1
|
Jiang F, Yin S, Zhang X. Mechanism of action and experimental validation of key genes common to diabetic retinopathy and coronary heart disease based on multiple bioinformatics investigations. Front Genet 2025; 16:1548147. [PMID: 40176795 PMCID: PMC11961877 DOI: 10.3389/fgene.2025.1548147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction The relationship between diabetic retinopathy (DR) and coronary artery disease (CHD) has been established as a reliable predictor. However, the underlying mechanisms linking these two conditions remain poorly understood. Identifying common key genes could provide new therapeutic targets for both diseases. Methods Public databases were used to compile training and validation datasets for DR and CHD. Machine learning algorithms and expression validation were employed to identify these key genes. To investigate immune cell differences, single-sample gene set enrichment analysis (ssGSEA) and the Wilcoxon test were applied. Spearman correlation analysis further explored the relationship between key genes and immune cell variations. Additionally, potential therapeutic drugs targeting these key genes were identified and a key gene-drug network was constructed. The role of the key genes in the pathogenesis of DR and CHD was further examined through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results Consistent expression trends observed across datasets (GSE221521, GSE113079, GSE189005, GSE42148) led to the identification of HIRIP3 and ZNF416 as key genes. In GSE221521, HIRIP3 was positively correlated with CD56 bright natural killer cells (cor = 0.329, P < 0.001) and type 1T helper cells (cor = 0.327, P < 0.001), while ZNF416 showed significant correlations with CD4 T cell activation (cor = 0.340, P < 0.001) and type 1T helper cells (cor = 0.273, P < 0.05). Moreover, 82 transcription factors (TFs) were predicted, including SP3. Binding free energy calculations for key genes and potential drugs suggested stable binding conformations. RT-qPCR results revealed elevated expression of both HIRIP3 and ZNF416 in the control group compared to the DR with CHD (DRwCHD) group, with only ZNF416 showing significant differences between the groups (p < 0.05). Discussion These findings highlight HIRIP3 and ZNF416 as crucial genes in DR and CHD detection, providing a foundation for identifying novel therapeutic targets for both diseases.
Collapse
Affiliation(s)
| | - Shi Yin
- Department of Cardiology, The Affiliated Hospital of Yunnan University, Kunming, China
| | | |
Collapse
|
2
|
Wu Y, Liang Z, Li K, Feng J. Knockdown of HOTAIR Alleviates High Glucose-Induced Apoptosis and Inflammation in Retinal Pigment Epithelial Cells. Appl Biochem Biotechnol 2025; 197:1743-1759. [PMID: 39607470 DOI: 10.1007/s12010-024-05083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications in diabetes. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played critical regulatory roles in DR. However, the role of lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in the high glucose (HG)-induced human retinal pigment epithelial (RPE) cell injury remains unclear. Herein, we found the expression of HOTAIR was increased in the retina of DR rats and HG-induced ARPE-19 cells. Knockdown of HOTAIR improved viability, inhibited apoptosis, increased Bcl-2 protein levels, and decreased Bax and cleaved caspase 3 protein levels in HG-treated ARPE-19 cells. Moreover, enzyme-linked immunosorbent assay showed that HOTAIR silencing reduced interleukin 6 and tumor necrosis factor-α release of ARPE-19 cells under HG conditions. Mechanistically, luciferase reporter assay and RNA immunoprecipitation assay validated that HOTAIR could directly sponge miR-326 to upregulate transcription factor 4 (TCF4) expression. Furthermore, rescue experiments confirmed that HOTAIR promoted apoptosis and inflammation of HG-treated ARPE-19 cells by the miR-326/TCF4 axis. In summary, HOTAIR enhanced HG-induced retinal pigment epithelial cell injury by promoting apoptosis and inflammation, shedding light on the importance of HOTAIR as a novel potential target for DR treatment.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China.
| | - Zenghui Liang
- Department of Interventional Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Kun Li
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China
| | - Junli Feng
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China
| |
Collapse
|
3
|
Stevanović J, Petrović U, Penezić A, Radojičić O, Ardalić D, Mandić M, Mandić-Marković V, Miković Ž, Brkušanin M, Nedić O, Dobrijević Z. LncRNAs Involved in Antioxidant Response Regulation as Biomarkers of Gestational Diabetes: A Study on H19, MALAT1 and MEG3. Antioxidants (Basel) 2024; 13:1503. [PMID: 39765830 PMCID: PMC11673377 DOI: 10.3390/antiox13121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Recent findings highlighted the potential of long non-coding RNAs (lncRNAs) as novel indicators of gestational diabetes mellitus (GDM), as they demonstrate altered expression in metabolic disorders, oxidative stress (OS) and inflammation (IFM). The aim of this study was to evaluate the diagnostic potential and prognostic significance of the OS/IFM-related lncRNAs H19, MALAT1 and MEG3 in GDM and their correlations with redox status-related parameters. The relative quantification of selected lncRNAs from peripheral blood mononuclear cells (PBMCs) of GDM patients and controls (n = 50 each) was performed by qPCR. The expression levels were tested for correlations with metal ion concentrations, NRF2 expression, activities of glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), serum thiol content, protein carbonyl level and thiobarbituric acid reactive substances. MALAT1 and H19 were significantly downregulated in GDM patients (p = 0.0095 and p = 0.012, respectively). A correlation was observed between H19 expression and zinc levels in both GDM patients and controls. MALAT1 expression positively correlated with NFE2L2 levels in GDM patients (p = 0.026), while H19 exhibited a positive correlation with GR activity in controls (p = 0.018) and an inverse correlation with SOD activity (p = 0.048). Our data show the disturbance of OS/IFM-lncRNAs in GDM pathogenesis and illustrate the biomarker potential of the analyzed lncRNAs, as well as of certain redox status parameters.
Collapse
Affiliation(s)
- Jovana Stevanović
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (J.S.); (A.P.); (O.N.)
| | - Uroš Petrović
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (J.S.); (A.P.); (O.N.)
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (J.S.); (A.P.); (O.N.)
| | - Ognjen Radojičić
- University Clinic for Gynecology and Obstetrics “Narodni Front”, 11000 Belgrade, Serbia (D.A.); (V.M.-M.); (Ž.M.)
| | - Daniela Ardalić
- University Clinic for Gynecology and Obstetrics “Narodni Front”, 11000 Belgrade, Serbia (D.A.); (V.M.-M.); (Ž.M.)
| | - Milica Mandić
- University Clinic for Gynecology and Obstetrics “Narodni Front”, 11000 Belgrade, Serbia (D.A.); (V.M.-M.); (Ž.M.)
| | - Vesna Mandić-Marković
- University Clinic for Gynecology and Obstetrics “Narodni Front”, 11000 Belgrade, Serbia (D.A.); (V.M.-M.); (Ž.M.)
- Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Željko Miković
- University Clinic for Gynecology and Obstetrics “Narodni Front”, 11000 Belgrade, Serbia (D.A.); (V.M.-M.); (Ž.M.)
- Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Miloš Brkušanin
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (J.S.); (A.P.); (O.N.)
| | - Zorana Dobrijević
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (J.S.); (A.P.); (O.N.)
| |
Collapse
|
4
|
Brondani LDA, Dandolini I, Girardi E, Canani LH, Crispim D, Dieter C. Association between the G/G genotype of the lncRNA MEG3 rs7158663 polymorphism and proliferative diabetic retinopathy. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240024. [PMID: 39529988 PMCID: PMC11554361 DOI: 10.20945/2359-4292-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 11/16/2024]
Abstract
Objective To investigate the association between the long noncoding RNAs (lncRNAs) maternally expressed gene 3 (MEG3) rs7158663 polymorphism and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). Subjects and methods The study included 628 patients with T2DM and DR ("case group," including 283 with proliferative DR [PDR] and 345 with nonproliferative DR [NPDR]), and 381 patients with T2DM but no DR ("control group"). The diagnosis of DR was established using indirect ophthalmoscopy. The rs7158663 A/G polymorphism was genotyped using real-time polymerase chain reaction (PCR) with TaqMan probes. Results Patients with DR, compared with those without DR, had lower frequencies of both the G/G genotype (17.5% and 23.6%, respectively, p = 0.044) and the G allele (p = 0.017). When only patients with PDR were compared with controls, the G/G genotype was associated with increased protection against PDR after adjustment (odds ratio 0.551, 95% confidence interval 0.314-0.966, p = 0.038). This association also remained in the dominant (p = 0.036) and additive (p = 0.031) genetic models. Conclusion This study reveals, for the first time, that the G/G genotype of the lncRNA MEG3 rs7158663 single-nucleotide polymorphism is associated with a protective effect against advanced-stage DR in patients with T2DM. Additional studies are warranted to validate this finding.
Collapse
Affiliation(s)
- Leticia de Almeida Brondani
- Unidade de Pesquisa LaboratorialCentro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRSBrasilUnidade de Pesquisa Laboratorial, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrasilPrograma de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Isabele Dandolini
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade do Vale do Rio dos SinosSão LeopoldoRSBrasilUniversidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brasil
| | - Eliandra Girardi
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade do Vale do Rio dos SinosSão LeopoldoRSBrasilUniversidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brasil
| | - Luís Henrique Canani
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrasilPrograma de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrasilPrograma de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Cristine Dieter
- Hospital de Clínicas de Porto AlegreServiço de EndocrinologiaPorto AlegreRSBrasilServiço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do SulFaculdade de MedicinaPorto AlegreRSBrasilPrograma de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
6
|
Song W, Xing R, Yang H, Liu S, Yu H, Li P. Therapeutic potential of enzymatically extracted eumelanin from squid ink in type 2 diabetes mellitus ICR mice: Multifaceted intervention against hyperglycemia, oxidative stress and depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:993-1007. [PMID: 37715565 DOI: 10.1002/jsfa.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease that poses significant health risks due to its numerous complications. However, the effects of eumelanin on oxidative stress, hyperglycemia and depression in diabetic mice have not been extensively studied. RESULTS Our study employed an enzymatic approach to extract eumelanin from squid ink and characterized it using spectroscopic techniques. Remarkably, eumelanin extracted with alkaline-neutral-flavor protease (ANF) displayed superior inhibitory activity against α-glucosidase and α-amylase, while enhancing glucose utilization and hepatic glycogen synthesis in human hepatocellular carcinoma cell line (HepG2) insulin resistance model. Further evaluation of ANF in a T2DM ICR mouse model demonstrated its significant potential in alleviating hyperglycemia, reducing glycosylated serum protein levels, improving glucose tolerance and modulating total cholesterol and low-density lipoprotein levels, as well as antioxidant indices at a dosage of 0.04 g kg-1 . Additionally, ANF exhibited positive effects on energy levels and reduced immobility time in antidepressant behavioral experiments. Moreover, ANF positively influenced the density and infiltration state of renal cells, while mitigating inflammatory enlargement and deformation of liver cells, without inducing any adverse effects in mice. CONCLUSION Overall, these findings underscore the significant therapeutic potential of ANF in the treatment of T2DM and its associated complications. By augmenting lipid and glucose metabolism, mitigating oxidative stress and alleviating depression, ANF emerges as a promising candidate for multifaceted intervention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Song
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronge Xing
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoyue Yang
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huahua Yu
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Pengcheng Li
- CAS and Shandong Province Key laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
7
|
DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep 2024; 14:1. [PMID: 38167627 PMCID: PMC10762256 DOI: 10.1038/s41598-023-50600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.
Collapse
Affiliation(s)
- William DeGroat
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Kush Patel
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Dinesh Mendhe
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Selvakumar SC, Preethi KA, Thomas P, Ameya KP, Sekar D. Non-Coding RNAs and Diet. EPIGENETICS AND HUMAN HEALTH 2024:31-48. [DOI: 10.1007/978-3-031-54215-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Li J, Yang Q, Liu H, Wang M, Pan C, Han L, Lan X. Phloretin alleviates palmitic acid-induced oxidative stress in HUVEC cells by suppressing the expression of LncBAG6-AS. Food Funct 2023; 14:9350-9363. [PMID: 37782102 DOI: 10.1039/d3fo03523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Oxidative stress (OS) is an important trigger of vascular endothelial injury (VEI), which then leads to cardiovascular disease (CVDs). Phloretin was previously investigated to alleviate OS in human umbilical vein endothelial cells (HUVECs) by activating the AMPK/Nrf2 pathway; however, whether phloretin exerts cardiovascular health benefits by targeting non-coding RNAs (ncRNAs) remains unclear. Herein, the whole transcriptome sequencing and lncRNA library building were performed on HUVECs, a commonly used cell line for CVDs study, from different groups in control (CK), palmitic acid (PA, 100 μM), and PA + phloretin (50 μM, G50). KEGG analysis demonstrated that DE-lncRNAs regulated the pathway related to OS and metabolism in HUVECs. LncBAG6-AS was highly expressed under OS stimulation, which was reversed by phloretin co-treatment. Moreover, the MMP, activities of SOD, GSH-Px, T-AOC and GR were significantly ameliorated after interference of LncBAG6-AS, which were consistent with phloretin recover group. Furthermore, the expression of DE-genes from previously reported mRNA sequencing, including MAPK10, PIK3R1, ATP2B4, AKT2, and ADCY9, were significantly changed with LncBAG6-AS interference, indicating that LncBAG6-AS may participate in the process of OS attenuation by phloretin through regulating gene expression. So, the transcriptome sequencing of HUVECs with LncBAG6-AS knockdown was subsequently performed and DE-genes for "NC vs. si-ASO-LncBAG6-AS" were significantly enriched with GO terms, such as apoptosis, response to OS, ferroptosis, and others, which were similar to those observed from KEGG analysis. Overall, this study provides new insights into the molecular mechanisms by which bioactive substances alleviate OS and potential targets for the early prevention and treatment of VEI.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjing, 300072, P. R. China
| | - Hongfei Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100089, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
10
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|
11
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
12
|
Hu B, Chen W, Zhong Y, Tuo Q. The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1217985. [PMID: 37396588 PMCID: PMC10313127 DOI: 10.3389/fcvm.2023.1217985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Pyroptosis is a unique kind of programmed cell death that varies from apoptosis and necrosis morphologically, mechanistically, and pathophysiologically. Long non-coding RNAs (LncRNAs) are thought to be promising biomarkers and therapeutic targets for the diagnosis and treatment of a variety of diseases, including cardiovascular disease. Recent research has demonstrated that lncRNA-mediated pyroptosis has significance in CVD and that pyroptosis-related lncRNAs may be potential targets for the prevention and treatment of specific CVDs such as diabetic cardiomyopathy (DCM), atherosclerosis (AS), and myocardial infarction (MI). In this paper, we collected previous research on lncRNA-mediated pyroptosis and investigated its pathophysiological significance in several cardiovascular illnesses. Interestingly, certain cardiovascular disease models and therapeutic medications are also under the control of lncRNa-mediated pyroptosis regulation, which may aid in the identification of new diagnostic and therapy targets. The discovery of pyroptosis-related lncRNAs is critical for understanding the etiology of CVD and may lead to novel targets and strategies for prevention and therapy.
Collapse
Affiliation(s)
| | | | | | - Qinhui Tuo
- Correspondence: Yancheng Zhong Qinhui Tuo
| |
Collapse
|
13
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
14
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
|
15
|
Metformin Treatment Modulates Long Non-Coding RNA Isoforms Expression in Human Cells. Noncoding RNA 2022; 8:ncrna8050068. [PMID: 36287120 PMCID: PMC9607547 DOI: 10.3390/ncrna8050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.
Collapse
|
16
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
17
|
Shi J, Deng H, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics. CHEMOSPHERE 2022; 304:135321. [PMID: 35718033 DOI: 10.1016/j.chemosphere.2022.135321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Investigating the long-term effects of microplastics (MPs) in vivo is necessary for evaluating its biological toxicity. Previously, we showed that MPs elicit vascular dysfunctions in atherosclerotic mice. However, the effects of long-term treatment with environmental levels of MPs on biological functions and RNA expression profiles in wild-type mice are unknown. Here, C57BL/6 mice were administered 1000 μg/L MPs through their drinking water for 180 days. Transcriptomic analyses, biochemical analysis, and histopathological examination were conducted to determine the key signals and molecular mechanisms triggered by MPs in vivo using whole transcriptome sequencing, enzyme-linked immunosorbent assay, and histopathological analysis. Notably, our data revealed that MPs aggravated vascular lesions and organ injuries, particularly liver, kidney, and heart injuries. Additionally, MPs exacerbated oxidative injuries by inhibiting the activities of antioxidant enzymes and increasing the levels of the serum biochemistry indicator of organ damage. RNA sequencing of vascular tissues showed that 674 mRNAs, 39 lncRNAs, 196 miRNAs, and 565 circRNAs were abnormally expressed in MPs-treated mice compared with the untreated group. Pathway enrichment analyses identified pathways linked to the toxicity of MPs, including lysosomal, NOD-like receptor, and peroxisome proliferator-activated receptor pathways. Additionally, competing endogenous RNA networks were constructed and hub RNAs were identified using bioinformatics analysis. Taken together, our data suggested that toxicity induced by long-term exposure to MPs continually presents with extensive changes in biological features and global gene expression profiles. Our data provides new insights into the biological toxicity of MPs.
Collapse
Affiliation(s)
- Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| |
Collapse
|
18
|
Xu X, Zhang Y. Regulation of Oxidative Stress by Long Non-coding RNAs in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:931704. [PMID: 35782387 PMCID: PMC9241987 DOI: 10.3389/fnmol.2022.931704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, glioma, and epilepsy, involve oxidative stress and neuronal apoptosis, often leading to long-term disability or death. Emerging studies suggest that oxidative stress may induce epigenetic modifications that contribute to CNS disorders. Non-coding RNAs are epigenetic regulators involved in CNS disorders and have attracted extensive attention. Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides long and have no protein-coding function. However, these molecules exert regulatory functions at the transcriptional, post-transcriptional, and epigenetic levels. However, the major role of lncRNAs in the pathophysiology of CNS disorders, especially related to oxidative stress, remains unclear. Here, we review the molecular functions of lncRNAs in oxidative stress and highlight lncRNAs that exert positive or negative roles in oxidation/antioxidant systems. This review provides novel insights into the therapeutic potential of lncRNAs that mediate oxidative stress in CNS disorders.
Collapse
Affiliation(s)
- Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|