1
|
Villani A, Fanelli F, Mulè G, Moretti A, Loi M. Shedding light on Pleurotus: An update on taxonomy, properties, and photobiology. Microbiol Res 2025; 295:128110. [PMID: 40020547 DOI: 10.1016/j.micres.2025.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Pleurotus genus (Jacq.) P. Kumm comprises widely known edible mushrooms whose commercial and biotechnological exploitation has been steadily increasing worldwide. With the advent of modern DNA-based approach, the taxonomic definition of species within Pleurotus genus has undergone major changes but remains unclear. Furthermore, knowledge regarding the photobiology of Pleurotus and the role of light in regulating its primary and secondary metabolism, along with key commercial and biotechnological aspects, remains limited. This review aims to depict a comprehensive overview on Pleurotus genus, with a particular focus on its controversial taxonomy, biotechnological potential and photobiology and to provide significant insights to address future research on this topic and exploit light technology to maximize Pleurotus potential.
Collapse
Affiliation(s)
- Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| |
Collapse
|
2
|
Chen H, Huang B, Han L. Enhanced performance of bacterial laccase via microbial surface display and biomineralization for portable detection of phenolic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137957. [PMID: 40120271 DOI: 10.1016/j.jhazmat.2025.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Designing a portable device based on bacterial laccase (BLac) for on-site assay of phenolic contaminants presents significant challenges. Here, we achieved comprehensive performance enhancement of BLac by integrating biomineralization and microbial surface display technologies. The introduction of cell surface-displayed bacterial laccase (CSD-BLac) reduced costs and improved sensitivity compared to detection methods based on free Blac and whole-cell catalyst. Further, the biomineralization dramatically enhanced the catalytic efficiency (Vmax/Km) of mineralized CSD-BLac (M-CSD-BLac), making it 1.98 times higher than that of CSD-BLac. Mineralization conditions could significantly affect the activity of M-CSD-Blac. Moreover, the biomineralization layer also enhanced the resistance of M-CSD-BLac against high temperature, metal ions, ionic strength and storage time. Further, a portable assay device was developed for detection of phenolic pollutants by depositing M-CSD-BLac on a syringe filter membrane, which demonstrated easy operation, rapid detection (10 min), good reusability (20 cycles). The device not only could reliably differentiate three types of phenols but also quantitatively detect them with high sensitivity. For phenol, m-aminophenol, and p-nitrophenol, the limits of detection were 0.09, 0.28 and 0.17 μM, with detection ranges of 10-70, 20-80 and 15-110 μM, respectively. Additionally, the porous structure of M-CSD-BLac layer and the insertion of M-CSD-BLac into the filter membrane pores allowed effective filtration of smaller pigments from real samples, eliminating the need for additional pretreatment. This work not only proposes a strategy for elevating the activity and stability of laccase, but also stimulates the development of portable assay devices for on-site environmental monitoring.
Collapse
Affiliation(s)
- Haiying Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
3
|
Psurtseva NV, Kiyashko AA, Senik SV, Pham THG. Ex Situ Conservation, DNA Barcoding and Enzymatic Potential Evaluation of Macrofungi (Basidiomycota, Ascomycota) from Vietnam. J Fungi (Basel) 2025; 11:34. [PMID: 39852453 PMCID: PMC11767008 DOI: 10.3390/jof11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
The diversity and resource potential of macroscopic fungi in tropical regions remain understudied. Vietnam, being in a biodiversity hotspot, has a large number of new fungal species that are of interest for biotechnology and medicine. The presence of a large number of protected areas in Vietnam creates favorable opportunities for the study and ex situ conservation of tropical biodiversity. From 2012 to 2023, 785 strains of macrofungi from National Parks of Vietnam were preserved in the LE-BIN collection, 327 of which were barcoded with the sequences deposited in the NCBI GenBank. A taxonomic analysis demonstrated that many of the preserved isolates are potentially new or poorly studied species, representing a useful resource for taxonomical studies and a search for new medicinal mushrooms. More than 180 strains were studied for the first time for growth rate and enzymatic activities. Of these, 53 strains showed high growth rate, 43-high cellulolytic activity, 73-high oxidative enzymes activity, and 27 showed high proteolytic activity, making them promising candidates for biotechnological and medical applications and opening new opportunities for sustainable biomass management, discovery of new enzymes and bioactive substances, development of new drugs and efficient plant waste treatment technologies. The results confirm the importance of the ex situ conservation of fungal diversity in tropical regions as a valuable source for scientific and commercial applications and suggest certain new active strains for biotechnological study.
Collapse
Affiliation(s)
- Nadezhda V. Psurtseva
- Laboratory of Fungal Biochemistry, V. L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str., 2, St. Petersburg 197022, Russia; (A.A.K.); (S.V.S.)
| | - Anna A. Kiyashko
- Laboratory of Fungal Biochemistry, V. L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str., 2, St. Petersburg 197022, Russia; (A.A.K.); (S.V.S.)
| | - Svetlana V. Senik
- Laboratory of Fungal Biochemistry, V. L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str., 2, St. Petersburg 197022, Russia; (A.A.K.); (S.V.S.)
| | - Thi Ha Giang Pham
- Joint Vietnam-Russia Tropical Science and Technology Research Center, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi 122100, Vietnam;
| |
Collapse
|
4
|
Maati J, Polak J, Janczarek M, Grąz M, Smaali I, Jarosz-Wilkołazka A. Biochemical characterization of a recombinant laccase from Halalkalibacterium halodurans C-125 and its application in the biotransformation of organic compounds. Biotechnol Lett 2024; 46:1199-1218. [PMID: 39466517 PMCID: PMC11550293 DOI: 10.1007/s10529-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES This study aimed to produce an engineered recombinant laccase from extremophilic Halalkalibacterium halodurans C-125 (Lac-HhC-125) with higher protein yield, into a more active conformation and with properties that meet the fundamental needs of biotechnological application. RESULTS The rLac-HhC125 was partially purified by size exclusion chromatography and concentrated by ultrafiltration (10 kDa) with a yield of 57.6%. Oxidation reactions showed that adding 2 mM CuSO4 to the assay solution led to activating the laccase. To increase its initial activity, the rLac-HhC125 was treated at 50 °C for 20 min before the assays, improving its performance by fourfold using the syringaldazine as a substrate. When treated with EDTA, methanol, ethanol, and DMSO, the rLac-HhC125 maintained more than 80% of its original activity. Interestingly, the acetonitrile induced a twofold activity of the rLac-HhC125. The putative rLac-HhC125 demonstrated a capability of efficient transformation of different organic compounds at pH 6, known as dye precursors, into coloured molecules. CONCLUSION The rLac-HhC125 was active at high temperatures and alkaline pH, exhibited tolerance to organic solvents, and efficiently transformed different hydroxy derivatives into coloured compounds, which indicates that it can be used in various biotechnological processes.
Collapse
Affiliation(s)
- Jihene Maati
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
5
|
Zhai T, Wang H, Dong X, Wang S, Xin X, Du J, Guan Q, Jiao H, Yang W, Dong R. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24158-24169. [PMID: 39436678 DOI: 10.1021/acs.jafc.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Laccase, a multipurpose biocatalyst, is widely distributed across all kingdoms of life and plays a key role in essential biological processes such as lignin synthesis, degradation, and pigment formation. These functions are critical for fungal growth, plant-pathogen interactions, and maintenance of soil health. Due to its broad substrate specificity, multifunctional nature, and environmentally friendly characteristics, laccase is widely employed as a catalyst in various green chemistry initiatives. With its ability to oxidize a diverse range of phenolic and nonphenolic compounds, laccase has also been found to be useful as a food additive and for assessing food quality parameters. Ongoing advancements in research and technology are continually expanding the recognition of laccase's potential to address global environmental, health, and energy challenges. This review aims to provide critical insights into the applications of laccases in the biotechnology and food industry.
Collapse
Affiliation(s)
- Tingting Zhai
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongwei Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Shu Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xin Xin
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jianfeng Du
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Huijun Jiao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Wei Yang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ran Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| |
Collapse
|
6
|
Lee SY, Roh H, Gonzalez-Perez D, Mackey MR, Kim KY, Hoces D, McLaughlin CN, Adams SR, Nguyen K, Luginbuhl DJ, Luo L, Udeshi ND, Carr SA, Hernández-López RA, Ellisman MH, Alcalde M, Ting AY. Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620861. [PMID: 39554088 PMCID: PMC11565909 DOI: 10.1101/2024.10.29.620861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Enzymes that oxidize aromatic substrates have shown utility in a range of cell-based technologies including live cell proximity labeling (PL) and electron microscopy (EM), but are associated with drawbacks such as the need for toxic H 2 O 2 . Here, we explore laccases as a novel enzyme class for PL and EM in mammalian cells. LaccID, generated via 11 rounds of directed evolution from an ancestral fungal laccase, catalyzes the one-electron oxidation of diverse aromatic substrates using O 2 instead of toxic H 2 O 2 , and exhibits activity selective to the surface plasma membrane of both living and fixed cells. We show that LaccID can be used with mass spectrometry-based proteomics to map the changing surface composition of T cells that engage with tumor cells via antigen-specific T cell receptors. In addition, we use LaccID as a genetically-encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
Collapse
|
7
|
Umar A, Elshikh MS, Aljowaie RM, Hussein JM, Dufossé L, Wu C, Lu J. Competitive antagonistic action of laccase between Trichoderma species and the newly identified wood pathogenic Ganoderma camelum. Front Microbiol 2024; 15:1408521. [PMID: 39386367 PMCID: PMC11461316 DOI: 10.3389/fmicb.2024.1408521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Ganoderma, a well-known genus in the Ganodermataceae family, has caused the extinction of several tree species due to its pathogenicity. This study explored the pathogenic effect of a newly identified Ganoderma species on trees and its competitive efficiency against Trichoderma species. Ganoderma camelum sp. nov. is characterized by small sessile basidiomata and a velvety, soft, camel-brown pileus. Phylogenetic analysis and ITS rDNA sequences indicated that the species were Trichoderma and Ganoderma camelum. Both fungal species competed antagonistically by secreting laccase. The laccase activity of G. camelum, with a value of 8.3 ± 4.0 U/mL, demonstrated the highest competitive activity against Trichoderma species. The laccase produced by T. atroviride (2.62 U/mL) was most effective in countering the pathogenic action of the novel G. camelum. The molecular weights of laccase were determined using SDS-PAGE (62.0 kDa for G. camelum and 57.0 kDa for T. atroviride). Due to the white rot induced by this Ganoderma species in the host tree, G. camelum showed the highest percentage inhibition of radial growth (76.3%) compared to T. atroviride (28.7%). This study aimed to evaluate the competitive antagonistic activity of Ganoderma and Trichoderma on malt extract agar media in the context of white rot disease in the host tree. This study concluded that the laccase from G. camelum caused weight loss in rubber wood blocks through laccase action, indicating tissue injury in the host species. Therefore, it was also concluded that G. camelum was more effective in pathogenic action of the host and resisted the biological action of T. atroviride. In principal components analysis (PCA), all the species associated with laccase exhibited a very strong influence on the variability of the system. The PIRG rate (percentage inhibition of radial growth) was strongly and positively correlated with laccase activity.
Collapse
Affiliation(s)
- Aisha Umar
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Juma Mahmud Hussein
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, Saint-Denis, Ile de La Réunion, France
| | - Chenghong Wu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
8
|
Xu X, Shen F, Lv G, Lin J. Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate. World J Microbiol Biotechnol 2024; 40:321. [PMID: 39279003 DOI: 10.1007/s11274-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Feng Shen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Gan Lv
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
9
|
Ramamurthy K, Thomas NP, Gopi S, Sudhakaran G, Haridevamuthu B, Namasivayam KR, Arockiaraj J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int J Biol Macromol 2024; 276:133971. [PMID: 39032890 DOI: 10.1016/j.ijbiomac.2024.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - N Paul Thomas
- Department of Biochemistry, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Instituite of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Instituite of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Bossa M, Monesterolo NE, Monge MDP, Rhein P, Chulze SN, Alaniz-Zanon MS, Chiotta ML. Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize. Toxins (Basel) 2024; 16:350. [PMID: 39195760 PMCID: PMC11359460 DOI: 10.3390/toxins16080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Maize (Zea mays L.) may be infected by Fusarium verticillioides and F. proliferatum, and consequently contaminated with fumonisins (FBs), as well as the co-products of bioethanol intended for animal feed. Laccase enzymes have a wide industrial application such as mycotoxin degradation. The aims were to isolate and identify fungal laccase-producing strains, to evaluate laccase production, to determine the enzymatic stability under fermentation conditions, and to analyse the effectiveness in vitro of enzymatic extracts (EEs) containing laccases in degrading FB1. Strains belonging to Funalia trogii, Phellinus tuberculosus, Pleurotus ostreatus, Pycnoporus sanguineus and Trametes gallica species showed laccase activity. Different isoforms of laccases were detected depending on the evaluated species. For the FB1 decontamination assays, four enzymatic activities (5, 10, 15 and 20 U/mL) were tested, in the absence and presence of vanillic acid (VA) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) as redox mediators (1 and 10 mM). Trametes gallica B4-IMICO-RC EE was the most effective strain in buffer, achieving a 60% of FB1 reduction. Laccases included in EEs remained stable at different alcoholic degrees in maize steep liquor (MSL), but no significant FB1 reduction was observed under the conditions evaluated using MSL. This study demonstrate that although laccases could be good candidates for the development of a strategy to reduce FB1, further studies are necessary to optimise this process in MSL.
Collapse
Affiliation(s)
- Marianela Bossa
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - Noelia Edith Monesterolo
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina;
| | - María del Pilar Monge
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - Paloma Rhein
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina;
| | - Sofía Noemí Chulze
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - María Silvina Alaniz-Zanon
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| | - María Laura Chiotta
- Instituto de Investigación en Micología y Micotoxicología (IMICO), CONICET-Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina; (M.B.); (M.d.P.M.); (S.N.C.)
| |
Collapse
|
11
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
12
|
Orlando C, Rizzo IC, Arrigoni F, Zampolli J, Mangiagalli M, Di Gennaro P, Lotti M, De Gioia L, Marino T, Greco C, Bertini L. Mechanism of non-phenolic substrate oxidation by the fungal laccase Type 1 copper site from Trametes versicolor: the case of benzo[ a]pyrene and anthracene. Dalton Trans 2024; 53:12152-12161. [PMID: 38989958 DOI: 10.1039/d4dt01377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Laccases (EC 1.10.3.2) are multicopper oxidases with the capability to oxidize diverse phenolic and non-phenolic substrates. While the molecular mechanism of their activity towards phenolic substrates is well-established, their reactivity towards non-phenolic substrates, such as polycyclic aromatic hydrocarbons (PAHs), remains unclear. To elucidate the oxidation mechanism of PAHs, particularly the activation mechanism of the sp2 aromatic C-H bond, we conducted a density functional theory investigation on the oxidation of two PAHs (anthracene and benzo[a]pyrene) using an extensive model of the T1 copper catalytic site of the fungal laccase from Trametes versicolor.
Collapse
Affiliation(s)
- Carla Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Isabella Cecilia Rizzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte Pietro Bucci, cubo 14c, 87036 Rende, CS, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
13
|
Santoso T, Ho TM, Vinothsankar G, Jouppila K, Chen T, Owens A, Lazarjani MP, Farouk MM, Colgrave ML, Otter D, Kam R, Le TT. Effects of Laccase and Transglutaminase on the Physicochemical and Functional Properties of Hybrid Lupin and Whey Protein Powder. Foods 2024; 13:2090. [PMID: 38998597 PMCID: PMC11241515 DOI: 10.3390/foods13132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Plant-based protein is considered a sustainable protein source and has increased in demand recently. However, products containing plant-based proteins require further modification to achieve the desired functionalities akin to those present in animal protein products. This study aimed to investigate the effects of enzymes as cross-linking reagents on the physicochemical and functional properties of hybrid plant- and animal-based proteins in which lupin and whey proteins were chosen as representatives, respectively. They were hybridised through enzymatic cross-linking using two laccases (laccase R, derived from Rhus vernicifera and laccase T, derived from Trametes versicolor) and transglutaminase (TG). The cross-linking experiments were conducted by mixing aqueous solutions of lupin flour and whey protein concentrate powder in a ratio of 1:1 of protein content under the conditions of pH 7, 40 °C for 20 h and in the presence of laccase T, laccase R, or TG. The cross-linked mixtures were freeze-dried, and the powders obtained were assessed for their cross-linking pattern, colour, charge distribution (ζ-potential), particle size, thermal stability, morphology, solubility, foaming and emulsifying properties, and total amino acid content. The findings showed that cross-linking with laccase R significantly improved the protein solubility, emulsion stability and foaming ability of the mixture, whereas these functionalities were lower in the TG-treated mixture due to extensive cross-linking. Furthermore, the mixture treated with laccase T turned brownish in colour and showed a decrease in total amino acid content which could be due to the enzyme's oxidative cross-linking mechanism. Also, the occurrence of cross-linking in the lupin and whey mixture was indicated by changes in other investigated parameters such as particle size, ζ-potential, etc., as compared to the control samples. The obtained results suggested that enzymatic cross-linking, depending on the type of enzyme used, could impact the physicochemical and functional properties of hybrid plant- and animal-based proteins, potentially influencing their applications in food.
Collapse
Affiliation(s)
- Teguh Santoso
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao M. Ho
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Geerththana Vinothsankar
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Tony Chen
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Adrian Owens
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | | | - Mustafa M. Farouk
- Food Technology and Processing, Smart Foods & Bioproducts, AgResearch Ltd., Grasslands Research Centre, Palmerston North 4440, New Zealand
| | - Michelle L. Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Don Otter
- DEO Dairy Consulting, Marton 4787, New Zealand
| | - Rothman Kam
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Thao T. Le
- AUT Centre for Future Foods, Auckland University of Technology, Auckland 1010, New Zealand
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Mejía C, Bautista EJ, García L, Barrios Murcia JC, Barrera G. Assessment of Fungal Lytic Enzymatic Extracts Produced Under Submerged Fermentation as Enhancers of Entomopathogens' Biological Activity. Curr Microbiol 2024; 81:217. [PMID: 38852107 PMCID: PMC11162973 DOI: 10.1007/s00284-024-03702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 06/10/2024]
Abstract
The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.
Collapse
Affiliation(s)
- Cindy Mejía
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia.
| | - Eddy J Bautista
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Sede Central, Km 14 Vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Lorena García
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Juan Carlos Barrios Murcia
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Sede Central, Km 14 Vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Gloria Barrera
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia
| |
Collapse
|
15
|
Fernandes AJ, Shibukawa VP, Prata AMR, Segato F, Dos Santos JC, Ferraz A, Milagres AMF. Using low-shear aerated and agitated bioreactor for producing two specific laccases by trametes versicolor cultures induced by 2,5-xylidine: Process development and economic analysis. BIORESOURCE TECHNOLOGY 2024; 401:130737. [PMID: 38677383 DOI: 10.1016/j.biortech.2024.130737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Laccase isoforms from basidiomycetes exhibit a superior redox potential compared to commercially available laccases obtained from ascomycete fungi, rendering them more reactive toward mono-substituted phenols and polyphenolic compounds. However, basidiomycetes present limitations for large-scale culture in liquid media, restraining the current availability of laccases from this fungal class. To advance laccase production from basidiomycetes, a newly designed 14-L low-shear aerated and agitated bioreactor provided enzyme titers up to 23.5 IU/mL from Trametes versicolor cultures. Produced enzymes underwent ultrafiltration and LC/MS-MS characterization, revealing the predominant production of only two out of the ten laccases predicted in the T. versicolor genome. Process simulation and economic analysis using SuperPro designer® suggested that T. versicolor laccase could be produced at US$ 3.60/kIU in a 200-L/batch enterprise with attractive economic parameters and a payback period of 1.7 years. The study indicates that new bioreactors with plain design help to produce low-cost enzymes from basidiomycetes.
Collapse
Affiliation(s)
- André J Fernandes
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Vinícius P Shibukawa
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Arnaldo M R Prata
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Julio C Dos Santos
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil
| | - Adriane M F Milagres
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, University of Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
16
|
Yao D, Ma Y, Ran J, Wang J, Kües U, Liu J, Zhou D, Zhang X, Fang Z, Xiao Y. Enhanced extracellular production of laccase in Coprinopsis cinerea by silencing chitinase gene. Appl Microbiol Biotechnol 2024; 108:324. [PMID: 38713211 PMCID: PMC11076350 DOI: 10.1007/s00253-024-13164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.
Collapse
Affiliation(s)
- Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Yuting Ma
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Jie Ran
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Jiaxiu Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute and Goettingen Center for Molecular Biosciences, University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Danya Zhou
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- AHU Green Industry Innovation Research Institute, Hefei, 230088, China.
| |
Collapse
|
17
|
Ariaeenejad S, Barani M, Sarani M, Lohrasbi-Nejad A, Mohammadi-Nejad G, Salekdeh GH. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes. Int J Biol Macromol 2024; 266:130986. [PMID: 38508564 DOI: 10.1016/j.ijbiomac.2024.130986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses. Characterization of NiO nanoparticles revealed distinctive FTIR absorption peaks indicating the nanoparticulate structure, while FESEM showed structured NiO with robust interconnections and dimensionality of about 50nm, confirmed by EDX analysis to have a consistent distribution of Ni and O. The immobilized PersiLac1 demonstrated enhanced thermal stability, with 85.55 % activity at 80 °C and reduced enzyme leaching, retaining 67.93 % activity across 15 biocatalytic cycles. It efficiently reduced rice straw (RS) phenol by 67.97 % within 210 min and degraded 70-78 % of tetracycline (TC) across a wide pH range (4.0-8.0), showing superior performance over the free enzyme. Immobilized laccase achieved up to 71 % TC removal at 40-80 °C, significantly outperforming the free enzyme. Notably, 54 % efficiency was achieved at 500 mg/L TC by immobilized laccase at 120 min. This research showed the potential of green-synthesized NiO nanoparticles to effectively immobilize laccase, presenting an eco-friendly approach to purify pollutants such as phenols and antibiotics. The durability and reusability of the immobilized enzyme, coupled with its ability to reduce pollutants, indicates a viable method for cleaning the environment. Nonetheless, the production costs and scalability of NiO nanoparticles for widespread industrial applications pose significant challenges. Future studies should focus on implementation at an industrial level and examine a wider range of pollutants to fully leverage the environmental clean-up capabilities of this innovative technology.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran.
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
18
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
19
|
Bossa M, Alaniz-Zanon MS, Monesterolo NE, Monge MDP, Coria YM, Chulze SN, Chiotta ML. Aflatoxin Decontamination in Maize Steep Liquor Obtained from Bioethanol Production Using Laccases from Species within the Basidiomycota Phylum. Toxins (Basel) 2024; 16:27. [PMID: 38251243 PMCID: PMC10819231 DOI: 10.3390/toxins16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Maize (Zea mays L.) is an important crop in Argentina. Aspergillus section Flavi can infect this crop at the pre-harvest stage, and the harvested grains can be contaminated with aflatoxins (AFs). During the production of bioethanol from maize, AF levels can increase up to three times in the final co-products, known as, dry and wet distiller's grain with solubles (DDGS and WDGS), intended for animal feed. Fungal enzymes like laccases can be a useful tool for reducing AF contamination in the co-products obtained from this process. The aim of the present study was to evaluate the ability of laccase enzymes included in enzymatic extracts (EE) produced by different species in the Basidiomycota phylum to reduce AF (AFB1 and AFB2) accumulation under the conditions of in vitro assays. Four laccase activities (5, 10, 15, and 20 U/mL) exerted by nine isolates were evaluated in the absence and presence of vanillic acid (VA), serving as a laccase redox mediator for the degradation of total AFs. The enzymatic stability in maize steep liquor (MSL) was confirmed after a 60 h incubation period. The most effective EE in terms of reducing AF content in the buffer was selected for an additional assay carried out under the same conditions using maize steep liquor obtained after the saccharification stage during the bioethanol production process. The highest degradation percentages were observed at 20 U/mL of laccase enzymatic activity and 1 mM of VA, corresponding to 26% for AFB1 and 26.6% for AFB2. The present study provides valuable data for the development of an efficient tool based on fungal laccases for preventing AF accumulation in the co-products of bioethanol produced from maize used for animal feed.
Collapse
Affiliation(s)
- Marianela Bossa
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Silvina Alaniz-Zanon
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Noelia Edith Monesterolo
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - María del Pilar Monge
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Yamila Milagros Coria
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Sofía Noemí Chulze
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Laura Chiotta
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| |
Collapse
|
20
|
Psurtseva NV, Kiyashko AA, Senik SV, Shakhova NV, Belova NV. The Conservation and Study of Macromycetes in the Komarov Botanical Institute Basidiomycetes Culture Collection-Their Taxonomical Diversity and Biotechnological Prospects. J Fungi (Basel) 2023; 9:1196. [PMID: 38132796 PMCID: PMC10744906 DOI: 10.3390/jof9121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Culture collections (CCs) play an important role in the ex situ conservation of biological material and maintaining species and strains, which can be used for scientific and practical purposes. The Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN) preserves a large number of original dikaryon strains of various taxonomical and ecological groups of fungi from different geographical regions. Started in the late 1950s for the investigation of Basidiomycetes' biological activity, today, in Russia, it has become a unique specialized macromycetes collection, preserving 3680 strains from 776 species of fungi. The Collection's development is aimed at ex situ conservation of fungal diversity, with an emphasis on preserving rare and endangered species, ectomycorrhizal fungi, and strains useful for biotechnology and medicine. The main methods applied in the collection for maintaining and working with cultures are described, and the results are presented. Some problems for the isolation and cultivation of species are discussed. The taxonomical structure and variety of the strains in the collection fund are analyzed, and they show that the taxonomical diversity of fungi in the LE-BIN is commensurable with the largest CCs in the world. The achievements from the ex situ conservation of the diversity of macromycetes and the main results from the screening and investigation of the collection's strains demonstrate that a number of strains can be prospective producers of enzymes (oxidoreductases and proteases), lipids, and biologically active compounds (terpenoids, phthalides, etc.) for biotechnology and medicine.
Collapse
Affiliation(s)
- Nadezhda V. Psurtseva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.A.K.); (S.V.S.); (N.V.S.); (N.V.B.)
| | | | | | | | | |
Collapse
|
21
|
Kumar N, Sharma R, Saharan V, Yadav A, Aggarwal NK. Enhanced Xylanolytic enzyme production from Parthenium hysterophorus through assessment of the RSM tool and their application in saccharification of lignocellulosic biomass. 3 Biotech 2023; 13:396. [PMID: 37970449 PMCID: PMC10643779 DOI: 10.1007/s13205-023-03817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023] Open
Abstract
Parthenium hysterophorous, a widespread weed in India, contributes a substantial amount of lignocellulosic biomass. The key objective of this study is to evaluate the feasibility of producing xylanase enzyme from P. hysterophorus weed biomass using the fungus Aspergillus niger. The impact of various physiological factors was confirmed through a two-step approach: first, a one-factor-at-a-time (OFAT) investigation, and subsequently, employing the RSM-based CCD method in statistical design. This research revealed that the RSM-based model led to the optimization of enzyme activity, resulting in a value of 2098.08 IU/gds for xylanase. This was achieved with an incubation time of 4.5 days, a medium pH of 6, and a cultivation temperature of 32.5 °C. Additionally, a pretreatment involving 1% NaOH and a 30-min autoclave treatment was found to alter the chemical composition of lignocellulose substrates (cellulose 43.87% and xylan 28.7%), thereby enhancing the efficiency of enzymatic hydrolysis. Moreover, fermentable sugars were produced by autoclave-assisted alkali pretreatment (NaOH-1.0% w/v) at rates of 219.6 ± 2.05 mg/gds-1 by utilizing the crude xylanase from A. niger and 291.3 ± 1.2 mg/gds-1 from commercial xylanase enzyme. Our study revealed that P. hysterophorus served as a viable and affordable substrate for fermentable sugar liberation, and xylanase is a rate-limiting enzyme in enzymatic saccharification.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Ritu Sharma
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Vicky Saharan
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Neeraj K. Aggarwal
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
22
|
Renfeld ZV, Chernykh AM, Baskunov BP, Gaidina AS, Myasoedova NM, Egorova AD, Moiseeva OV, Gorina SY, Kolomytseva MP. Unusual Oligomeric Laccase-like Oxidases from Ascomycete Curvularia geniculata VKM F-3561 Polymerizing Phenylpropanoids and Phenolic Compounds under Neutral Environmental Conditions. Microorganisms 2023; 11:2698. [PMID: 38004710 PMCID: PMC10673308 DOI: 10.3390/microorganisms11112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The unique oligomeric alkaliphilic laccase-like oxidases of the ascomycete C. geniculata VKM F-3561 (with molecular masses about 1035 and 870 kDa) were purified and characterized for the first time. The ability of the enzymes to oxidize phenylpropanoids and phenolic compounds under neutral environmental conditions with the formation of previously unknown di-, tri-, and tetrameric products of transformation was shown. The possibility to obtain industrially valuable compounds (dihydroxybenzyl alcohol and hydroxytyrosol) from caffeic acid using laccase-like oxidases of C. geniculata VKM F-3561 has been shown. Complete nucleotide sequence of the laccase gene, which is expressed at the peak of alkaliphilic laccase activity of the fungus, and its promoter region were determined. Based on the phylogenetic analysis of the nucleotide sequence, the nearest relationship of the isolated laccase gene with similar genes of fungi of the genera Alternaria, Bipolaris, and Cochliobolus was shown. Homologous model of the laccase structure was predicted and a proton channel was found, which was presumably responsible for the accumulation and transport of protons to T2/T3-copper center in the alkaliphilic laccase molecule and providing the functional activity of the enzyme in the neutral alkaline environment conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marina P. Kolomytseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki 5, 142290 Pushchino, Russia; (Z.V.R.); (A.M.C.); (B.P.B.); (A.D.E.); (O.V.M.); (S.Y.G.)
| |
Collapse
|
23
|
Li J, Wu M, Igarashi Y, Luo F, Chang P. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. J Microbiol Methods 2023; 214:106842. [PMID: 37827437 DOI: 10.1016/j.mimet.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Dichomitus squalens is an efficient white-rot fungus that generates a wide range of extracellular enzymes to degrade lignocellulose in nature. Although a protoplast-mediated transformation method for D. squalens has been developed, the transformation efficiency remains low. Here, we established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) procedure for D. squalens by transferring a binary vector harboring the neomycin phosphotransferase II (nptII) resistance gene fused with DsRed-Express2, under the control of the native glyceraldehyde-3-phosphate dehydrogenase (GPD) gene promoter. Key factors affecting the efficiency of transformation were tested. A. tumefaciens EHA105 strain with a cell density of 0.4 OD600nm and 96 h co-cultivation resulted in the highest transformation efficiency, with an average of 98 ± 11 transformants per co-cultivation plate. Besides, the strong expression of DsRed-Express2 indicates the effectiveness of the DsGPD promoter in driving gene expression in D. squalens. This ATMT system of D. squalens would be beneficial for its molecular genetic studies.
Collapse
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Min Wu
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peng Chang
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Mekonnen EG, Shitaw KN, Hwang BJ, Workie YA, Abda EM, Mekonnen ML. Copper nanoparticles embedded fungal chitosan as a rational and sustainable bionanozyme with robust laccase activity for catalytic oxidation of phenolic pollutants. RSC Adv 2023; 13:32126-32136. [PMID: 37920762 PMCID: PMC10619478 DOI: 10.1039/d3ra06619c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Despite their potential for oxidation of persistent environmental pollutants, the development of rational and sustainable laccase nanozymes with efficient catalytic performance remains a challenge. Herein, fungal-produced chitosan-copper (CsCu) is proposed as a rational and sustainable bionanozyme with intrinsic laccase activity. The CsCu nanozyme was prepared by in situ reduction of copper on chitosan extracted from Irpex sp. isolate AWK2 a native fungus, from traditional fermented foods, yielding a low molecular weight chitosan with a 70% degree of deacetylation. Characterizations of the nanozyme using SEM-EDX, XRD, and XPS confirmed the presence of a multi-oxidation state copper on the chitosan matrix which is consistent with the composition of natural laccase. The laccase memetic activity was investigated using 2,4-DP as a substrate which oxidized to form a reddish-pink color with 4-AP (λmax = 510 nm). The CsCu nanozyme showed 38% higher laccase activity than the pristine Cu NPs at pH 9, indicating enhanced activity in the presence of chitosan structure. Further, CsCu showed significant stability in harsh conditions and exhibited a lower Km (0.26 mM) which is competitive with that reported for natural laccase. Notably, the nanozyme converted 92% of different phenolic substrates in 5 h, signifying a robust performance for environmental remediation purposes.
Collapse
Affiliation(s)
- Efrata Getachew Mekonnen
- Biotechnology Department, Addis Ababa Science, and Technology University P. O. Box 1647 Addis Ababa Ethiopia
| | - Kassie Nigus Shitaw
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei 106 Taiwan
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei 106 Taiwan
- National Synchrotron Radiation Research Center Hsinchu Taiwan
| | - Yitayal Admassu Workie
- Industrial Chemistry Department, Addis Ababa Science and Technology University P. O. Box 1647 Addis Ababa Ethiopia
- Nanotechnology Center of Excellence, Addis Ababa Science and Technology University P. O. Box 1647 Addis Ababa Ethiopia
| | - Ebrahim M Abda
- Biotechnology Department, Addis Ababa Science, and Technology University P. O. Box 1647 Addis Ababa Ethiopia
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University P. O. Box 1647 Addis Ababa Ethiopia
| | - Menbere Leul Mekonnen
- Industrial Chemistry Department, Addis Ababa Science and Technology University P. O. Box 1647 Addis Ababa Ethiopia
- Nanotechnology Center of Excellence, Addis Ababa Science and Technology University P. O. Box 1647 Addis Ababa Ethiopia
| |
Collapse
|
25
|
Xu B. Fungal Biotechnology and Applications. J Fungi (Basel) 2023; 9:871. [PMID: 37754979 PMCID: PMC10532559 DOI: 10.3390/jof9090871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The demand for fossil fuels for industry, agriculture, transportation, and private sectors is sharply increasing globally [...].
Collapse
Affiliation(s)
- Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
26
|
Ali M, Bhardwaj P, Ishqi HM, Shahid M, Islam A. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Molecules 2023; 28:6209. [PMID: 37687038 PMCID: PMC10488915 DOI: 10.3390/molecules28176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Collapse
Affiliation(s)
- Misha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| |
Collapse
|
27
|
Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Exoproteomic Study and Transcriptional Responses of Laccase and Ligninolytic Peroxidase Genes of White-Rot Fungus Trametes hirsuta LE-BIN 072 Grown in the Presence of Monolignol-Related Phenolic Compounds. Int J Mol Sci 2023; 24:13115. [PMID: 37685920 PMCID: PMC10487439 DOI: 10.3390/ijms241713115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Being an abundant renewable source of aromatic compounds, lignin is an important component of future bio-based economy. Currently, biotechnological processing of lignin through low molecular weight compounds is one of the conceptually promising ways for its valorization. To obtain lignin fragments suitable for further inclusion into microbial metabolism, it is proposed to use a ligninolytic system of white-rot fungi, which mainly comprises laccases and peroxidases. However, laccase and peroxidase genes are almost always represented by many non-allelic copies that form multigene families within the genome of white-rot fungi, and the contributions of exact family members to the overall process of lignin degradation has not yet been determined. In this article, the response of the Trametes hirsuta LE-BIN 072 ligninolytic system to the presence of various monolignol-related phenolic compounds (veratryl alcohol, p-coumaric acid, vanillic acid, and syringic acid) in culture media was monitored at the level of gene transcription and protein secretion. By showing which isozymes contribute to the overall functioning of the ligninolytic system of the T. hirsuta LE-BIN 072, the data obtained in this study will greatly contribute to the possible application of this fungus and its ligninolytic enzymes in lignin depolymerization processes.
Collapse
Affiliation(s)
| | - Olga A. Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (K.V.M.); (O.S.S.); (T.V.F.)
| | | | | |
Collapse
|
28
|
Rawal RS, Mehant A, Suman SK. Deciphering ligninolytic enzymes in the secretome of Pycnoporus sp. and their potential in degradation of 2-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92830-92841. [PMID: 37495802 DOI: 10.1007/s11356-023-28932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Chlorophenols and their derivatives are persistent environmental pollutants, posing a threat to terrestrial and aquatic life. The biological approach for eliminating toxic contaminants is an effective, sustainable, and environmental friendly method. In this study, the crude enzymes present in the secretome of white-rot fungus (Pycnoporus sp.) were explored for the degradation of 2-chlorophenol. The activity of ligninolytic enzymes in the secretome was analyzed and characterized for their kinetics and thermodynamic properties. Laccase and manganese peroxidase were prevalent ligninolytic enzymes and exhibited temperature stability in the range of 50-65 °C and pH 4-5, respectively. The kinetic parameters Michaelis constant (Km) and turnover number (Kcat) for Lac were 42.54 μM and 45 s-1 for 2,2'-azino-bis (3-ethylben- zothiazoline-6-sulfonic acid), and 93.56 μM and 48 s-1 towards 2,6-dimethoxyphenol whereas Km and Kcat for MnP were 2039 μM and 294 s-1 for guaiacol as substrate. Treatment with the crude enzymes laccase and manganese peroxidase results in the reduction of 2-chlorophenol concentration, confirmed by UV-visible absorption spectra and high-performance liquid chromatography analysis. The detoxification of 2-chlorophenol into less toxic forms was confirmed by the plate toxicity assay. This study demonstrated that crude enzymes produced by Pycnoporus sp. could potentially minimize the toxicity of phenolic compounds in a sustainable way.
Collapse
Affiliation(s)
- Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditri Mehant
- Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fernández-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int J Biol Macromol 2023; 242:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670, Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
| |
Collapse
|
30
|
Zhao Y, Yang J, Wu Y, Huang B, Xu L, Yang J, Liang B, Han L. Construction of bacterial laccase displayed on the microbial surface for ultrasensitive biosensing of phenolic pollutants with nanohybrids-enhanced performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131265. [PMID: 36989770 DOI: 10.1016/j.jhazmat.2023.131265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Although bacterial laccase (BLac) has many advantages including short fermentation period and adaptable activity to wide temperature and pH ranges, it is of challenge and significance to apply BLac to the biosensors, due to the intracellular secretion and poor electron transfer efficiency of BLac. Here, cell surface-displayed BLac (CSDBLac) was successfully constructed as whole-cell biocatalyst through microbial surface display technology, eliminating the mass transfer restriction and laborious purification steps. Meanwhile, MXenes/polyetherimide-multiwalled carbon nanotubes (MXenes/PEI-MWCNTs) nanohybrids were designed to immobilize CSDBLac and improve their electrochemical activity. Then, an electrochemical biosensor was successfully constructed to detect common phenolic pollutants (catechol and hydroquinone) by the co-immobilization of CSDBLac and MXenes/PEI-MWCNTs nanohybrids onto a glassy carbon electrode. Subsequently, it was successfully applied to the water samples assay with good reliability and repeatability. This work innovatively used BLac and nanohybrid as the core elements of biosensor, which not only effectively solved the application bottleneck of BLac on biosensors, but also dramatically promote the electro transfer efficiency between whole-cell biocatalyst and electrode. This method is of profound meanings for significantly improving the performance of phenolic biosensors and other biosensors from the origin.
Collapse
Affiliation(s)
- Yanfang Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jing Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Yuqing Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jianming Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Bo Liang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China.
| |
Collapse
|
31
|
Enhancement of bioactives, functional and nutraceutical attributes of banana peels and de-oiled groundnut cake through submerged fermentation employing Calocybe indica. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
32
|
Armas-Tizapantzi A, Martínez Y Pérez JL, Fernández FJ, Mata G, Hernández-Cuevas LV, Ortiz Ortiz E, García Nieto E, Tomasini A, Sierra-Palacios E, Marcial-Quino J, Montiel-González AM. Silencing of the Laccase ( lacc2) Gene from Pleurotus ostreatus Causes Important Effects on the Formation of Toxocyst-like Structures and Fruiting Body. Int J Mol Sci 2023; 24:ijms24098143. [PMID: 37175859 PMCID: PMC10179115 DOI: 10.3390/ijms24098143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A wide variety of biological functions, including those involved in the morphogenesis process of basidiomycete fungi, have been attributed to laccase enzymes. In this work, RNA interference (RNAi) was used to evaluate the role of the laccase (lacc2) gene of Pleurotus ostreatus PoB. Previously, transformant strains of P. ostreatus were obtained and according to their level of silencing they were classified as light (T7), medium (T21) or severe (T26 and T27). The attenuation of the lacc2 gene in these transformants was determined by RT-PCR. Silencing of lacc2 resulted in a decrease in laccase activity between 30 and 55%, which depended on the level of laccase expression achieved. The silenced strains (T21, T26, and T27) displayed a delay in the development of mycelium on potato dextrose agar (PDA) medium, whereas in the cultures grown on wheat straw, we found that these strains were incapable of producing aerial mycelium, primordia, and fruiting bodies. Scanning electron microscopy (SEM) showed the presence of toxocyst-like structures. The highest abundance of these structures was observed in the wild-type (PoB) and T7 strains. However, the abundance of toxocysts decreased in the T21 and T26 strains, and in T27 they were not detected. These results suggest that the presence and abundance of toxocyst-like structures are directly related to the development of fruiting bodies. Furthermore, our data confirm that lacc2 is involved in the morphogenesis process of P. ostreatus.
Collapse
Affiliation(s)
- Anahí Armas-Tizapantzi
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala 90062, Mexico
| | - José Luis Martínez Y Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Francisco José Fernández
- Departamento de Biotecnología, CBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - Gerardo Mata
- Instituto de Ecología, A.C., Xalapa 91073, Mexico
| | - Laura V Hernández-Cuevas
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Elvia Ortiz Ortiz
- Facultad de Odontología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | - Edelmira García Nieto
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Araceli Tomasini
- Departamento de Biotecnología, CBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico 09620, Mexico
| | - Jaime Marcial-Quino
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | | |
Collapse
|
33
|
Loi M, De Leonardis S, Ciasca B, Paciolla C, Mulè G, Haidukowski M. Aflatoxin B 1 Degradation by Ery4 Laccase: From In Vitro to Contaminated Corn. Toxins (Basel) 2023; 15:toxins15050310. [PMID: 37235345 DOI: 10.3390/toxins15050310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced by Aspergillus spp. and are found in food and feed as contaminants worldwide. Due to climate change, AFs occurrence is expected to increase also in western Europe. Therefore, to ensure food and feed safety, it is mandatory to develop green technologies for AFs reduction in contaminated matrices. With this regard, enzymatic degradation is an effective and environmentally friendly approach under mild operational conditions and with minor impact on the food and feed matrix. In this work, Ery4 laccase, acetosyringone, ascorbic acid, and dehydroascorbic acid were investigated in vitro, then applied in artificially contaminated corn for AFB1 reduction. AFB1 (0.1 µg/mL) was completely removed in vitro and reduced by 26% in corn. Several degradation products were detected in vitro by UHPLC-HRMS and likely corresponded to AFQ1, epi-AFQ1, AFB1-diol, or AFB1dialehyde, AFB2a, and AFM1. Protein content was not altered by the enzymatic treatment, while slightly higher levels of lipid peroxidation and H2O2 were detected. Although further studies are needed to improve AFB1 reduction and reduce the impact of this treatment in corn, the results of this study are promising and suggest that Ery4 laccase can be effectively applied for the reduction in AFB1 in corn.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Silvana De Leonardis
- Department of Biosciences, Biotechnology and Environment, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Biancamaria Ciasca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biosciences, Biotechnology and Environment, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
34
|
Elsamahy T, Sun J, Elsilk SE, Ali SS. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130944. [PMID: 36860037 DOI: 10.1016/j.jhazmat.2023.130944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Polyethylene (PE) is one of the most common synthetic polymers, and PE waste pollution has been an environmental and health concern for decades. Biodegradation is the most eco-friendly and effective approach for plastic waste management. Recently, an emphasis has been placed on novel symbiotic yeasts isolated from termite guts as promising microbiomes for multiple biotechnological applications. This study might be the first to explore the potential of a constructed tri-culture yeast consortium, designated as DYC, isolated from termites for the degradation of low-density polyethylene (LDPE). The yeast consortium DYC stands for the molecularly identified species Sterigmatomyces halophilus, Meyerozyma guilliermondii, and Meyerozyma caribbica. The LDPE-DYC consortium showed a high growth rate on UV-sterilized LDPE as a sole carbon source, resulting in a reduction in tensile strength (TS) of 63.4% and a net LDPE mass reduction of 33.2% compared to the individual yeasts. All yeasts, individually and in consortium, showed a high production rate for LDPE-degrading enzymes. The hypothetical LDPE biodegradation pathway that was proposed revealed the formation of several metabolites, including alkanes, aldehydes, ethanol, and fatty acids. This study emphasizes a novel concept for using LDPE-degrading yeasts from wood-feeding termites for plastic waste biodegradation.
Collapse
Affiliation(s)
- Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Sobhy E Elsilk
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
35
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
36
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
37
|
Abbas M, Ejaz U, Shafique M, Naz SA, Sohail M. Biological pretreatment of sugarcane bagasse for the production of fungal laccase and bacterial cellulase. J Basic Microbiol 2023. [PMID: 36856084 DOI: 10.1002/jobm.202200684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Sugarcane bagasse (SB) is a promising source of appreciable quantities of fermentable sugars. However, the presence of lignin hinders utilization of these carbohydrates and hence pretreatment to remove lignin is necessarily carried out. Here, a biological pretreatment method was synchronized with the production of a thermostable cellulase using SB as a raw material. Initially, bagasse was fermented by a laccase producing fungus, Trametes pubescens MB 89 under solid state fermentation (SSF) and a titer of 1758 IU mL-1 of laccase was obtained. Investigations of nine factors affecting laccase production through Plackett Burman design improved the titers to 6539 IU mL-1 . Five factors (incubation period, concentration of CuSO4 , temperature, moisture content, and particle size) were found significant which were optimized through Central Composite design leading to an improvement in the titers by ~5 folds (8841 IU mL-1 ). Biologically pretreated SB was fermented by a thermophilic bacterium, Neobacillus sedimentimangrovi UE25, that yielded 8.64 IU mL-1 of cellulase. Delignification and cellulose utilization were affirmed by structural analysis through FTIR and SEM. The synchronized process yielded higher titers of laccase and cellulase under SSF of SB with the minimum use of corrosive chemicals.
Collapse
Affiliation(s)
- Mustansir Abbas
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Maryam Shafique
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Sehar A Naz
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
38
|
González-González P, Gómez-Manzo S, Tomasini A, Martínez Y Pérez JL, García Nieto E, Anaya-Hernández A, Ortiz Ortiz E, Castillo Rodríguez RA, Marcial-Quino J, Montiel-González AM. Laccase Production from Agrocybe pediades: Purification and Functional Characterization of a Consistent Laccase Isoenzyme in Liquid Culture. Microorganisms 2023; 11:microorganisms11030568. [PMID: 36985142 PMCID: PMC10053118 DOI: 10.3390/microorganisms11030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Laccases are valuable enzymes as an excellent ecological alternative for bioremediation issues because they can oxidize persistent xenobiotic compounds. The production and characterization of extracellular laccases from saprotrophic fungi from disturbed environments have been scarcely explored, even though this could diversify their functional characteristics and expand the conditions in which they carry out their catalysis. Agrocybe pediades, isolated from a disturbed forest, produces an extracellular laccase in liquid culture. The enzyme was purified, identified and characterized. Copper and hexachlorobenzene do not function as inducers for the laccase produced. Partial amino acid sequences were obtained by LC-MS/MS that share similarity with laccases from other fungi. Purified laccase is a monomer with a molecular mass between 55-60 kDa and had an optimum activity at pH 5.0 and the optimum temperature at 45 °C using 2,6-dimethoxyphenol (2,6-DMP) as substrate. The Km and Vmax also determined with 2,6-DMP were 100 μM and 285 μmol∙min-1∙mg-1, respectively, showing that the laccase of A. pediades has a higher affinity for this substrate than that of other Agaricales. These features could provide a potential catalyst for different toxic substrates and in the future laccase could be used in environmental recovery processes.
Collapse
Affiliation(s)
- Paulina González-González
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico
| | - Araceli Tomasini
- Departamento de Biotecnología, CBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico
| | - José Luis Martínez Y Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Edelmira García Nieto
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | - Elvia Ortiz Ortiz
- Facultad de Odontología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | | | - Jaime Marcial-Quino
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico
| | | |
Collapse
|
39
|
Shabaev AV, Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Comparative Analysis of Peniophora lycii and Trametes hirsuta Exoproteomes Demonstrates “Shades of Gray” in the Concept of White-Rotting Fungi. Int J Mol Sci 2022; 23:ijms231810322. [PMID: 36142233 PMCID: PMC9499651 DOI: 10.3390/ijms231810322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi—fungi belonging to the Polyporales order—are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates—alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.
Collapse
|
40
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|