714, Oviedo, Asturias, Spain
| | - B Vázquez-Losada
- Servicio de Dermatología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - F Vázquez
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain; Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - L M Quirós
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - C Martín
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, Spain.
| |
Collapse
|
26
|
Ordiales H, Vázquez-López F, Pevida M, Vázquez-Losada B, Vázquez F, Quirós LM, Martín C. Glycosaminoglycans Are Involved in the Adhesion of Candida albicans and Malassezia Species to Keratinocytes But Not to Dermal Fibroblasts. ACTAS DERMO-SIFILIOGRAFICAS 2021; 112:S0001-7310(21)00086-7. [PMID: 33609451 DOI: 10.1016/j.ad.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Superficial mycoses are some of the most common diseases worldwide. The usual culprits - yeasts belonging to the genera Malassezia and Candida - are commensal species in the skin that can cause opportunistic infections. We aimed to determine whether these yeasts use glycosaminoglycans (GAGs) as adhesion receptors to mediate binding to epithelial cells. MATERIAL AND METHODS In keratinocyte and dermal fibroblast cultures, we used rhodamine B and genistein to inhibit GAG synthesis to study the role these molecules play in the adhesion of Candida albicans (C. albicans) and Malassezia species to cells. We also analyzed GAG involvement by means of enzyme digestion, using specific lyases. RESULTS Rhodamine B partially inhibited the adhesion of both fungi to keratinocytes but not to fibroblasts. Selective digestion of heparan sulfate enhanced the binding of Malassezia species to keratinocytes and of both fungi to fibroblasts. Chondroitin sulfate digestion decreased C. albicans adhesion to keratinocytes, but increased the adhesion of the filamentous forms of this species to fibroblasts. CONCLUSIONS Cell surface GAGs appear to play a role in the adhesion of C albicans and Malasezzia species to keratinocytes. In contrast, their adhesion to fibroblasts appears to be enhanced by GAG inhibition, suggesting that some other type of receptor is the mediator.
Collapse
Affiliation(s)
- H Ordiales
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, España
| | - F Vázquez-López
- Servicio de Dermatología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España; Departamento de Medicina, Universidad de Oviedo, Oviedo, Asturias, España
| | - M Pevida
- Centro Comunitario de Sangre y Tejidos del Principado de Asturias y CIBERER, U714, Oviedo, Asturias, España
| | - B Vázquez-Losada
- Servicio de Dermatología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - F Vázquez
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, España; Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - L M Quirós
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, España
| | - C Martín
- Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, España.
| |
Collapse
|
27
|
Clinical Characteristics and Relevance of Oral Candida Biofilm in Tongue Smears. J Fungi (Basel) 2021; 7:jof7020077. [PMID: 33499213 PMCID: PMC7912297 DOI: 10.3390/jof7020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Dimorphic Candida exist as commensal yeast carriages or infiltrate hyphae in the oral cavity. Here, we investigated the clinical relevance of Candida hyphae in non-pseudomembranous oral candidiasis (OC) by smears of tongue biofilms. We conducted a retrospective study of 2829 patients who had had tongue smears regardless of OC suspicion. Clinical characteristics were evaluated using a novel method of assessing hyphae. Clinical factors (moderate/severe stimulated pain, pain aggravated by stimulation, tongue dorsum appearance and initial topical antifungal use) were highly significant in the high-grade hyphae group but were statistically similar in the low-grade hyphae and non-observed hyphae group, suggesting low-grade hyphae infection as a subclinical OC state. In addition to erythematous candidiasis (EC), a new subtype named "morphologically normal symptomatic candidiasis" (MNSC) with specific pain patterns and normal tongue morphology was identified. MNSC had a significantly higher proportion of moderate and severe stimulated pain cases than EC. Low unstimulated salivary flow rate (<0.1 mL/min) was found to be a common risk factor in MNSC and EC. In non-pseudomembranous OC, pain patterns were dependent on Candida hyphae degree regardless of tongue dorsum morphology. Morphologic differences seen in high-grade hyphae infection were not associated with systemic diseases or nutritional deficiencies.
Collapse
|
28
|
Cohen-Kedar S, Keizer D, Schwartz S, Rabinowitz KM, Kaboub K, Shaham Barda E, Sadot E, Wolff-Bar M, Shaltiel T, Dotan I. Commensal fungi and their cell-wall β-glucans direct differential responses in human intestinal epithelial cells. Eur J Immunol 2021; 51:864-878. [PMID: 33616974 DOI: 10.1002/eji.202048852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Intestinal epithelial cells (IECs) are the first to encounter luminal antigens and play an active role in intestinal immune responses. We previously reported that β-glucans, major fungal cell-wall glycans, induced chemokine secretion by IEC lines in a Dectin-1- and Syk-dependent manner. Here, we show that in contrast to β-glucans, stimulation of IEC lines with Candida albicans and Saccharomyces cerevisiae did not induce secretion of any of the proinflammatory cytokines IL-8, CCL2, CXCL1, and GM-CSF. Commensal fungi and β-glucans activated Syk and ERK in IEC lines. However, only β-glucans activated p38, JNK, and the transcription factors NF-κB p65 and c-JUN, which were necessary for cytokine secretion. Furthermore, costimulation of IEC lines with β-glucans and C. albicans yielded decreased cytokine secretion compared to stimulation with β-glucans alone. Finally, ex vivo stimulation of human colonic mucosal explants with zymosan and C. albicans, leads to epithelial Syk and ERK phosphorylation, implying recognition of fungi and similar initial signaling pathways as in IEC lines. Lack of cytokine secretion in response to commensal fungi may reflect IECs' response to fungal glycans, other than β-glucans, that contribute to mucosal tolerance. Skewed epithelial response to commensal fungi may impair homeostasis and contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Suzana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Keren M Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eran Sadot
- Department of Surgery, Beilinson Campus, Rabin Medical Center, Petah Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Beilinson Campus, Rabin Medical Center, Petah Tikva, Israel
| | - Tali Shaltiel
- Department of Surgery, Beilinson Campus, Rabin Medical Center, Petah Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
30
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
31
|
Ramírez-Amador V, Patton LL, Naglik JR, Nittayananta W. Innovations for prevention and care of oral candidiasis in HIV-infected individuals: Are they available?-A workshop report. Oral Dis 2020; 26 Suppl 1:91-102. [PMID: 32862535 DOI: 10.1111/odi.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral candidiasis (OC) is the most prevalent HIV-related oral lesion in patients on combined anti-retroviral therapy (cART) or without cART. Management is challenged in some patients by development of resistance to azole drugs, such as fluconazole. Recent scientific knowledge about OC pathogenesis, the role of OC in the immune reconstitution inflammatory syndrome (IRIS), the relationship of OC with the microbiome, and novelties in OC treatment was discussed in an international workshop format. Literature searches were conducted to address five questions: (a) Considering the pathogenesis of Candida spp. infection, are there any potential therapeutic targets that could be considered, mainly in HIV-infected individuals resistant to fluconazole? (b) Is oral candidiasis part of IRIS in HIV patients who receive cART? (c) Can management of the oral microbiome reduce occurrence of OC in patients with HIV infection? (d) What are the recent advances (since 2015) regarding plant-based and alternative medicines in management of OC? and (e) Is there a role for photodynamic therapy in management of OC in HIV-infected patients? A number of the key areas where further research is necessary were identified to allow a deeper insight into this oral condition that could help to understand its nature and recommend alternatives for care.
Collapse
Affiliation(s)
- Velia Ramírez-Amador
- Department of Health Care, Master´s Course in Oral Pathology and Oral Medicine, Universidad Autónoma Metropolitana-Xochimilco, México City, Mexico
| | - Lauren L Patton
- Division of Craniofacial and Surgical Care, Adams School of Dentistry University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | |
Collapse
|
32
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|
33
|
de Souza CM, Perini HF, Caloni C, Furlaneto-Maia L, Furlaneto MC. Adhesion of Candida tropicalis to polystyrene and epithelial cell lines: Insights of correlation of the extent of adherent yeast cells among distinct surfaces. J Mycol Med 2020; 30:101043. [PMID: 32948435 DOI: 10.1016/j.mycmed.2020.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Candida tropicalis is an emerging fungal pathogen associated with high mortality. We aimed to compare adherence capability of C. tropicalis to polystyrene and epithelial cell lines (HeLa and Vero), and determine whether adherent blastoconidia is cell-type specific. Blastoconidia adhesion to epithelial cells and polystyrene were determined by crystal violet assay. The percentage of epithelial cells with adhered blastoconidia and the number of adhered blastoconidia per cell line were determined by light microscopy. The correlation between adhesion surfaces was assessed by Pearson's correlation coefficient. The adhesiveness of C. tropicalis to polystyrene was greater than that observed for ephitelial cells. High correlation values (r2 0.9999222, p 0.007941) were found for the adhesion capability between biotic and polystyrene surface for isolates 100.10 (obtained from blood) and 335.07 (obtained from tracheal secretion). The number of adherent blastoconidia per HeLa cell was greater in comparison to that observed for Vero cells (P<0.05). Further, high correlation (r2 1, p 0.0001) was found for the adhesion ability between HeLa cells and Vero cells. The results suggest a correlation of C. tropicalis adhesion capability among different surfaces, and that the adhesion to epithelial cells is specific to the cell type.
Collapse
Affiliation(s)
- C M de Souza
- Department of Microbiology, Paraná State University of Londrina, C.P. 6001, 86051990, Paraná, Brazil
| | - H F Perini
- Department of Microbiology, Paraná State University of Londrina, C.P. 6001, 86051990, Paraná, Brazil
| | - C Caloni
- Department of Microbiology, Paraná State University of Londrina, C.P. 6001, 86051990, Paraná, Brazil
| | | | - M C Furlaneto
- Department of Microbiology, Paraná State University of Londrina, C.P. 6001, 86051990, Paraná, Brazil.
| |
Collapse
|
34
|
Puerner C, Kukhaleishvili N, Thomson D, Schaub S, Noblin X, Seminara A, Bassilana M, Arkowitz RA. Mechanical force-induced morphology changes in a human fungal pathogen. BMC Biol 2020; 18:122. [PMID: 32912212 PMCID: PMC7488538 DOI: 10.1186/s12915-020-00833-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background The initial step of a number of human or plant fungal infections requires active penetration of host tissue. For example, active penetration of intestinal epithelia by Candida albicans is critical for dissemination from the gut into the bloodstream. However, little is known about how this fungal pathogen copes with resistive forces upon host cell invasion. Results In the present study, we have used PDMS micro-fabrication to probe the ability of filamentous C. albicans cells to penetrate and grow invasively in substrates of different stiffness. We show that there is a threshold for penetration that corresponds to a stiffness of ~ 200 kPa and that invasive growth within a stiff substrate is characterized by dramatic filament buckling, along with a stiffness-dependent decrease in extension rate. We observed a striking alteration in cell morphology, i.e., reduced cell compartment length and increased diameter during invasive growth, that is not due to depolarization of active Cdc42, but rather occurs at a substantial distance from the site of growth as a result of mechanical compression. Conclusions Our data reveal that in response to this compression, active Cdc42 levels are increased at the apex, whereas active Rho1 becomes depolarized, similar to that observed in membrane protrusions. Our results show that cell growth and morphology are altered during invasive growth, suggesting stiffness dictates the host cells that C. albicans can penetrate.
Collapse
Affiliation(s)
- Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Nino Kukhaleishvili
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Darren Thomson
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sebastien Schaub
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Sorbonne University, CNRS, Developmental Biology Laboratory (LBDV), Villefranche-sur-mer, France
| | - Xavier Noblin
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France.
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
35
|
Sadeghi G, Mousavi SF, Ebrahimi-Rad M, Mirabzadeh-Ardekani E, Eslamifar A, Shams-Ghahfarokhi M, Jahanshiri Z, Razzaghi-Abyaneh M. In vivo and in vitro Pathogenesis and Virulence Factors of Candida albicans Strains Isolated from Cutaneous Candidiasis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:324-32. [PMID: 32429646 PMCID: PMC7392142 DOI: 10.29252/ibj.24.5.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Background The Candida albicans is one of the most important global opportunistic pathogens, and the incidence of candidiasis has increased over the past few decades. Despite the established role of skin in defense against fungal invasion, little has been documented about the pathogenesis of Candida species when changing from normal flora to pathogens of vaginal and gastrointestinal epithelia. This study was carried out to determine the in vivo and in vitro pathogenesis of clinical C. albicans strains isolated from skin lesions. Methods In this study, association of in vivo and in vitro pathogenesis of C. albicans isolates with different evolutionary origins was investigated. Oral and systemic experimental candidiasis was established in BALB/C mice. The expression levels of secreted aspartyl proteinases (SAP1-3 genes), morphological transformation, and biofilm-forming ability of C. albicans were evaluated. Results All the strains showed in vitro and in vivo pathogenicity by various extents. The SAP1, SAP2, and SAP3 genes were expressed in 50%, 100%, and 75% of the strains, respectively. The biofilm formation ability was negative in 12% of the strains, while it was considerable in 38% of the strains. Fifty percent of the strains had no phospholipase activity, and no one demonstrated high level of this pathogenesis factor. Relatively all the strains had very low potency to form pseudohyphae. Conclusion Our findings demonstrated that Candida albicans strains isolated from cutaneous candidiasis were able to cause oral and systemic infections in mice, so they could be considered as the potential agents of life-threatening nosocomial candidiasis in susceptible populations.
Collapse
Affiliation(s)
- Golnar Sadeghi
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Mina Ebrahimi-Rad
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Masoomeh Shams-Ghahfarokhi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Zahra Jahanshiri
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | |
Collapse
|
36
|
Liao M, Cheng L, Zhou XD, Ren B. [Research progress of Candida albicans on malignant transformation of oral mucosal diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:431-437. [PMID: 32865364 DOI: 10.7518/hxkq.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral cancer is the most common malignant tumor in the head and neck, and is one of the world's top ten malignancies. Microbial infection is an important risk factor of oral cancer. Candida albicans is the most popular opportunistic fungal pathogen. Epidemiological studies have shown that Candida albicans is closely tied to oral malignancy. Animal experimentation have also proven that infection of Candida albicans can promote the development of oral epithelial carcinogenesis. The current studies have revealed several mechanisms involved in this process, including destroying the epithelial barrier, producing carcinogenic substances (nitrosamines, acetaldehyde), inducing chronic inflammation, activating immune response, etc. However, current researches on mechanisms are still inadequate, and some hypotheses remain controversial. Here, we review the findings related to Candida albicans' effect on the malignant transformation of oral mucosa, hoping to provide reference for deep research and controlling oral cancer clinically.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins (Basel) 2020; 12:toxins12080469. [PMID: 32722029 PMCID: PMC7471981 DOI: 10.3390/toxins12080469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
The dimorphic fungus Candida albicans is both a harmless commensal organism on mucosal surfaces and an opportunistic pathogen. Under certain predisposing conditions, the fungus can overgrow the mucosal microbiome and cause both superficial and life-threatening systemic infections after gaining access to the bloodstream. As the first line of defense of the innate immune response, infecting C. albicans cells face macrophages, which mediate the clearance of invading fungi by intracellular killing. However, the fungus has evolved sophisticated strategies to counteract macrophage antimicrobial activities and thus evade immune surveillance. The cytolytic peptide toxin, candidalysin, contributes to this fungal defense machinery by damaging immune cell membranes, providing an escape route from the hostile phagosome environment. Nevertheless, candidalysin also induces NLRP3 inflammasome activation, leading to an increased host-protective pro-inflammatory response in mononuclear phagocytes. Therefore, candidalysin facilitates immune evasion by acting as a classical virulence factor but also contributes to an antifungal immune response, serving as an avirulence factor. In this review, we discuss the role of candidalysin during C. albicans infections, focusing on its implications during C. albicans-macrophage interactions.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Center for Sepsis Control and Care, University Hospital Jena, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Correspondence: (B.H.); (L.K.)
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Correspondence: (B.H.); (L.K.)
| |
Collapse
|
38
|
Abstract
Candida auris is an enigmatic yeast that provides substantial global risk in health care facilities and intensive care units. A unique phenotype exhibited by certain isolates of C. auris is their ability to form small clusters of cells known as aggregates, which have been to a limited extent described in the context of pathogenic traits. In this study, we screened several nonaggregative and aggregative C. auris isolates for biofilm formation, where we observed a level of heterogeneity among the different phenotypes. Next, we utilized an RNA sequencing approach to investigate the transcriptional responses during biofilm formation of a nonaggregative and aggregative isolate of the initial pool. Observations from these analyses indicate unique transcriptional profiles in the two isolates, with several genes identified relating to proteins involved in adhesion and invasion of the host in other fungal species. From these findings, we investigated for the first time the fungal recognition and inflammatory responses of a three-dimensional skin epithelial model to these isolates. In these models, a wound was induced to mimic a portal of entry for C. auris We show that both phenotypes elicited minimal response in the model minus induction of the wound, yet in the wounded tissue, both phenotypes induced a greater response, with the aggregative isolate more proinflammatory. This capacity of aggregative C. auris biofilms to generate such responses in the wounded skin highlights how this opportunistic yeast is a high risk within the intensive care environment where susceptible patients have multiple indwelling lines.IMPORTANCE Candida auris has recently emerged as an important cause of concern within health care environments due to its ability to persist and tolerate commonly used antiseptics and disinfectants, particularly when attached to a surface (biofilms). This yeast is able to colonize and subsequently infect patients, particularly those that are critically ill or immunosuppressed, which may result in death. We have undertaken analysis on two different phenotypic types of this yeast, using molecular and immunological tools to determine whether either of these has a greater ability to cause serious infections. We describe that both isolates exhibit largely different transcriptional profiles during biofilm development. Finally, we show that the inability to form small aggregates (or clusters) of cells has an adverse effect on the organism's immunostimulatory properties, suggesting that the nonaggregative phenotype may exhibit a certain level of immune evasion.
Collapse
|
39
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
40
|
Roselletti E, Perito S, Sabbatini S, Monari C, Vecchiarelli A. Vaginal Epithelial Cells Discriminate Between Yeast and Hyphae of Candida albicans in Women Who Are Colonized or Have Vaginal Candidiasis. J Infect Dis 2020; 220:1645-1654. [PMID: 31300818 DOI: 10.1093/infdis/jiz365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vaginal candidiasis is common disease affecting women; however, how Candida albicans shift from commensalism towards a pathogenic status remains poorly understood. The present study investigated the vaginal epithelial cell (EC) response dynamics under various conditions. METHODS Healthy women, asymptomatic C. albicans carriers, and symptomatic patients with vaginal candidiasis were enrolled in this study. ECs in vaginal swabs were analyzed with cytofluorimetric analysis for pattern recognition receptors and intracellular signals, with lactate dehydrogenase assay performed for cell damage, and an enzyme-linked immunosorbent assay for cytokine expression. RESULTS The level of toll-like receptor 4 (TLR4), TLR2, and erythropoietin-producing hepatoma A2 (EphA2) expression was significantly higher in ECs from asymptomatic and symptomatic subjects compared to healthy subjects. Activation of transcription factors, nuclear factor-κB (NF-κB) and c-Fos-p-38, was observed in ECs from symptomatic and asymptomatic pseudohyphae/hyphae carriers but not from the asymptomatic yeast carriers. EC damage was only observed in symptomatic patients. CONCLUSIONS The presence of pseudohyphae/hyphae is required to determine vaginal candidiasis; however, it may be not sufficient to induce the pathologic process associated with neutrophil recruitment and EC damage. This study sheds light on the ambiguous role of the hyphal form during vaginal human commensalism.
Collapse
|
41
|
Candidalysin Is a Potent Trigger of Alarmin and Antimicrobial Peptide Release in Epithelial Cells. Cells 2020; 9:cells9030699. [PMID: 32178483 PMCID: PMC7140650 DOI: 10.3390/cells9030699] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Host released alarmins and antimicrobial peptides (AMPs) are highly effective as antifungal agents and inducers. Whilst some are expressed constitutively at mucosal tissues, the primary site of many infections, others are elicited in response to pathogens. In the context of Candida albicans, the fungal factors inducing the release of these innate immune molecules are poorly defined. Herein, we identify candidalysin as a potent trigger of several key alarmins and AMPs known to possess potent anti-Candida functions. We also find extracellular ATP to be an important activator of candidalysin-induced epithelial signalling responses, namely epidermal growth factor receptor (EGFR) and MAPK signalling, which mediate downstream innate immunity during oral epithelial infection. The data provide novel mechanistic insight into the induction of multiple key alarmins and AMPs, important for antifungal defences against C. albicans.
Collapse
|
42
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
43
|
Evaluation of aqueous-extracts from four aromatic plants for their activity against Candida albicans adhesion to human HEp-2 epithelial cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Al Aboody MS. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2107-2113. [PMID: 31137983 DOI: 10.1080/21691401.2019.1620257] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, latex of Azadirachta indica was used for the synthesis of silver nanoparticles (AgNP). UV-visible spectroscopy revealed the formation of AgNPs and the absorption band optimized at 442 nm. Fourier transform infrared (FTIR) spectroscopy shows different functional groups (carboxyl, amine and hydroxyl) of biomolecule which are responsible for reduction and capping process. X-ray diffraction (XRD) analysis confirms the nanoparticles are crystalline silver and cubic (AgCl) with face-centered cubic (Ag) types. Electron microscopics (SEM and TEM) were used to characterize the shape and size of the nanoparticles. The anticandidal and antibiofilm activity of AgNPs was using Fluconazole resistant clinical isolate of Candida tropicalis. The new approach of plant-mediated AgNPs synthesis appears to be cost-effective, eco-friendly and easy methods. The synthesized AgNPs considered as a novel and alternative agent to prevent C. tropicalis biofilms.
Collapse
Affiliation(s)
- Mohammed Saleh Al Aboody
- a Department of Biology, College of Science, Al-Zulfi-, Majmaah University , Majmaah , Riyadh Region , Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Li XV, Leonardi I, Iliev ID. Gut Mycobiota in Immunity and Inflammatory Disease. Immunity 2019; 50:1365-1379. [PMID: 31216461 DOI: 10.1016/j.immuni.2019.05.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
The mammalian intestine is colonized by a wealth of microorganisms-including bacteria, viruses, protozoa, and fungi-that are all integrated into a functional trans-kingdom community. Characterization of the composition of the fungal community-the mycobiota-has advanced further than the much-needed mechanistic studies. Recent findings have revealed roles for the gut mycobiota in the regulation of host immunity and in the development and progression of human diseases of inflammatory origin. We review these findings here while placing them in the context of the current understanding of the pathways and cellular networks that induce local and systemic immune responses to fungi in the gastrointestinal tract. We discuss gaps in knowledge and argue for the importance of considering bacteria-fungal interactions as we aim to define the roles of mycobiota in immune homeostasis and immune-associated pathologies.
Collapse
Affiliation(s)
- Xin V Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
47
|
Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B, Lionakis MS, Murdoch C, Filler SG, Naglik JR. Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J Infect Dis 2019; 220:1477-1488. [PMID: 31401652 PMCID: PMC6761979 DOI: 10.1093/infdis/jiz322] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Candidalysin is a cytolytic peptide toxin secreted by Candida albicans hyphae and has significantly advanced our understanding of fungal pathogenesis. Candidalysin is critical for mucosal C albicans infections and is known to activate epithelial cells to induce downstream innate immune responses that are associated with protection or immunopathology during oral or vaginal infections. Furthermore, candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. However, the role of candidalysin in driving systemic infections is unknown. METHODS In this study, using candidalysin-producing and candidalysin-deficient C albicans strains, we show that candidalysin activates mitogen-activated protein kinase (MAPK) signaling and chemokine secretion in endothelial cells in vitro. RESULTS Candidalysin induces immune activation and neutrophil recruitment in vivo, and it promotes mortality in zebrafish and murine models of systemic fungal infection. CONCLUSIONS The data demonstrate a key role for candidalysin in neutrophil recruitment and fungal virulence during disseminated systemic C albicans infections.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Mina Khalaji
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
- Present Affiliation: Department of Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Norma V Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, United Kingdom
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Present Affiliation: Institute of Immunology and Immunotherapy, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| | - Scott G Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, United Kingdom
| |
Collapse
|
48
|
Prusty JS, Kumar A. Coumarins: antifungal effectiveness and future therapeutic scope. Mol Divers 2019; 24:1367-1383. [PMID: 31520360 DOI: 10.1007/s11030-019-09992-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to develop a suitable antifungal that has minimum side effect as well as no MDR issues. Due to serious undesired effects connected with individual antifungals, it is now necessary to introduce novel and effective drugs having numerous potentials to regulate complex therapeutic targets of several fungal infections simultaneously. Thus, by taking a lead from this subject, synthesis of potent antifungals from coumarin moiety could contribute to the development of promising antifungal. Its resemblance and structural diversity make it possible to produce an auspicious antifungal candidate. Due to the natural origin of coumarin, its presence in diversity, and their broad spectrum of pharmacological activities, it secures an important place for the researcher to investigate and develop it as a promising antifungal in future. This manuscript discusses the bioavailability of coumarin (natural secondary metabolic molecule) that has privileged scaffold for many mycologists to develop it as a broad-spectrum antifungal against several opportunistic mycoses. As a result, several different kinds of coumarin derivatives were synthesized and their antifungal properties were evaluated. This review compiles various coumarin derivatives broadly investigated for antifungal activities to understand its current status and future therapeutic scope in antifungal therapy.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
49
|
Abstract
Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion. Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade. IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.
Collapse
|
50
|
Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol 2019; 52:100-109. [PMID: 31288097 PMCID: PMC6687503 DOI: 10.1016/j.mib.2019.06.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Candidalysin is the first peptide toxin identified in any human fungal pathogen. Candidalysin is critical for Candida albicans mucosal and systemic infections. Candidalysin activates danger-response and damage-protection pathways in host cells. Candidalysin activates the epidermal growth factor receptor in epithelial cells and the NLRP3 inflammasome in macrophages. Candidalysin drives neutrophil recruitment and Type 17 immunity.
Candidalysin is a cytolytic peptide toxin secreted by the invasive form of the human pathogenic fungus, Candida albicans. Candidalysin is critical for mucosal and systemic infections and is a key driver of host cell activation, neutrophil recruitment and Type 17 immunity. Candidalysin is regarded as the first true classical virulence factor of C. albicans but also triggers protective immune responses. This review will discuss how candidalysin was discovered, the mechanisms by which this peptide toxin contributes to C. albicans infections, and how its discovery has advanced our understanding of fungal pathogenesis and disease.
Collapse
Affiliation(s)
- Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 1UL, United Kingdom.
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, 07745, Germany; Friedrich Schiller University, Jena, 07745, Germany
| |
Collapse
|