1
|
Bellagamba O, Guo AJ, Senthilkumar S, Lillevik SH, De Biase D, Lai K, Balakrishnan B. Assessment of Long-Term Safety and Efficacy of Purple Sweet Potato Color (PSPC) and Myo-Inositol (MI) Treatment for Motor Related and Behavioral Phenotypes in a Mouse Model of Classic Galactosemia. J Inherit Metab Dis 2025; 48:e70002. [PMID: 39894675 PMCID: PMC11788002 DOI: 10.1002/jimd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Classic galactosemia (CG) is a rare inherited metabolic disease caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. The condition develops as a potentially fatal illness during the newborn period, but its acute clinical manifestations can be alleviated through a galactose restricted diet. Nonetheless, such dietary intervention is inadequate in preventing significant long-term consequences, including neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. At present, no effective therapy exists to stop the progression of these complications, highlighting the urgent need for new treatment approaches to be developed. Supplements have been used in the treatment of other inborn errors of metabolism; however, they are not typically included in the clinical therapeutic regimen for CG. Recently, our research team has demonstrated that two generally recognized as safe supplements (purple weet potato color, PSPC and myo-inositol, MI) have been effective in partially restoring functions in the ovaries of our GalT-KO mouse model. However, the toxicological profile of both PSPC and MI has not been determined. In this study, we investigated the acute (30 days) and chronic (180 days) oral toxicities of PSPC and MI both in WT control and GalT-KO mice. Furthermore, our study aims to evaluate the effectiveness of oral feeding of PSPC and MI in correcting motor-related and behavioral phenotypes in GalT-KO mice. The long-term treatment of MI at a lower dose demonstrated promising improvements in motor deficit and anxiety driven hyperactivity in the mutant mice.
Collapse
Affiliation(s)
- Olivia Bellagamba
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Aaron j Guo
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Sandhya Senthilkumar
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | | | | | - Kent Lai
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative Physiology, College of HealthUniversity of UtahSalt Lake CityUtahUSA
| | - Bijina Balakrishnan
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Tarr JD, Morris AAM. Emergency Management of Intoxication-Type Inherited Metabolic Disorders. J Inherit Metab Dis 2025; 48:e70007. [PMID: 39953653 PMCID: PMC11828970 DOI: 10.1002/jimd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
In many intoxication-type inherited metabolic disorders, the accumulation of the toxic chemical can cause acute life-threatening emergencies. Sometimes this is the inevitable consequence of a severe metabolic defect, but it is often triggered by catabolism. In this article, we consider the acute management when these conditions cause encephalopathy, seizures, stroke-like episodes, thromboses, liver failure, cardiac failure, arrhythmias and rhabdomyolysis. Treatment is available for most intoxication-type disorders, though it is seldom entirely satisfactory. The emergency management involves general measures for the immediate problem (such as liver failure, thrombosis or an arrhythmia) and specific treatment for the metabolic disorder. The latter usually aims to reduce the accumulation of the toxic small molecule. Often this involves preventing or reversing catabolism. Sometimes the formation of the toxic chemical can be reduced by removing dietary precursors, by diverting precursors to alternative pathways, or by inhibiting an earlier step in the affected pathway. Another strategy is to remove the toxic chemical by binding it to a drug or by extracorporeal blood purification. Occasionally, the block in the pathway can be ameliorated and some disorders, specific treatment may prevent the consequences of the accumulating chemical. Despite all these treatment strategies, outcomes are often disappointing, particularly if an intoxication disorder first presents as an emergency. Newborn screening has greatly improved the prognosis for some disorders. For others, outcomes can only be improved by earlier recognition and treatment.
Collapse
Affiliation(s)
- J. Dexter Tarr
- Willink Metabolic Unit, Genomic MedicineSt Mary's HospitalManchesterUK
| | - Andrew A. M. Morris
- Willink Metabolic Unit, Genomic Medicine, St Mary's Hospital and Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
3
|
Alaee M, Saneifard H, Shakiba M, Hanifeh M, Moarefian S. Unusual Presentation of Classical Galactosemia: A Case Report of Iranian Experience. Clin Case Rep 2025; 13:e70170. [PMID: 39973892 PMCID: PMC11835960 DOI: 10.1002/ccr3.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Galactosemia is a rare autosomal recessive metabolic disorder with four main types, and classic galactosemia is the most prevalent. These patients have galactose-1-phosphate-uridyltransferase deficiency. We report on a case of an infant who was admitted with poor feeding, lethargy, and poor weight gain. Based on the clinical symptoms and laboratory findings, the patient was considered to have a metabolic disorder. The patient had unusual presentations such as macrocytic anemia requiring blood transfusions, repeatedly metabolic acidosis requiring bicarbonate therapy and failure to thrive in addition to neurodevelopmental delay which led the authors to different diagnoses and suspect to mitochondrial disorders. Finally, in one of the assessments before blood transfusion, a high galactose-1 phosphate was detected, and galactose-free diet was started which led to neurologic and physical of the child. The whole-exome sequencing (WES) also revealed a likely pathogenic homozygous mutation in GALT (c.794 C>G, p. Pro265Arg) confirming the diagnosis of classic galactosemia. In Iran, global neonatal metabolic screening is not done for galactosemia which results in late diagnosis of the affected patients. So, we suggest adding galactosemia to neonatal metabolic screening in Iran.
Collapse
Affiliation(s)
- Mohammadreza Alaee
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Hedyeh Saneifard
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Shakiba
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Hanifeh
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Moarefian
- Department of Pediatric Endocrinology and Metabolic Diseases, Mofid Children HospitalShahid Beheshti University of Medical SciencesTehranIran
- Department of Neurogenetics, Iranian Center of Neurological Research (ICNR)Tehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Scafuri B, Piscosquito S, Giliberti G, Facchiano A, Miner J, Balakrishnan B, Lai K, Marabotti A. Improvement of Mutant Galactose-1-Phosphate Uridylyltransferase (GALT) Activity by FDA-Approved Pharmacochaperones: A Preliminary Study. Int J Mol Sci 2025; 26:888. [PMID: 39940658 PMCID: PMC11816840 DOI: 10.3390/ijms26030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Classic galactosemia is a rare disease with long-term consequences that seriously affect the quality of life of patients. To date, various therapeutic approaches are being developed, but treatments that target the molecular defects in the mutant galactose-1-phosphate uridylyltransferase (GALT) gene are lacking. We conducted a computational search for putative pharmacochaperones by applying a drug repurposing strategy, and we found that one compound, already active as a pharmacochaperone in another pathology, doubled the enzymatic activity of the purified mutant enzyme in an in vitro test. Furthermore, an extensive computational search in a database of known active molecules found another compound able in its turn to improve in vitro enzymatic activity. Both compounds are predicted to interact with a cavity at the enzyme interface previously supposed to be an allosteric site for the GALT enzyme. In vitro tests confirmed also the reduced accumulation of galactose-1-phosphate (G1P) in fibroblasts of patients. Although these results must be considered preliminary, our findings pave the way for future research lines focused on the search for promising pharmacochaperones that can directly rescue the activity of the enzyme.
Collapse
Affiliation(s)
- Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Stefania Piscosquito
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Giulia Giliberti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| | - Angelo Facchiano
- Institute of Food Science, National Research Council, 83100 Avellino, Italy;
| | - Jaden Miner
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA (B.B.); (K.L.)
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (B.S.)
| |
Collapse
|
5
|
Candela E, Montanari G, Di Blasi E, Baronio F, Cassio A, Ortolano R. Primary ovarian insufficiency in Classic Galactosemia: a systematic review. J Endocrinol Invest 2025:10.1007/s40618-024-02527-8. [PMID: 39821528 DOI: 10.1007/s40618-024-02527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Galactosemia is a rare inborn error of galactose metabolism. There are several forms, the most severe being classic galactosemia (CG), which begins in the first few days of life. Nowadays, it is possible to screen CG at birth, averting acute decompensation or death through diet. Although early dietary interventions help manage acute symptoms, long-term complications still occur, particularly primary ovarian insufficiency (POI) in female patients. This systematic review aims to synthesize existing literature on the relationship between galactosemia and POI, exploring the underlying mechanisms of pathophysiology, hormonal balance, metabolic control, fertility, and management. METHODS We performed a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses and PROSPERO. We queried the SCOPUS and PubMed databases using individual keywords and MeSH terms. RESULTS Despite various proposed mechanisms, such as FSH dysfunction and the accumulation of galactose-1-phosphate, the exact cause of POI remains unclear, with studies showing variable correlations between genotype, galactose levels, and ovarian function. Monitoring AMH in prepubertal galactosemia patients may predict POI. Early estrogen replacement therapy, calcium supplementation, and strategies to improve galactosylation should be considered to enhance bone mineralization, given the impact of hypogonadism and low calcium intake on bone density in these patients. The course of POI in women with CG is unpredictable, with recent studies showing that nearly 30% of those attempting to conceive succeeded within a year, a rate that increases to almost 50% after two years. CONCLUSION Despite advancements in understanding and managing CG, POI remains a significant clinical challenge, necessitating ongoing research and a multidisciplinary approach to enhance the long-term health of affected individuals.
Collapse
Affiliation(s)
- Egidio Candela
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, 40126, Italy
| | - Giulia Montanari
- Speciality School of Pediatrics, Alma Mater Studiorum, University of Bologna, Bologna, 40126, Italy
| | - Elisabetta Di Blasi
- Speciality School of Pediatrics, Alma Mater Studiorum, University of Bologna, Bologna, 40126, Italy
| | - Federico Baronio
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy.
| | - Alessandra Cassio
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Rita Ortolano
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| |
Collapse
|
6
|
Heo EH, Chang H. Simple and sensitive galactose monitoring based on capillary SERS sensor. Anal Bioanal Chem 2024; 416:3811-3819. [PMID: 38702448 DOI: 10.1007/s00216-024-05322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Galactosemia, a severe genetic metabolic disorder, results from the absence of galactose-degrading enzymes, leading to harmful galactose accumulation. In this study, we introduce a novel capillary-based surface-enhanced Raman spectroscopy (SERS) sensor for convenient and sensitive galactose detection. The developed sensor enhances SERS signals by introducing gold nanoparticles (Au NPs) onto the surface of silver nanoshells (Ag NSs) within a capillary, creating Ag NSs with Au NPs as satellites. Utilizing 4-mercaptophenylboronic acid (4-MPBA) as a Raman reporter molecule, the detection method relies on the conversion of 4-MPBA to 4-mercaptophenol (4-MPhOH) driven by hydrogen peroxide (H2O2) generated during galactose oxidation by galactose oxidase (GOx). A new SERS signal was observed, which was generated by H2O2 produced when galactose and GOx reacted. Our strategy yielded a quantitative change in the SERS signal, specifically in the band intensity ratio of 998 to 1076 cm-1 (I998/I1076) as the galactose concentration increased. Our capillary-based SERS biosensor provides a promising platform for early galactosemia diagnosis.
Collapse
Affiliation(s)
- Eun Hae Heo
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Wang YC, Lan LC, Yang X, Xiao J, Liu HX, Shan QW. A case report of classic galactosemia with a GALT gene variant and a literature review. BMC Pediatr 2024; 24:352. [PMID: 38778342 PMCID: PMC11110268 DOI: 10.1186/s12887-024-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Galactosemia is an autosomal recessive disorder resulting from an enzyme defect in the galactose metabolic pathway. The most severe manifestation of classic galactosemia is caused by galactose-1-phosphate uridylyltransferase (GALT) deficiency, and this condition can be fatal during infancy if left untreated. It also may result in long-term complications in affected individuals. CASE PRESENTATION This report describes a patient whose initial clinical symptoms were jaundice and liver dysfunction. The patient's liver and coagulation functions did not improve after multiple admissions and treatment with antibiotics, hepatoprotective and choleretic agents and blood transfusion. Genetic analysis revealed the presence of two variants in the GALT gene in the compound heterozygous state: c.377 + 2dup and c.368G > C (p.Arg123Pro). Currently, the variant locus (c.377 + 2dup) in the GALT gene has not been reported in the Human Gene Mutation Database (HGMD), while c.368G > C (p.Arg123Pro) has not been reported in the Genome Aggregation Database (GnomAD) nor the HGMD in East Asian population. We postulated that the two variants may contribute to the development of classical galactosemia. CONCLUSIONS Applications of whole-exome sequencing to detect the two variants can improve the detection and early diagnosis of classical galactosemia and, more specifically, may identify individuals who are compound heterozygous with variants in the GALT gene. Variants in the GALT gene have a potential therapeutic significance for classical galactosemia.
Collapse
Affiliation(s)
- Yong-Cai Wang
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Dazhou Central Hosptial, No. 56 Nanyuemiao Street, Tongchuan District, Dazhou, 635000, Sichuan Province, China
| | - Lian-Cheng Lan
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan Xiao
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xin Liu
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing-Wen Shan
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Figueiredo C, Psotta C, Jayakumar K, Lielpetere A, Mandal T, Schuhmann W, Leech D, Falk M, Pita M, Shleev S, De Lacey AL. Effect of Protection Polymer Coatings on the Performance of an Amperometric Galactose Biosensor in Human Plasma. BIOSENSORS 2024; 14:167. [PMID: 38667160 PMCID: PMC11047878 DOI: 10.3390/bios14040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.
Collapse
Affiliation(s)
- Carina Figueiredo
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Kavita Jayakumar
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Anna Lielpetere
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Tanushree Mandal
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44791 Bochum, Germany; (A.L.); (W.S.)
| | - Dónal Leech
- School of Biological and Chemical Sciences & Ryan Institute, University of Galway, H91 TK33 Galway, Ireland (T.M.)
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, & Biofilms-Research Center for Biointerfaces, Malmo University, 205 06 Malmö, Sweden (S.S.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Antonio L. De Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.F.)
| |
Collapse
|
10
|
Almenabawy N, Bahl S, Ostlund AL, Ghai-Jain S, Sosova I, Chan A, Mercimek-Andrews S. Clinical and biochemical phenotypes, genotypes, and long-term outcomes of individuals with galactosemia type I from a single metabolic genetics center in Alberta. Mol Genet Metab Rep 2024; 38:101055. [PMID: 38469090 PMCID: PMC10926219 DOI: 10.1016/j.ymgmr.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Background Galactosemia type I is an autosomal recessive disorder of galactose metabolism due to galactose-1-phosphate uridyltransferase deficiency, encoded by GALT. To investigate the phenotypes, genotypes and long-term outcomes of galactosemia, we performed a retrospective cohort study in our center. Methods All individuals with galactosemia type I were included. We divided individuals into two groups to compare the outcomes of those treated symptomatically (SymX) and asymptomatically (AsymX). We reviewed electronic patient charts for clinical features, biochemical investigations, molecular genetic investigations, treatments, and outcomes. Results There were 25 individuals including classic (n = 17), clinical variant (n = 4), and biochemical variant (Duarte) galactosemia (n = 4). Twelve individuals were diagnosed symptomatically (SymX), and 9 individuals were diagnosed asymptomatically (AsymX). We did not include individuals with biochemical variant (Duarte) galactosemia into any of these groups. At the time of the diagnosis, conjugated hyperbilirubinemia was present in 83.3% of SymX group, whereas only 22% of AsymX group. SymX group had hepatomegaly (25%), failure to thrive (33.3%), cataract (16.7%) and sepsis (25%), whereas none of the individuals in the AsymX group had these clinical features. Fourteen variants in GALT were identified including pathogenic/likely pathogenic (n = 12), and likely benign/benign (n = 2) variants. The vast majority of individuals with classic and clinical variant galactosemia were treated with a galactose-lactose-free diet for life (n = 20/21). Intellectual disability was present in 54.5% of the SymX group, and in 37.5% of the AsymX group as a long-term outcome. Tremors were present 50% of the SymX group, and in 22% of the AsymX group as a long-term outcome. Although, intellectual disability and tremors seem to be less common in the AsymX group, there was no statistically significant difference between both groups. Primary ovarian insufficiency was present 50% of the SymX group, whereas in 20% of the AsymX group in post-pubertal females. We report a novel hypomorphic GALT variant (p.Ala303Ser) in one individual with clinical variant galactosemia. We also report an individual with clinical variant galactosemia with normal urine galactitol levels on a normal diet. Conclusion It seems that newborn screening and early administration of a galactose-lactose-free diet decreases the long-term galactosemia-associated complications but does not prevent them completely. It may be that not all individuals with clinical variant galactosemia may need a galactose-lactose-free diet. It is timely to find new therapeutic strategies that can reduce the frequency of late-onset complications in galactosemia.
Collapse
Affiliation(s)
- Nihal Almenabawy
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alyssa-Lyn Ostlund
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shailly Ghai-Jain
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Iveta Sosova
- Alberta Newborn Screening and Biochemical Genetics Laboratory, University of Alberta Hospital, Alberta Precision Laboratories, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Alberta Health Services, AB, Canada
- Women's and Children's Research Institute, University of Alberta, Canada
| |
Collapse
|
11
|
Forte G, Buonadonna AL, Pantaleo A, Fasano C, Capodiferro D, Grossi V, Sanese P, Cariola F, De Marco K, Lepore Signorile M, Manghisi A, Guglielmi AF, Simonetti S, Laforgia N, Disciglio V, Simone C. Classic Galactosemia: Clinical and Computational Characterization of a Novel GALT Missense Variant (p.A303D) and a Literature Review. Int J Mol Sci 2023; 24:17388. [PMID: 38139222 PMCID: PMC10744227 DOI: 10.3390/ijms242417388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Classic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.K285N) and a novel missense variant (p.A303D) in the GALT gene. Segregation analysis showed that the patient inherited the p.K285N pathogenic variant from her father and the p.A303D variant from her mother. A bioinformatics analysis to predict the impact of the p.A303D missense variant on the structure and stability of the GALT protein revealed that it may be pathogenic. Based on this finding, we performed a literature review of all GALT missense variants identified in homozygous and compound heterozygous galactosemia patients carrying the p.K285N pathogenic variant to explore their molecular effects on the clinical phenotype of the disease. Our analysis revealed that these missense variants are responsible for a wide range of molecular defects. This study expands the clinical and mutational spectrum in classic galactosemia and reinforces the importance of understanding the molecular consequences of genetic variants to incorporate genetic analysis into clinical care.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Donatella Capodiferro
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (D.C.); (N.L.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Anna Filomena Guglielmi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Simonetta Simonetti
- Clinical Pathology and Neonatal Screening, Azienda Ospedaliera Universitaria Policlinico-Giovanni XXIII, 70124 Bari, Italy;
| | - Nicola Laforgia
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (D.C.); (N.L.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
12
|
Al Naggar Y, Shafiey H, Paxton RJ. Transcriptomic Responses Underlying the High Virulence of Black Queen Cell Virus and Sacbrood Virus following a Change in Their Mode of Transmission in Honey Bees ( Apis mellifera). Viruses 2023; 15:1284. [PMID: 37376584 DOI: 10.3390/v15061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Over the last two decades, honey bees (Apis mellifera) have suffered high rates of colony losses that have been attributed to a variety of factors, chief among which are viral pathogens, such as deformed wing virus (DWV), whose virulence has increased because of vector-based transmission by the invasive, ectoparasitic varroa mite (Varroa destructor). A shift in the experimental mode of transmission of the black queen cell virus (BQCV) and sacbrood virus (SBV) from fecal/food-oral (direct horizontal) to vector-mediated (indirect horizontal) transmission also results in high virulence and viral titers in pupal and adult honey bees. Agricultural pesticides represent another factor that acts independently or in interaction with pathogens, and they are also thought to cause colony loss. Understanding the molecular mechanisms underlying the higher virulence following a vector-based mode of transmission provides deeper insight into honey bee colony losses, as does determining whether or not host-pathogen interactions are modulated by exposure to pesticides. METHODS Through an experimental design with controlled laboratory, we investigated the effects of the modes of transmission of BQCV and SBV (feeding vs. vector-mediated via injection) alone or in combination with chronic exposure to sublethal and field-realistic concentrations of flupyradifurone (FPF), a novel agricultural insecticide, on honey bee survival and transcription responses by using high-throughput RNA sequencing (RNA-seq) analysis. RESULTS Co-exposure to viruses via feeding (VF) or injection (VI) and FPF insecticide had no statistically significant interactive effect on their survival compared to, respectively, VF or VI treatments alone. Transcriptomic analysis revealed a distinct difference in the gene expression profiles of bees inoculated with viruses via injection (VI) and exposed to FPF insecticide (VI+FPF). The number of differentially expressed genes (DEGs) at log2 (fold-change) > 2.0 in VI bees (136 genes) or/and VI+FPF insecticide (282 genes) was very high compared to that of VF bees (8 genes) or the VF+FPF insecticide treatment (15 genes). Of these DEGs, the expression in VI and VI+FPF bees of some immune-related genes, such as those for antimicrobial peptides, Ago2, and Dicer, was induced. In short, several genes encoding odorant binding proteins, chemosensory proteins, odor receptors, honey bee venom peptides, and vitellogenin were downregulated in VI and VI+FPF bees. CONCLUSIONS Given the importance of these suppressed genes in honey bees' innate immunity, eicosanoid biosynthesis, and olfactory associative function, their inhibition because of the change in the mode of infection with BQCV and SBV to vector-mediated transmission (injection into haemocoel) could explain the high virulence observed in these viruses when they were experimentally injected into hosts. These changes may help explain why other viruses, such as DWV, represent such a threat to colony survival when transmitted by varroa mites.
Collapse
Affiliation(s)
- Yahya Al Naggar
- 1 General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Hassan Shafiey
- 1 General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J Paxton
- 1 General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Optical Coherence Tomography: Retinal Imaging Contributes to the Understanding of Brain Pathology in Classical Galactosemia. J Clin Med 2023; 12:jcm12052030. [PMID: 36902816 PMCID: PMC10004555 DOI: 10.3390/jcm12052030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
It remains unresolved whether central nervous system involvement in treated classical galactosemia (CG) is a progressive neurodegenerative process. This study aimed to investigate retinal neuroaxonal degeneration in CG as a surrogate of brain pathology. Global peripapillary retinal nerve fibre layer (GpRNFL) and combined ganglion cell and inner plexiform layer (GCIPL) were analysed in 11 CG patients and 60 controls (HC) using spectral-domain optical coherence tomography. Visual acuity (VA) and low-contrast VA (LCVA) were acquired to test visual function. GpRNFL and GCIPL did not differ between CG and HC (p > 0.05). However, in CG, there was an effect of intellectual outcome on GCIPL (p = 0.036), and GpRNFL and GCIPL correlated with neurological rating scale scores (p < 0.05). A single-case follow-up analysis showed GpRNFL (0.53-0.83%) and GCIPL (0.52-0.85%) annual decrease beyond the normal aging effect. VA and LCVA were reduced in CG with intellectual disability (p = 0.009/0.006), likely due to impaired visual perception. These findings support that CG is not a neurodegenerative disease, but that brain damage is more likely to occur early in brain development. To clarify a minor neurodegenerative component in the brain pathology of CG, we propose multicenter cross-sectional and longitudinal studies using retinal imaging.
Collapse
|
14
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
15
|
Derks B, Rivera-Cruz G, Hagen-Lillevik S, Vos EN, Demirbas D, Lai K, Treacy EP, Levy HL, Wilkins-Haug LE, Rubio-Gozalbo ME, Berry GT. The hypergonadotropic hypogonadism conundrum of classic galactosemia. Hum Reprod Update 2023; 29:246-258. [PMID: 36512573 PMCID: PMC9976963 DOI: 10.1093/humupd/dmac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.
Collapse
Affiliation(s)
- Britt Derks
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Greysha Rivera-Cruz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - E Naomi Vos
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Didem Demirbas
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - Eileen P Treacy
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member.,National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine, Trinity College, Dublin 2, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harvey L Levy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise E Wilkins-Haug
- Division of Maternal Fetal Medicine, Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Gerard T Berry
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Molecular Mechanisms, Genotype-Phenotype Correlations and Patient-Specific Treatments in Inherited Metabolic Diseases. J Pers Med 2023; 13:jpm13010117. [PMID: 36675778 PMCID: PMC9864038 DOI: 10.3390/jpm13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Advances in DNA sequencing technologies are revealing a vast genetic heterogeneity in human population, which may predispose to metabolic alterations if the activity of metabolic enzymes is affected [...].
Collapse
|
17
|
The Importance of Neonatal Screening for Galactosemia. Nutrients 2022; 15:nu15010010. [PMID: 36615667 PMCID: PMC9823668 DOI: 10.3390/nu15010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Galactosemia is an inborn metabolic disorder caused by a deficient activity in one of the enzymes involved in the metabolism of galactose. The first description of galactosemia in newborns dates from 1908, ever since complex research has been performed on cell and animal models to gain more insights into the molecular and clinical bases of this challenging disease. In galactosemia, the newborn appears to be born in proper health, having a window of opportunity before developing major morbidities that may even be fatal following ingestion of milk that contains galactose. Galactosemia cannot be cured, but its negative consequences on health can be avoided by establishing precocious diagnosis and treatment. All the foods that contain galactose should be eliminated from the diet when there is a suspicion of galactosemia. The neonatal screening for galactosemia can urge early diagnosis and intervention, preventing complications. All galactosemia types may be detected during the screening of newborns for this disorder. The major target is, however, galactose-1-phosphate uridyltransferase (GALT) deficiency galactosemia, which is diagnosed by applying a combination of total galactose and GALT enzyme analysis as well as, in certain programs, mutation screening. Most critically, infants who exhibit symptoms suggestive of galactosemia should undergo in-depth testing for this condition even when the newborn screening shows normal results. The decision to enroll global screening for galactosemia among the specific population still faces many challenges. In this context, the present narrative review provides an updated overview of the incidence, clinical manifestations, diagnosis, therapy, and prognosis of galactosemia, questioning under the dome of these aspects related to the disease the value of its neonatal monitoring.
Collapse
|
18
|
Rodrigues KF, Yong WTL, Bhuiyan MSA, Siddiquee S, Shah MD, Venmathi Maran BA. Current Understanding on the Genetic Basis of Key Metabolic Disorders: A Review. BIOLOGY 2022; 11:biology11091308. [PMID: 36138787 PMCID: PMC9495729 DOI: 10.3390/biology11091308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Metabolic disorders (MD) are a challenge to healthcare systems; the emergence of the modern socio-economic system has led to a profound change in lifestyles in terms of dietary habits, exercise regimens, and behavior, all of which complement the genetic factors associated with MD. Diabetes Mellitus and Familial hypercholesterolemia are two of the 14 most widely researched MD, as they pose the greatest challenge to the public healthcare system and have an impact on productivity and the economy. Research findings have led to the development of new therapeutic molecules for the mitigation of MD as well as the invention of experimental strategies, which target the genes themselves via gene editing and RNA interference. Although these approaches may herald the emergence of a new toolbox to treat MD, the current therapeutic approaches still heavily depend on substrate reduction, dietary restrictions based on genetic factors, exercise, and the maintenance of good mental health. The development of orphan drugs for the less common MD such as Krabbe, Farber, Fabry, and Gaucher diseases, remains in its infancy, owing to the lack of investment in research and development, and this has driven the development of personalized therapeutics based on gene silencing and related technologies. Abstract Advances in data acquisition via high resolution genomic, transcriptomic, proteomic and metabolomic platforms have driven the discovery of the underlying factors associated with metabolic disorders (MD) and led to interventions that target the underlying genetic causes as well as lifestyle changes and dietary regulation. The review focuses on fourteen of the most widely studied inherited MD, which are familial hypercholesterolemia, Gaucher disease, Hunter syndrome, Krabbe disease, Maple syrup urine disease, Metachromatic leukodystrophy, Mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), Niemann-Pick disease, Phenylketonuria (PKU), Porphyria, Tay-Sachs disease, Wilson’s disease, Familial hypertriglyceridemia (F-HTG) and Galactosemia based on genome wide association studies, epigenetic factors, transcript regulation, post-translational genetic modifications and biomarker discovery through metabolomic studies. We will delve into the current approaches being undertaken to analyze metadata using bioinformatic approaches and the emerging interventions using genome editing platforms as applied to animal models.
Collapse
Affiliation(s)
- Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| |
Collapse
|
19
|
Fridovich-Keil JL, Berry GT. Pathophysiology of long-term complications in classic galactosemia: What we do and do not know. Mol Genet Metab 2022; 137:33-39. [PMID: 35882174 DOI: 10.1016/j.ymgme.2022.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.
Collapse
Affiliation(s)
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Novel Gene-Correction-Based Therapeutic Modalities for Monogenic Liver Disorders. Bioengineering (Basel) 2022; 9:bioengineering9080392. [PMID: 36004917 PMCID: PMC9404740 DOI: 10.3390/bioengineering9080392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of monogenic liver diseases are autosomal recessive disorders, with few being sex-related or co-dominant. Although orthotopic liver transplantation (LT) is currently the sole therapeutic option for end-stage patients, such an invasive surgical approach is severely restricted by the lack of donors and post-transplant complications, mainly associated with life-long immunosuppressive regimens. Therefore, the last decade has witnessed efforts for innovative cellular or gene-based therapeutic strategies. Gene therapy is a promising approach for treatment of many hereditary disorders, such as monogenic inborn errors. The liver is an organ characterized by unique features, making it an attractive target for in vivo and ex vivo gene transfer. The current genetic approaches for hereditary liver diseases are mediated by viral or non-viral vectors, with promising results generated by gene-editing tools, such as CRISPR-Cas9 technology. Despite massive progress in experimental gene-correction technologies, limitations in validated approaches for monogenic liver disorders have encouraged researchers to refine promising gene therapy protocols. Herein, we highlighted the most common monogenetic liver disorders, followed by proposed genetic engineering approaches, offered as promising therapeutic modalities.
Collapse
|
21
|
Succoio M, Sacchettini R, Rossi A, Parenti G, Ruoppolo M. Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules 2022; 12:biom12070968. [PMID: 35883524 PMCID: PMC9313126 DOI: 10.3390/biom12070968] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
Galactosemia is an inborn disorder of carbohydrate metabolism characterized by the inability to metabolize galactose, a sugar contained in milk (the main source of nourishment for infants), and convert it into glucose, the sugar used by the body as the primary source of energy. Galactosemia is an autosomal recessive genetic disease that can be diagnosed at birth, even in the absence of symptoms, with newborn screening by assessing the level of galactose and the GALT enzyme activity, as GALT defect constitutes the most frequent cause of galactosemia. Currently, galactosemia cannot be cured, but only treated by means of a diet with a reduced content of galactose and lactose. Although the diet is able to reverse the neonatal clinical picture, it does not prevent the development of long-term complications. This review provides an overview of galactose metabolism, molecular genetics, newborn screening and therapy of galactosemia. Novel treatments for galactosemia currently being investigated in (pre)clinical studies and potentially able to prevent long-term complications are also presented.
Collapse
Affiliation(s)
- Mariangela Succoio
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
| | - Rosa Sacchettini
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
| | - Alessandro Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.P.)
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.P.)
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
22
|
Randall JA, Sutter C, Wang S, Bailey E, Raither L, Perfetti R, Shendelman S, Burbridge C. Qualitative interviews with adults with Classic Galactosemia and their caregivers: disease burden and challenges with daily living. Orphanet J Rare Dis 2022; 17:138. [PMID: 35346295 PMCID: PMC8959560 DOI: 10.1186/s13023-022-02287-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Classic Galactosemia is a rare, autosomal recessive disease in which galactose is not metabolized properly due to severe deficiency/absence of the galactose-1-phosphate uridylyltransferase (GALT) enzyme, converting to an aberrant and toxic metabolite, galactitol. Newborn screening and timely galactose-restricted diet can resolve acute symptoms and decrease fatalities. However, despite this, significant chronic, progressive morbidities remain which have a real impact upon daily life. To better understand the burden of disease, 20 in-depth qualitative interviews were undertaken with adult patients (n = 12), and their caregivers (n = 8), enrolled in the ACTION-Galactosemia trial, part of a clinical program designed to investigate the safety and efficacy of AT-007 (govorestat) in reducing toxic galactitol and long-term clinical outcomes in Classic Galactosemia. RESULTS Interviews revealed the substantial burden of Classic Galactosemia on patients and families. Most adults were not able to live independently, and all required support with day-to-day activities. Short- and long-term memory difficulties and tremors were identified as the most frequently experienced and challenging symptoms. Other difficulties such as fine motor skills and slow/slurred speech contribute to the significant impact on daily activities, affecting ability to communicate and interact with others. Symptoms were first noticed in early childhood and worsened with age. Classic Galactosemia impacted all areas of daily functioning and quality of life, leading to social isolation, anxiety, anger/frustration and depression. This demonstrates the significant burden of disease and challenges associated with Classic Galactosemia. CONCLUSIONS The impact on both patients and caregivers underscores the severity of the unmet medical need and the importance of pharmacological intervention to halt or prevent disease progression. Any treatment that could reduce symptoms or slow functional decline would ease the burden of this condition on patients and caregivers.
Collapse
Affiliation(s)
- Jason A Randall
- Clinical Outcomes Solutions, Unit 68 Basepoint, Shearway Business Park, Shearway Road, Folkestone, Kent, CT19 4RH, UK.
| | | | | | | | - Lydia Raither
- Clinical Outcomes Solutions, Unit 68 Basepoint, Shearway Business Park, Shearway Road, Folkestone, Kent, CT19 4RH, UK
| | | | | | - Claire Burbridge
- Clinical Outcomes Solutions, Unit 68 Basepoint, Shearway Business Park, Shearway Road, Folkestone, Kent, CT19 4RH, UK
| |
Collapse
|
23
|
Althammer M, Regl C, Herburger K, Blöchl C, Voglas E, Huber CG, Tenhaken R. Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1416-1426. [PMID: 34913539 PMCID: PMC9306886 DOI: 10.1111/tpj.15638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.
Collapse
Affiliation(s)
- Martina Althammer
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christof Regl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Klaus Herburger
- Department of Plant and Environmental SciencesSection for Plant GlycobiologyUniversity of CopenhagenFrederiksberg1871Denmark
| | - Constantin Blöchl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Elena Voglas
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christian G. Huber
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Raimund Tenhaken
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| |
Collapse
|
24
|
N. ARC, Cornejo V, Guevara-Morales JM, Echeverri-Peña OY. Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2022. [DOI: 10.1590/2326-4594-jiems-2021-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Banford S, McCorvie TJ, Pey AL, Timson DJ. Galactosemia: Towards Pharmacological Chaperones. J Pers Med 2021; 11:jpm11020106. [PMID: 33562227 PMCID: PMC7914515 DOI: 10.3390/jpm11020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Galactosemia is a rare inherited metabolic disease resulting from mutations in the four genes which encode enzymes involved in the metabolism of galactose. The current therapy, the removal of galactose from the diet, is inadequate. Consequently, many patients suffer lifelong physical and cognitive disability. The phenotype varies from almost asymptomatic to life-threatening disability. The fundamental biochemical cause of the disease is a decrease in enzymatic activity due to failure of the affected protein to fold and/or function correctly. Many novel therapies have been proposed for the treatment of galactosemia. Often, these are designed to treat the symptoms and not the fundamental cause. Pharmacological chaperones (PC) (small molecules which correct the folding of misfolded proteins) represent an exciting potential therapy for galactosemia. In theory, they would restore enzyme function, thus preventing downstream pathological consequences. In practice, no PCs have been identified for potential application in galactosemia. Here, we review the biochemical basis of the disease, identify opportunities for the application of PCs and describe how these might be discovered. We will conclude by considering some of the clinical issues which will affect the future use of PCs in the treatment of galactosemia.
Collapse
Affiliation(s)
- Samantha Banford
- South Eastern Health and Social Care Trust, Downpatrick BT30 6RL, UK;
| | - Thomas J. McCorvie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|