1
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
2
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
3
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
4
|
Fathima A F, Khan I, Irfhan N M, Ahmed N Z, Anwar N, Khan MS, Yadav DK, Shamsi S, Shamsi A. In vitro and Ex vivo study targeting the development of a Lavandula stoechas L. ( Ustukhuddūs) loaded Unani Transdermal patch: Implication of Unani Medicine in the treatment of Nisyan (Dementia). Heliyon 2024; 10:e25284. [PMID: 38322847 PMCID: PMC10845912 DOI: 10.1016/j.heliyon.2024.e25284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Ustukhuddūs (Lavandula stoechas L.) has been extensively used orally and topically in treating various neurological disorders, including dementia. The optimum potential of traditional dosage forms of Ustukhuddūs is limited for various reasons. Transdermal drug delivery system (TDDS) is a novel means of drug delivery and is known to overcome the drawbacks associated with traditional dosage forms. The current study aimed at fabricating and evaluating Ustukhuddūs hydro-alcoholic extract (UHAE) and essential oil (UEO) loaded matrix-type transdermal patches having a combination of hydrophilic - hydroxyl propyl methyl cellulose (HPMC) and hydrophobic - ethyl cellulose (EC) polymers. ATR-FTIR, DSC, XRD, and SEM analysis were carried out to study drug-polymer interactions, confirming the formation of developed patches and drug compatibility with excipients. We assessed the fabricated patches to evaluate their physicochemical properties, in vitro drug release, and permeation characteristics via ex vivo experiments. The physicochemical characteristics of patches showcased the development of good and stable films with clarity, smoothness, homogeneity, optimum flexibility and free from causing skin irritancy or sensitization. In vitro drug release and ex vivo permeation profile of developed patches were evaluated employing Franz diffusion cells. UHAE and UEO patches exhibited a cumulative drug release of 81.61 and 85.24 %, respectively, in a sustained-release manner and followed non-Fickian release mechanisms. The ex vivo permeation data revealed 66.82 % and 76.41 % of drug permeated from UHAE and UEO patches, respectively. The current research suggests that the formulated patches are more suitable for TDDS and hold potential significance in the treatment of dementia, contributing to enhanced patient compliance, thereby highlighting the implication of Unani Medicine in Nisyan (Dementia) treatment.
Collapse
Affiliation(s)
- Farhath Fathima A
- Regional Research Institute of Unani Medicine, Chennai, 600013, India
| | - Imran Khan
- National Institute of Unani Medicine, Bengaluru, 560091, India
| | | | - Zaheer Ahmed N
- Central Council for Research in Unani Medicine, New Delhi, 110025, India
| | - Noman Anwar
- Regional Research Institute of Unani Medicine, Chennai, 600013, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Shariq Shamsi
- National Institute of Unani Medicine, Bengaluru, 560091, India
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| |
Collapse
|
5
|
Sun Y, Yang L, Du L, Zhou Y, Xu K, Chen J, He Y, Qu Q, Miao Y, Xing M, Hu Z. Duo-role Platelet-rich Plasma: temperature-induced fibrin gel and growth factors' reservoir for microneedles to promote hair regrowth. J Adv Res 2024; 55:89-102. [PMID: 36849045 PMCID: PMC10770113 DOI: 10.1016/j.jare.2023.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
INTRODUCTION Alopecia concerns more than half our adult population. Platelet-rich plasma (PRP) has been applied in skin rejuvenation and hair loss treatment. However, the pain and bleeding during injection and the troublesome for fresh preparation of each action limit PRP's in-depth applying dedication to clinics. OBJECTIVES We report a temperature-sensitive PRP induced fibrin gel included in a detachable transdermal microneedle (MN) for hair growth. RESULTS PRP gel interpenetrated with the photocrosslinkable gelatin methacryloyl (GelMA) to realize sustained release of growth factors (GFs) and led to 14% growth in mechanical strength of a single microneedle whose strength reached 1.21 N which is sufficient to penetrate the stratum corneum. PRP-MNs' release of VEGF, PDGF, and TGF-β were characterized and quantitatively around the hair follicles (HFs) for 4-6 days consecutively. PRP-MNs promoted hair regrowth in mice models. From transcriptome sequencing, PRP-MNs induced hair regrowth through angiogenesis and proliferation. The mechanical and TGF-β sensitive gene Ankrd1 was significantly upregulated by PRP-MNs treatment. CONCLUSION PRP-MNs show convenient, minimally invasive, painless, inexpensive manufacture, storable and sustained effects in boosting hair regeneration.
Collapse
Affiliation(s)
- Yang Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Mechanical Engineering, University of Manitoba, 75A Chancellors Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellors Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye He
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellors Circle, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Microneedles for Efficient and Precise Drug Delivery in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030744. [PMID: 36986606 PMCID: PMC10057903 DOI: 10.3390/pharmaceutics15030744] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is the leading cause of death, acting as a global burden, severely impacting the patients’ quality of life and affecting the world economy despite the expansion of cumulative advances in oncology. The current conventional therapies for cancer which involve long treatment duration and systemic exposure of drugs leads to premature degradation of drugs, a massive amount of pain, side effects, as well as the recurrence of the condition. There is also an urgent demand for personalized and precision-based medicine, especially after the recent pandemic, to avoid future delays in diagnosis or treatments for cancer patients as they are very essential in reducing the global mortality rate. Recently, microneedles which consist of a patch with tiny, micron-sized needles attached to it have been quite a sensation as an emerging technology for transdermal application to diagnose or treat various illnesses. The application of microneedles in cancer therapies is also being extensively studied as they offer a myriad of benefits, especially since microneedle patches offer a better treatment approach through self administration, painless treatment, and being an economically and environmentally friendly approach in comparison with other conventional methods. The painless gains from microneedles significantly improves the survival rate of cancer patients. The emergence of versatile and innovative transdermal drug delivery systems presents a prime breakthrough opportunity for safer and more effective therapies, which could meet the demands of cancer diagnosis and treatment through different application scenarios. This review highlights the types of microneedles, fabrication methods and materials, along with the recent advances and opportunities. In addition, this review also addresses the challenges and limitations of microneedles in cancer therapy with solutions through current studies and future works to facilitate the clinical translation of microneedles in cancer therapies.
Collapse
|
9
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
10
|
Transdermal Maltose-Based Microneedle Patch as Adjunct to Enhance Topical Anesthetic before Intravenous Cannulation of Pediatric Thalassemic Patients Receiving Blood Transfusion: A Randomized Controlled Trial Protocol. J Clin Med 2022; 11:jcm11185291. [PMID: 36142938 PMCID: PMC9501834 DOI: 10.3390/jcm11185291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Intravenous cannulation is experientially traumatic to children. To minimize this, EMLA® is applied on the would-be-cannulated area before IV cannula insertion. However, the time to achieve its maximum efficacy may be affected due to incomplete cutaneous absorption and the duration of application. The latter may be a limiting factor in a busy healthcare facility. The usage of dissolvable maltose microneedles may circumvent this problem by introducing micropores that will facilitate EMLA® absorption. A randomized phase II cross-over trial will be conducted to compare the Visual Analogue Scale (VAS) pain scores and skin conductance algesimeter index between 4 different interventions (1 fingertip unit (FTU) of EMLA® with microneedle patch for 30 min before cannulation; 0.5 FTU of EMLA® with microneedle patch for 30 min; 1 FTU of EMLA® with microneedle for 15 min; 1 FTU of EMLA® with sham patch for 30 min). A total of 26 pediatric patients with thalassemia aged between 6 and 18 years old and requiring blood transfusion will be recruited in this trial. During the visits, the VAS scores and skin conductance algesimeter index at venous cannulation will be obtained using the VAS rulers and PainMonitor™ machine, respectively. The trial will commence in August 2021 and is anticipated to end by August 2022.
Collapse
|
11
|
Tansathien K, Suriyaamporn P, Ngawhirunpat T, Opanasopit P, Rangsimawong W. A Novel Approach for Skin Regeneration by a Potent Bioactive Placental-Loaded Microneedle Patch: Comparative Study of Deer, Goat, and Porcine Placentas. Pharmaceutics 2022; 14:pharmaceutics14061221. [PMID: 35745793 PMCID: PMC9229957 DOI: 10.3390/pharmaceutics14061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The aims of this study were to investigate the skin regeneration potential of bioactive placenta (deer placenta (DP), goat placenta (GP), and porcine placenta (PP)) and fabricate bioactive extract-loaded dissolving microneedles (DMNs) as a dermal delivery approach. The placentas were water-extracted, and the active compounds were evaluated. Bioactivity studies were performed in dermal fibroblasts and keratinocytes. DMNs were fabricated to deliver the potent bioactive placenta extract into the skin. All placental extracts expressed high amounts of protein, growth factors (EGF, FGF, IGF-1 and TGF-β1), and amino acids. These extracts were not toxic to the skin cells, while the proliferation of fibroblast cells significantly increased in a time-dependent manner. GP extract that exhibited the maximum proliferation, migration, and regeneration effect on fibroblast cells was loaded into DMN patch. The suitable physical properties of DMNs led to increased skin permeation and deposition of bioactive macromolecules. Moreover, GP extract-loaded DMNs showed minimal invasiveness to the skin and were safe for application to human skin. In conclusion, placental extracts act as potent bioactive compounds for skin cells, and the highest bioactive potential of GP-loaded DMNs might be a novel approach to regenerate the skin.
Collapse
Affiliation(s)
- Kritsanaporn Tansathien
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (P.S.); (T.N.); (P.O.)
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Correspondence: ; Tel.: +66-(045)-353605; Fax: +66-(045)-353626
| |
Collapse
|
12
|
Shi C, Yang D, Zhao Y, Wen T, Zhao W, Hu P, Huang Z, Quan G, Wu C, Pan X. The spatial-dimensional and temporal-dimensional fate of nanocarrier-loaded dissolving microneedles with different lengths of needles. MEDICINE IN DRUG DISCOVERY 2022; 14:100124. [DOI: 10.1016/j.medidd.2022.100124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
14
|
Mamun AA, Zhao F. In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. MICROMACHINES 2022; 13:657. [PMID: 35630124 PMCID: PMC9146885 DOI: 10.3390/mi13050657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 01/26/2023]
Abstract
Microneedles are getting more and more attention in research and commercialization since their advancement in the 1990s due to the advantages over traditional hypodermic needles such as minimum invasiveness, low material and fabrication cost, and precise needle geometry control, etc. The design and fabrication of microneedles depend on various factors such as the type of materials used, fabrication planes and techniques, needle structures, etc. In the past years, in-plane and out-of-plane microneedle technologies made by silicon (Si), polymer, metal, and other materials have been developed for numerous biomedical applications including drug delivery, sample collections, medical diagnostics, and bio-sensing. Among these microneedle technologies, in-plane Si microneedles excel by the inherent properties of Si such as mechanical strength, wear resistance, biocompatibility, and structural advantages of in-plane configuration such as a wide range of length, readiness of integration with other supporting components, and complementary metal-oxide-semiconductor (CMOS) compatible fabrication. This article aims to provide a review of in-plane Si microneedles with a focus on fabrication techniques, theoretical and numerical analysis, experimental characterization of structural and fluidic behaviors, major applications, potential challenges, and future prospects.
Collapse
Affiliation(s)
| | - Feng Zhao
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| |
Collapse
|
15
|
Joshi P, Riley PR, Mishra R, Azizi Machekposhti S, Narayan R. Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid. BIOSENSORS 2022; 12:bios12040198. [PMID: 35448258 PMCID: PMC9031381 DOI: 10.3390/bios12040198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 05/08/2023]
Abstract
Opioid drugs are extremely potent synthetic analytes, and their abuse is common around the world. Hence, a rapid and point-of-need device is necessary to assess the presence of this compound in body fluid so that a timely countermeasure can be provided to the exposed individuals. Herein, we present an attractive microneedle sensing platform for the detection of the opioid drug fentanyl in real serum samples using an electrochemical detection method. The device contained an array of pyramidal microneedle structures that were integrated with platinum (Pt) and silver (Ag) wires, each with a microcavity opening. The working sensor was modified by graphene ink and subsequently with 4 (3-Butyl-1-imidazolio)-1-butanesulfonate) ionic liquid. The microneedle sensor showed direct oxidation of fentanyl in liquid samples with a detection limit of 27.8 μM by employing a highly sensitive square-wave voltammetry technique. The resulting microneedle-based sensing platform displayed an interference-free fentanyl detection in diluted serum without conceding its sensitivity, stability, and response time. The obtained results revealed that the microneedle sensor holds considerable promise for point-of-need fentanyl detection and opens additional opportunities for detecting substances of abuse in emergencies.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Parand R. Riley
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Rupesh Mishra
- Identify Sensors Biologics, 1203 W. State St., West Lafayette, IN 47907, USA;
| | - Sina Azizi Machekposhti
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
| | - Roger Narayan
- Department of Materials Science and Engineering, UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC 27695, USA; (P.J.); (P.R.R.); (S.A.M.)
- Correspondence: ; Tel.: +1-919-696-8488
| |
Collapse
|
16
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
18
|
Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res 2021; 25:24. [PMID: 34321111 PMCID: PMC8317283 DOI: 10.1186/s40824-021-00226-6] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023] Open
Abstract
Various non-invasive administrations have recently emerged as an alternative to conventional needle injections. A transdermal drug delivery system (TDDS) represents the most attractive method among these because of its low rejection rate, excellent ease of administration, and superb convenience and persistence among patients. TDDS could be applicable in not only pharmaceuticals but also in the skin care industry, including cosmetics. Because this method mainly involves local administration, it can prevent local buildup in drug concentration and nonspecific delivery to tissues not targeted by the drug. However, the physicochemical properties of the skin translate to multiple obstacles and restrictions in transdermal delivery, with numerous investigations conducted to overcome these bottlenecks. In this review, we describe the different types of available TDDS methods, along with a critical discussion of the specific advantages and disadvantages, characterization methods, and potential of each method. Progress in research on these alternative methods has established the high efficiency inherent to TDDS, which is expected to find applications in a wide range of fields.
Collapse
Affiliation(s)
- Woo Yeup Jeong
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
19
|
Uchida N, Yanagi M, Hamada H. Physical Enhancement? Nanocarrier? Current Progress in Transdermal Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:335. [PMID: 33525364 PMCID: PMC7911274 DOI: 10.3390/nano11020335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
A transdermal drug delivery system (TDDS) is a method that provides drug adsorption via the skin. TDDS could replace conventional oral administration and blood administration because it is easily accessible. However, it is still difficult to design efficient TDDS due to the high barrier property of skin covered with stratum corneum, which inhibits the permeation of drug molecules. Thus far, TDDS methods by applying physical stimuli such as microneedles and chemical stimuli such as surfactants have been actively developed. However, it has been hard to avoid inflammation at the administration site because these methods partially destroy the skin tissue. On the other hand, TDDS with nanocarriers minimizing damage to the skin tissues has emerged together with the development of nanotechnology in recent years. This review focuses on current trends in TDDS.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| |
Collapse
|
20
|
Azmana M, Mahmood S, Hilles AR, Mandal UK, Saeed Al-Japairai KA, Raman S. Transdermal drug delivery system through polymeric microneedle: A recent update. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101877] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Ohshiro T, Komoto Y, Taniguchi M. Single-Molecule Counting of Nucleotide by Electrophoresis with Nanochannel-Integrated Nano-Gap Devices. MICROMACHINES 2020; 11:mi11110982. [PMID: 33142705 PMCID: PMC7693128 DOI: 10.3390/mi11110982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
We utilized electrophoresis to control the fluidity of sample biomolecules in sample aqueous solutions inside the nanochannel for single-molecule detection by using a nanochannel-integrated nanogap electrode, which is composed of a nano-gap sensing electrode, nanochannel, and tapered focusing channel. In order to suppress electro-osmotic flow and thermal convection inside this nanochannel, we optimized the reduction ratios of the tapered focusing channel, and the ratio of inlet 10 μm to outlet 0.5 μm was found to be high performance of electrophoresis with lower concentration of 0.05 × TBE (Tris/Borate/EDTA) buffer containing a surfactant of 0.1 w/v% polyvinylpyrrolidone (PVP). Under the optimized conditions, single-molecule electrical measurement of deoxyguanosine monophosphate (dGMP) was performed and it was found that the throughput was significantly improved by nearly an order of magnitude compared to that without electrophoresis. In addition, it was also found that the long-duration signals that could interfere with discrimination were significantly reduced. This is because the strong electrophoresis flow inside the nanochannels prevents the molecules’ adsorption near the electrodes. This single-molecule electrical measurement with nanochannel-integrated nano-gap electrodes by electrophoresis significantly improved the throughput of signal detection and identification accuracy.
Collapse
|
22
|
Vieira D, McEachern F, Filippelli R, Dimentberg E, Harvey EJ, Merle G. Microelectrochemical Smart Needle for Real Time Minimally Invasive Oximetry. BIOSENSORS 2020; 10:E157. [PMID: 33138031 PMCID: PMC7693384 DOI: 10.3390/bios10110157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
A variety of brain disorders such as neural injury, brain dysfunction, vascular malformation, and neurodegenerative diseases are associated with abnormal levels of oxygen. Current methods to directly monitor tissue oxygenation in the brain are expensive and invasive, suffering from a lack of accuracy. Electrochemical detection has been used as an invasiveness and cost-effectiveness method, minimizing pain, discomfort, and injury to the patient. In this work, we developed a minimally invasive needle-sensor with a high surface area to monitor O2 levels in the brain using acupuncture needles. The approach was to directly etch the iron from stainless steel acupuncture needles via a controlled pitting corrosion process, obtaining a high microporous surface area. In order to increase the conductivity and selectivity, we designed and applied for the first time a low-cost coating process using non-toxic chemicals to deposit high surface area carbon nanoparticle, catalytically active laccase, and biocompatible polypyrrole. The physicochemical properties of the materials were characterized as well as their efficacy and viability as probes for the electrochemical detection of PO2. Our modified needles exhibited efficient electrocatalysis and high selectivity toward O2, with excellent repeatability. We well engineered a small diagnostic tool to monitor PO2, minimally invasive, able to monitor real-time O2 in vivo complex environments.
Collapse
Affiliation(s)
- Daniela Vieira
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; (D.V.); (F.M.); (R.F.); (E.D.)
| | - Francis McEachern
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; (D.V.); (F.M.); (R.F.); (E.D.)
| | - Romina Filippelli
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; (D.V.); (F.M.); (R.F.); (E.D.)
| | - Evan Dimentberg
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; (D.V.); (F.M.); (R.F.); (E.D.)
| | - Edward J Harvey
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Geraldine Merle
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada;
- Chemical Engineering Department, Ecole Polytechnique de Montréal, P.O. Box 6079 Station, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
23
|
Liu B, Lv C, Chen C, Ran B, Lan M, Chen H, Zhu Y. Electrochemical Performance of Micropillar Array Electrodes in Microflows. MICROMACHINES 2020; 11:mi11090858. [PMID: 32957458 PMCID: PMC7570346 DOI: 10.3390/mi11090858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
The microchip-based electrochemical detection system (μEDS) has attracted plenty of research attention due to its merits including the capability in high-density integration, high sensitivity, fast analysis time, and reduced reagent consumption. The miniaturized working electrode is usually regarded as the core component of the μEDS, since its characteristic directly determines the performance of the whole system. Compared with the microelectrodes with conventional shapes such as the band, ring and disk, the three-dimensional (3D) micropillar array electrode (μAE) has demonstrated significant potential in improving the current response and decreasing the limits of detection due to its much larger reaction area. In this study, the numerical simulation method was used to investigate the performance of the μEDS, and both the geometrical and hydrodynamic parameters, including the micropillars shape, height, arrangement form and the flow rate of the reactant solution, were taken into consideration. The tail effect in μAEs was also quantitatively analyzed based on a pre-defined parameter of the current density ratio. In addition, a PDMS-based 3D μAE was fabricated and integrated into the microchannel for the electrochemical detection. The experiments of cyclic voltammetry (CV) and chronoamperometry (CA) were conducted, and a good agreement was found between the experimental and simulation results. This study would be instructive for the configuration and parameters design of the μEDS, and the presented method can be adopted to analyze and optimize the performance of nanochip-based electrochemical detection system (nEDS).
Collapse
Affiliation(s)
- Bo Liu
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
| | - Chuanwen Lv
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
| | - Chaozhan Chen
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
| | - Bin Ran
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Huaying Chen
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China; (B.L.); (C.L.); (C.C.); (B.R.); (H.C.)
- Correspondence:
| |
Collapse
|
24
|
Pires LR, Amado IR, Gaspar J. Dissolving microneedles for the delivery of peptides – Towards tolerance-inducing vaccines. Int J Pharm 2020; 586:119590. [DOI: 10.1016/j.ijpharm.2020.119590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023]
|
25
|
Yadav PR, Han T, Olatunji O, Pattanayek SK, Das DB. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics 2020; 12:E693. [PMID: 32707878 PMCID: PMC7464833 DOI: 10.3390/pharmaceutics12080693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
In the last two decades, microneedles (MNs) have received significant interest due to their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have found applications in a range of research and development areas in drug delivery. They have been prepared using a variety of materials and fabrication techniques resulting in MN arrays with different dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters play crucial roles in determining the drug release profiles from the MNs. Developing mathematical modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances. These will then be helpful for pharmaceutical and biotechnological industries as well as professionals working in the field of regulatory affairs focusing on MN based TDD systems. This is because modelling has a great potential to reduce the financial and time cost of both the MNs' studies and manufacturing. For example, a number of robust mathematical models for predicting the performance of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical properties of the skin. In addressing these points, this review paper aims to highlight the current status of the MN modelling research, in particular, the modelling, simulation and optimisation of the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is discussed within this paper. Thus, this review paper provides a better understanding of the modelling of the MN mediated drug delivery process.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| | - Ololade Olatunji
- Department of Chemical and Petroleum Engineering, University of Lagos, Lagos 100213, Nigeria
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| |
Collapse
|
26
|
Rapidly Separable Micropillar Integrated Dissolving Microneedles. Pharmaceutics 2020; 12:pharmaceutics12060581. [PMID: 32585966 PMCID: PMC7356013 DOI: 10.3390/pharmaceutics12060581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023] Open
Abstract
Dissolving microneedle (DMN) patches were developed as efficient and patient-friendly transdermal delivery systems for biopharmaceuticals. However, recent studies have confirmed that the efficiency of DMNs to deliver biopharmaceuticals is highly reduced because of incomplete insertion caused by the stiffness and elastic properties of the skin. Therefore, micropillar integrated DMNs were developed to overcome the insertion limitations of DMN patches. Although micropillars were designed as integrated applicators to implant DMNs across the skin, they can also become inserted into the skin, leading to skin injury and inflammation. Herein, we have developed a separable micropillar integrated DMN (SPDMN) capable of inserting DMNs across the skin with high efficiency while minimizing skin injury risk through the introduction of a safety ring feature. Unlike previously developed systems, the SPDMN does not require continuous skin attachment and can be detached immediately post-application, leaving DMNs implanted inside the skin. Altogether, the findings of this study lead to the development of a quick, safe, and efficient DMN-based drug delivery platform.
Collapse
|