1
|
Ganguly SC, Maity R, Manna P, Sardar A, Mukherjee S, Karati D. Amplifying therapeutic potential through optimization of bioavailability of poorly soluble flavonols via albumin-based nanoparticles. Drug Dev Ind Pharm 2025:1-12. [PMID: 40186858 DOI: 10.1080/03639045.2025.2490281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Flavonols have different pharmacological actions that render them highly promising therapeutic targets. However, their water solubility and bioavailability are low, which restricts their therapeutic potential. ABNPs, albumin-based nanoparticles, are potential nanocarriers that enhance flavonol solubility, stability, and targeted delivery. By utilizing ABNPs, in this work we provide a detailed overview of strategies employed to attain maximum bioavailability of poorly water-soluble flavonols. The review critically evaluates ABNP-mediated delivery's pharmacokinetic advantage, physicochemical properties, and formulation principles. We also highlight existing gaps in research, such as the need for stringent in vivo validity tests, standardized formulation procedures, and in-depth mechanistic understanding of flavonol-albumin interactions. SIGNIFICANCE Despite having potential therapeutic activities, the utilization of flavonoids in the form of medication is limited. Some recent studies have shown that flavonoids exhibit low solubility, low permeability and chemical instability, thereby limiting their bioavailability and therapeutic responses. METHODS To overcome these drawbacks, multiple novel drug delivery approaches have emerged in the pharmaceutical research. RESULTS These novel approaches seem to offer a viable foundation for improving the bioavailability of the flavonoids and positioning them as viable therapeutic options. Out of all the polymers implemented in enhancing the solubility and bioavailability of the flavonoids, albumin-based nanomaterials have been the most efficacious one. CONCLUSION Compared to all other polymeric nano-carriers, albumin nano-carriers offer a greater scale of drug entrapment and drug loading because of their capacity for surface modification, crosslinking, conjugation, coupling, and characteristics including biodegradability and biocompatibility.
Collapse
Affiliation(s)
| | - Ritam Maity
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Priya Manna
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Avisek Sardar
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Swarupananda Mukherjee
- NSHM College of Pharmacy and Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, West Bengal, Kolkata, India
| |
Collapse
|
2
|
Męczarska K, Cyboran-Mikołajczyk S, Solarska-Ściuk K, Oszmiański J, Siejak K, Bonarska-Kujawa D. Protective Effect of Field Horsetail Polyphenolic Extract on Erythrocytes and Their Membranes. Int J Mol Sci 2025; 26:3213. [PMID: 40244071 PMCID: PMC11989917 DOI: 10.3390/ijms26073213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Field horsetail (Equisetum arvense L.) is widely utilized in traditional medicine and is a rich source of bioactive compounds such as flavonoids, phenolic acids, and silica. This study investigates the protective effect of the polyphenolic extract from field horsetail (HLE) on erythrocytes and their cell membranes. The content of polyphenolic compounds in the extract was determined using the HPLC-DAD and Folin-Ciocalteu methods. The extract's hemolytic activity, toxicity, antioxidant activity, and its impact on the physical properties of erythrocytes and lipid membrane were investigated. The antioxidant properties were evaluated using erythrocytes and isolated erythrocyte membranes oxidized by UVC radiation and AAPH. The impact of the extract on the ordering and fluidity of erythrocyte and model lipid membranes was studied. Furthermore, the transmembrane potential, shape of erythrocytes and the dipole potential of the lipid membranes under the influence of HLE were evaluated. The results indicated that HLE extract exhibited no toxicity to erythrocytes and HMEC-1 cells. HLE components effectively protect erythrocytes and their membranes against oxidation. They interact with the outer, polar surface of the erythrocyte membrane and reduce both erythrocyte membrane potential and lipid membrane dipole potential. The HLE polyphenols decrease the concentration of free radicals at the surface of the membrane, where they are located, and serve as a protective barrier, preventing penetration into the membrane.
Collapse
Affiliation(s)
- Katarzyna Męczarska
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland; (S.C.-M.); (K.S.)
| | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland; (S.C.-M.); (K.S.)
| | - Katarzyna Solarska-Ściuk
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jan Oszmiański
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 St., 51-630 Wrocław, Poland;
| | - Katarzyna Siejak
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland; (S.C.-M.); (K.S.)
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland; (S.C.-M.); (K.S.)
| |
Collapse
|
3
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
4
|
Morsy HM, Zaky MY, Yassin NYS, Khalifa AYZ. Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals. Int J Pharm 2025; 670:125135. [PMID: 39732216 DOI: 10.1016/j.ijpharm.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability. Moreover, this review illustrated the pioneering biomedical applications of nanoparticle-based flavonoid therapeutics, as well as safety and toxicity considerations of using a flavonoid nanoparticle delivery system.
Collapse
Affiliation(s)
- Hadeer M Morsy
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt.
| | - Nour Y S Yassin
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Ashraf Y Z Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
5
|
Pei J, Kumarasamy RV, Jayaraman S, Kanniappan GV, Long Q, Palanisamy CP. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management. Ageing Res Rev 2025; 104:102665. [PMID: 39824363 DOI: 10.1016/j.arr.2025.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in nanotechnology have paved the way for quercetin-functionalized nanomaterials, offering solutions to these challenges. These nanostructures enhance quercetin's solubility, stability, and targeted brain delivery, thereby augmenting its therapeutic potential. In this review, nanocarriers (like liposomes, polymeric nanoparticles, and metal-based nanosystems) are explored for their potential application in optimizing quercetin delivery in AD management. It discusses the mechanisms by which these nanostructures enhance BBB penetration and exert neuroprotective effects. Furthermore, the review examines the outcomes of preclinical and in vitro studies, while addressing the challenges of scaling these approaches for clinical application. By merging the fields of nanotechnology and neurotherapeutics, the importance of quercetin-functionalized nanomaterials in advancing AD management strategies is underscored in this review.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Pro-cessing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guang-dong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Gopalakrishnan Velliyur Kanniappan
- Department of physiology, Saveetha Medical College & Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, PR China.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2025; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
7
|
Revankar AA, Patil AS, Karishetti R, Chougule KR, Patil P, Salokhe A. Enhanced bioavailability of Quercetin-loaded niosomal in situ gel for the management of Parkinson's disease. Front Pharmacol 2025; 15:1519649. [PMID: 39931515 PMCID: PMC11808128 DOI: 10.3389/fphar.2024.1519649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 02/13/2025] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurological disorder, characterized by motor symptoms such as tremor and rigidity due to the degeneration of dopaminergic neurons in the substantia nigra. This study investigates the formulation of quercetin, a natural bioflavonoid with potent antioxidant and anti-inflammatory properties, as niosomes for intranasal delivery to enhance its bioavailability and therapeutic potential for PD. Methods The niosomal formulation was optimized for critical parameters including particle size, entrapment efficiency, and zeta potential. Male Wistar rats were utilized to assess the effects of quercetin-loaded niosomes on motor function, dopaminergic neuron protection, and oxidative stress alleviation. Results The optimized niosomal formulation exhibited a particle size of 195 nm, a polydispersity index (PDI) of 0.29, a zeta potential (ZP) of -30.63 mV, and an entrapment efficiency (EE) of 82.77%. In vivo evaluations conducted using the haloperidol-induced PD model revealed significant enhancements in behavioural, biochemical, and histopathological outcomes when compared to both disease controls and the standard treatment group. Additionally, short-term stability tests confirmed the robustness of the formulation. Conclusion The findings suggest that the quercetin-loaded niosomal formulation offers improved drug delivery and efficacy, indicating its potential as a superior treatment option for PD compared to conventional dosage forms. This approach may pave the way for enhanced therapeutic strategies targeting the neurodegenerative processes underlying Parkinson's disease.
Collapse
Affiliation(s)
- Abhishek A. Revankar
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Archana S. Patil
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Reshma Karishetti
- Department of pathology, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Krutuja R. Chougule
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Priyanka Patil
- Department of Pharmacology, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Abhijit Salokhe
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
8
|
Dessì D, Fais G, Follesa P, Sarais G. Neuroprotective Effects of Myrtle Berry By-Product Extracts on 6-OHDA-Induced Cytotoxicity in PC12 Cells. Antioxidants (Basel) 2025; 14:88. [PMID: 39857422 PMCID: PMC11759165 DOI: 10.3390/antiox14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions. Myrtus communis L., a Mediterranean plant primarily used in liquor production, generates significant waste rich in antioxidant and anti-inflammatory properties. This study explores the neuroprotective potential of Myrtus berry by-products in a cellular model of neurodegeneration. Using PC12 cells exposed to 6-hydroxydopamine (6-OHDA), we assessed cell viability via MTT assay and measured reactive oxygen species (ROS) production using DCFDA fluorescence. Additionally, we analyzed the expression of genes linked to oxidative stress and neuronal function, including AChE, PON2, Grin1, Gabrd, and c-fos, by RT-PCR. Our findings reveal that Myrtus extract significantly protects against 6-OHDA-induced cytotoxicity, reduces ROS levels, and modulates the expression of key stress-related genes, underscoring its potential as a neuroprotective agent. These results highlight the therapeutic promise of Myrtus extracts in mitigating neurodegenerative processes, paving the way for future interventions.
Collapse
Affiliation(s)
- Debora Dessì
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy;
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
9
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
10
|
Alya Nabilah G, Adi Nugroho R, Dendy D, Handayani M, Sukowati C, Tiribelli C, Lory Crocè S, Wahyu Lestari W. Dynamic pH‐Responsive Release and Biological Impact of In Situ Quercetin‐Modified MIL‐101(Fe)‐NH 2. CHEMNANOMAT 2025; 11. [DOI: 10.1002/cnma.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 02/02/2025]
Abstract
AbstractA successful investigation was conducted on the in situ modification of MIL‐101(Fe)‐NH2 with quercetin and its controlled release under various pH conditions. MIL‐101(Fe)‐NH2 was synthesized using an electrochemical method at room temperature (15 volts, 30 min). The formation of the material was confirmed through comprehensive analyses, including PXRD, FTIR, and TGA. Nitrogen sorption isotherm measurements revealed that Qu@MIL‐101(Fe)‐NH2 exhibited a smaller surface area compared to MIL‐101(Fe)‐NH2, with both materials classified as mesoporous. Transmission electron microscopy (TEM) clearly depicted the materials’ octahedral microspindle morphology. The cumulative percent release (CPR) of quercetin from Qu@MIL‐101(Fe)‐NH2 over 72 h was determined to be 53.45 % at pH 1.2, 19.48 % at pH 4.8, and 5.87 % at pH 7.4. Notably, quercetin release in the acidic microenvironment representative of cancer cells (pH 4.8) was nearly four times higher than under physiological conditions (pH 7.4). Kinetic release studies indicated that quercetin release from Qu@MIL‐101(Fe)‐NH2 followed the Ritger‐Peppas kinetic model, suggesting non‐Fickian diffusion. The MIL‐101(Fe)‐NH2 nanocarriers, with in situ‐loaded quercetin, demonstrated promising potential for pH‐triggered drug release. Additionally, the safety of MIL‐101(Fe)‐NH2 in biological models and the anticancer efficacy of quercetin were evaluated in vitro using two liver cancer cell lines.
Collapse
Affiliation(s)
- Ghina Alya Nabilah
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Roshid Adi Nugroho
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Dendy Dendy
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems National Research and Innovation Agency (BRIN) Puspiptek Area Tangerang Selatan, Banten 15314 Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology National Research and Innovation Agency (BRIN) Jakarta Pusat 10340 Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS AREA Science Park Basovizza 34049 Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS AREA Science Park Basovizza 34049 Italy
| | - Saveria Lory Crocè
- Department of Medicine, Surgery and Health Sciences University of Trieste Trieste Italy
| | - Witri Wahyu Lestari
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Kentingan, Jebres Surakarta 57126 Indonesia
| |
Collapse
|
11
|
Chatwichien J, Semakul N, Yimklan S, Suwanwong N, Naksing P, Ruchirawat S. Lutein derived from Xenostegia tridentata exhibits anticancer activities against A549 lung cancer cells via hyaluronidase inhibition. PLoS One 2024; 19:e0315570. [PMID: 39680591 DOI: 10.1371/journal.pone.0315570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Hyaluronidase has been emerging as a potential target for cancer treatment. Herein, the anticancer effects against A549 NSCLC cells and hyaluronidase inhibitory activity of the ethanol extract of Xenostegia tridentata (L.) D.F. Austin & Staples and its subfractions were investigated. In correlation with their hyaluronidase inhibition, the hexane subfraction exhibited the most potent cytotoxicity, and the ethyl acetate subfraction could significantly inhibit the cancer cell migration. The hexane and ethyl acetate fractions were then further isolated to identify the active compounds responsible for the anticancer and hyaluronidase inhibitory activities. Among the 10 isolated compounds, lutein (5), a previously reported anti-lung cancer agent, showed the strongest inhibition on hyaluronidase enzyme activity. Its anticancer activities were validated. Notably, in addition to demonstrating the potential of X. tridentata extract for NSCLC treatment, this study discloses that hyaluronidase is a potential target for the anticancer activities of lutein. The cellular mechanisms underlying the hyaluronidase inhibitory activity of X. tridentata extract need to be further explored to fully understand how this inhibition contributes to its anti-cancer effects.
Collapse
Affiliation(s)
- Jaruwan Chatwichien
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Bangkok, Thailand
- Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Natthawat Semakul
- Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Saranphong Yimklan
- Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | | | - Prakansi Naksing
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
12
|
Abou-Taleb BA, El-Hadidy WF, Masoud IM, Matar NA, Hussein HS. Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer's disease. Int J Pharm 2024; 666:124814. [PMID: 39384026 DOI: 10.1016/j.ijpharm.2024.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Dihydroquercetin is a natural flavonoid with anti-inflammatory, antioxidant, and neuroprotective activities. Dihydroquercetin exhibits a great neuroprotector promise in Alzheimer's disorder via preventing the aggregation of amyloid-beta-peptide-Aβ(1-42). The goal of the study was to create dihydroquercetin-loaded-chitosan nanoparticles (DHQ-CS NPs) loaded to a mucoadhesive, thermosensitive in-situ gel for direct nasal administration to cure Alzheimer's disorder. Loading drug in chitosan nanoparticles and incorporation into thermosensitive gel enhanced residence time and reduced mucociliary-clearance. Different in-vitro-physicochemical-characteristics of gels and nanoparticles-characterization were used to evaluate the formulations. The therapeutic effectiveness of DHQ-CS NPs gel was evaluated behaviorally, biochemically and histopathologically in Alzheimer's-rat-model compared to intranasal DHQ gel. The small particles-size was obtained = 235.3 nm of DHQ-CS NPs. The DHQ-CS NPs gel demonstrated a greater release rate compared to the raw DHQ gel. Additionally, the nasal-administration of the DHQ-CS NPs gel showed better In-vivo results compared to DHQ gel, through improvement of memory and learning deficits and also the exploratory behavior and new object memory in streptozotocin induced-Alzheimer rats. Biochemically, the intranasal DHQ-CS NPs gel, showed reduced both Aβ-protein formation and tau protein hyperphosphorylation, inhibition of acetylcholine esterase activity and oxidative stress in the brain with increase of total antioxidants in the brain and serum, compared to DHQ gel. Histopathologically, the DHQ-CS NPs nasal gel produced improvement in the hippocampal and cerebral cortex structures, being comparable to the normal group. Consequently, the intranasal DHQ-CS NPs loaded in-situ gel seems to be a promising therapeutic formulation for Alzheimer's disease medication.
Collapse
Affiliation(s)
- Basant A Abou-Taleb
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmacy Practices, Alexandria University Hospitals, Alexandria University, Alexandria, Egypt.
| | - Wessam F El-Hadidy
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Noura A Matar
- Department of Histochemistry & Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hoda S Hussein
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
14
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
15
|
So M, Ono M, Oogai S, Kondo M, Yamazaki K, Nachtegael C, Hamajima H, Mutoh R, Kato M, Kawate H, Oki T, Kawata Y, Kumamoto S, Tokui N, Takei T, Shimizu K, Inoue A, Yamamoto N, Unoki M, Tanabe K, Nakashima K, Sasaki H, Hojo H, Nagata Y, Suetake I. Inhibitory effects of extracts from Eucalyptus gunnii on α-synuclein amyloid fibrils. Biosci Biotechnol Biochem 2024; 88:1289-1298. [PMID: 39169473 DOI: 10.1093/bbb/zbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead to cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
Collapse
Affiliation(s)
- Masatomo So
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Misaki Ono
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shigeki Oogai
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Minako Kondo
- ARFS, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kaede Yamazaki
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Risa Mutoh
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kato
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Hisaya Kawate
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Tomoyuki Oki
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shiho Kumamoto
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Noritaka Tokui
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Inoue
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Motoko Unoki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Tanabe
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Yang EJ, Kim JC, Na DH. Neuroprotective effects of cerebroprotein hydrolysate and its combination with antioxidants against oxidative stress-induced HT22 cell death. Toxicol Res 2024; 40:541-550. [PMID: 39345752 PMCID: PMC11436692 DOI: 10.1007/s43188-024-00248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024] Open
Abstract
This study aimed to investigate the neuroprotective effects of cerebroprotein hydrolysate (CPH) against oxidative stress-induced HT22 cell death. Additionally, the effect of antioxidants such as quercetin (QC) and N-acetyl-L-cysteine (NAC) on the neuroprotective activity of CPH was evaluated. The mouse-derived hippocampal neuronal cell line HT22 was pretreated with CPH or a mixture of CPH and QC or NAC. HT22 cell death was induced by either 10 mM glutamate, 2.5 μM amyloid-β (Aβ)25-35, and 300 μM cobalt chloride (CoCl2). As results, CPH effectively alleviated HT22 cell death induced by glutamate, Aβ25-35, and CoCl2. In addition, CPH combination with QC augmented cell viability in both glutamate- and Aβ25-35-stressed conditions but had no synergic effect on the CoCl2-stressed condition. The synergic effect of CPH and NAC combination was observed under all cell death conditions. The neuroprotective actions of CPH and its combinations with QC or NAC against various oxidative stress-induced HT22 cell deaths were demonstrated, providing a promising strategy for developing CPH preparations for the prevention and/or treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Eun-Ju Yang
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Jae Cheon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
17
|
de Oliveira Vian C, Marinho MAG, da Silva Marques M, Hort MA, Cordeiro MF, Horn AP. Effects of quercetin in preclinical models of Parkinson's disease: A systematic review. Basic Clin Pharmacol Toxicol 2024; 135:3-22. [PMID: 38682342 DOI: 10.1111/bcpt.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects dopaminergic neurons, thus impairing dopaminergic signalling. Quercetin (QUE) has antioxidant and neuroprotective properties that are promising for the treatment of PD. This systematic review aimed to investigate the therapeutic effects of QUE against PD in preclinical models. The systematic search was performed in PubMed, Scopus and Web of Science. At the final screening stage, 26 articles were selected according to pre-established criteria. Selected studies used different methods for PD induction, as well as animal models. Most studies used rats (73.08%) and mice (23.08%), with 6-OHDA as the main strategy for PD induction (38.6%), followed by rotenone (30.8%). QUE was tested immersed in oil, nanosystems or in free formulations, in varied routes of administration and doses, ranging from 10 to 400 mg/kg and from 5 to 200 mg/kg in oral and intraperitoneal administrations, respectively. Overall, evidence from published data suggests a potential use of QUE as a treatment for PD, mainly through the inhibition of oxidative stress, neuroinflammatory response and apoptotic pathways.
Collapse
Affiliation(s)
- Camila de Oliveira Vian
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| | - Marcelo Augusto Germani Marinho
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| | - Magno da Silva Marques
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina (Unoesc), Joaçaba, Brazil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| |
Collapse
|
18
|
Kaźmierczak T, Męczarska K, Lachowicz-Wiśniewska S, Cyboran-Mikołajczyk S, Oszmiański J, Bonarska-Kujawa D. Protective Effect of Polyphenolic Extracts from Hippophae rhamnoides L. and Reynoutria japonica Houtt. on Erythrocyte Membrane. Molecules 2024; 29:3090. [PMID: 38999046 PMCID: PMC11243633 DOI: 10.3390/molecules29133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS. The extracts' toxicity and impact on the erythrocytes' osmotic fragility were measured spectrophotometrically. The antioxidant activity was determined based on the inhibition of oxidation of erythrocytes and their membrane induced by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH),measured spectrophotometrically and using fluorimetry. To find the possible mechanism of the extracts' action, extract-modified cells were observed under a microscope, and the potential localization of the extract's phytochemical composition was checked using fluorescent probes. The results showed that the used extracts are not toxic to erythrocytes, increase their osmotic resistance, and successfully protect them against free radicals. Extract components localize on the outer part of the membrane, where they can scavenge the free radicals from the environment. Altogether, the presented extracts can greatly protect living organisms against free radicals and can be used to support the treatment of diseases caused by excess free radicals.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | | | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| | - Jan Oszmiański
- Departament of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-630 Wroclaw, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland
| |
Collapse
|
19
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
20
|
Tanhai G, Chahardehi AM, Sohrabi MA, Afshoon M, Saberian P, Pourshams M, Ghasemi D, Motaghi SM, Arefnezhad R, Niknam Z. Ameliorative properties of quercetin in the treatment of traumatic brain injury: a mechanistic review based on underlying mechanisms. Mol Biol Rep 2024; 51:695. [PMID: 38796674 DOI: 10.1007/s11033-024-09641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, with an estimated annual incidence of 27-69 million. TBI is a severe condition that can lead to high mortality rates and long-term cognitive, behavioral, and physical impairments in young adults. It is a significant public health concern due to the lack of effective treatments available. Quercetin, a natural flavonoid found in various fruits and vegetables, has demonstrated therapeutic potential with anti-inflammatory, antioxidant, and neuroprotective properties. Recently, some evidence has accentuated the ameliorating effects of quercetin on TBI. This review discusses quercetin's ability to reduce TBI-related damage by regulating many cellular and molecular pathways. Quercetin in vitro and in vivo studies exhibit promise in reducing inflammation, oxidative stress, apoptosis, and enhancing cognitive function post-TBI. Further clinical investigation into quercetin's therapeutic potential as a readily available adjuvant in the treatment of TBI is warranted in light of these findings. This review adds to our knowledge of quercetin's potential in treating TBI by clarifying its mechanisms of action.
Collapse
Affiliation(s)
- Golale Tanhai
- Department of Psychology and Counseling, Faculty of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | | | | - Maryam Afshoon
- Clinical Research Development Unit, Valiasr Educational Hospital, Abadan University of Medical Sciences, Abadan, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourshams
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Research Laboratory Co., Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
23
|
Ji W, Zhu H, Xing B, Chu C, Ji T, Ge W, Wang J, Peng X. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116912. [PMID: 37451489 DOI: 10.1016/j.jep.2023.116912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum, Sanyeqing) has been used in the prevention and treatment of repetitive Febrile seizures (FS) over the centuries in China. AIM OF THE STUDY T. hemsleyanum exerts wide pharmacological action, which has been widely used for treating various diseases, including infantile febrile seizure. However, the systematic study on this herb's material basis and the functional mechanism is lacking. This study intended to systematically elucidate the mechanism of T. hemsleyanum against febrile seizures. MATERIALS AND METHODS The efficacy of T. hemsleyanum was estimated by using a hot bath as a model of FS, the onset and duration of seizure, morphological structure changes of hippocampal neurons as well as magnetoencephalography were applied to evaluate the effects. Meanwhile, the bioactive components of T. hemsleyanum responsible for the therapeutic effect of T. hemsleyanum on FS were identified by UPLC-MS/MS. Then we systematically elucidated the mechanism of T. hemsleyanum based on metabonomics, transcriptomics, network pharmacological and experimental validation. RESULTS In a hyperthermia-induced FS model of rats, T. hemsleyanum significantly increased the seizure latency and decreased seizure duration, alleviating the abnormal delta and gamma band activity during epileptic discharge. Furthermore, ten chemical components of ethanol extracts from T. hemsleyanum were identified by UPLC-MS/MS, including quercetin, kaempferol, and procyanidin B1 and so on, which was consistent with the network pharmacology prediction. The serum metabolomics indicated that T. hemsleyanum mainly acts on inflammation regulation and neuroprotection by the glycerophospholipid metabolism pathway. Ninety-two potential targets of T. hemsleyanum on FS were identified by network pharmacology, and TNF, IL-6, and IL-1β were considered the pivotal targets. In the hippocampus transcriptomics, 17 KEGG pathways were identified after T. hemsleyanum treatment compared with the FS model group, among which 15 pathways overlapped with those identified by network pharmacology, and the PKC-δ/caspase-1 signaling pathway was a critical node. Finally, in vivo experiments also verified T. hemsleyanum inhibited the activation of microglia and resulted in a significant reduction in the level of PKCδ, NLRC4, caspase-1, IL-1β, IL-6 and TNF-α in hippocampus of FS rats. CONCLUSIONS Our study suggested that the therapeutic effect of T. hemsleyanum on FS might be regulated by inhibiting the neuroinflammation, thus exerting an anticonvulsant effect in vivo, and the mechanism might be related to regulating the PKC-δ/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Huaqiang Zhu
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Bincong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, No. 666, Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, PR China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang Province, 310014, PR China.
| | - Tao Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Wen Ge
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Juan Wang
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, No. 819, Liyuan North Road, Ningbo, Zhejiang Province, 315100, PR China.
| |
Collapse
|
24
|
Skalska-Kamińska A, Wójciak W, Żuk M, Paduch R, Wójciak M. Protective Effect of Urtica dioica Extract against Oxidative Stress in Human Skin Fibroblasts. Life (Basel) 2023; 13:2182. [PMID: 38004322 PMCID: PMC10672499 DOI: 10.3390/life13112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Urtica dioica is a species with well-established significance in folk medicine in many countries. It was utilized to support the treatment of arthritis, allergies, and urinary tract disorders; however, the substantial presence of antioxidants suggests that nettle extract could also have a positive impact on the skin. The objective of this study was to assess the impact of nettle extract on human skin fibroblasts subjected to oxidative stress. Various solvents were tested to prepare an extract rich in polyphenolic compounds with high antioxidant potential. The chemical composition was determined using ultra-high-performance liquid chromatography with mass spectrometry (UPLC-DAD-MS). H2O2 treatment was used to induce oxidative stress and cell viability, and the metabolism was evaluated through NR and MTT assays. Our study demonstrated that extraction with 80% ethanol, followed by the drying and re-dissolving of the extract in pure water, was more efficient than direct extraction with water. This yielded an extract rich in polyphenolic compounds, with chlorogenic acid and caffeoylmalic acid as the predominant compounds, averaging 64.9 and 114.4 µg/mL, respectively. The extract exhibited antioxidant properties in the DPPH and ABTS assays. Furthermore, it did not exhibit cytotoxicity and did not negatively affect cell metabolism. In addition, it effectively reduced ROS in the H2O2-stimulated cells, and at the highest concentration tested, the ROS levels returned to those of the untreated control. The extract also protected against H2O2-induced cytotoxicity. The cell viability was maintained at the level of the untreated control when the cells were pretreated with the extract before H2O2 exposure. These findings indicate that U. dioica extract is a valuable and safe additive in skincare products.
Collapse
Affiliation(s)
- Agnieszka Skalska-Kamińska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (A.S.-K.); (W.W.); (M.Ż.)
| |
Collapse
|
25
|
Gonzales MM, Garbarino VR, Kautz TF, Palavicini JP, Lopez-Cruzan M, Dehkordi SK, Mathews JJ, Zare H, Xu P, Zhang B, Franklin C, Habes M, Craft S, Petersen RC, Tchkonia T, Kirkland JL, Salardini A, Seshadri S, Musi N, Orr ME. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat Med 2023; 29:2481-2488. [PMID: 37679434 PMCID: PMC10875739 DOI: 10.1038/s41591-023-02543-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. An open-label, proof-of-concept, phase I clinical trial of orally delivered senolytic therapy, dasatinib (D) and quercetin (Q), was conducted in early-stage symptomatic patients with AD to assess central nervous system (CNS) penetrance, safety, feasibility and efficacy. Five participants (mean age = 76 + 5 years; 40% female) completed the 12-week pilot study. D and Q levels in blood increased in all participants (12.7-73.5 ng ml-1 for D and 3.29-26.3 ng ml-1 for Q). In cerebrospinal fluid (CSF), D levels were detected in four participants (80%) ranging from 0.281 to 0.536 ml-1 with a CSF to plasma ratio of 0.422-0.919%; Q was not detected. The treatment was well-tolerated, with no early discontinuation. Secondary cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment further supporting a favorable safety profile. CSF levels of interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) increased (t(4) = 3.913, P = 0.008 and t(4) = 3.354, P = 0.028, respectively) with trending decreases in senescence-related cytokines and chemokines, and a trend toward higher Aβ42 levels (t(4) = -2.338, P = 0.079). In summary, CNS penetrance of D was observed with outcomes supporting safety, tolerability and feasibility in patients with AD. Biomarker data provided mechanistic insights of senolytic effects that need to be confirmed in fully powered, placebo-controlled studies. ClinicalTrials.gov identifier: NCT04063124 .
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
26
|
Hayashi Y, Hyodo F, Tana, Nakagawa K, Ishihara T, Matsuo M, Shimohata T, Nishihira J, Kobori M, Nakagawa T. Continuous intake of quercetin-rich onion powder may improve emotion but not regional cerebral blood flow in subjects with cognitive impairment. Heliyon 2023; 9:e18401. [PMID: 37533986 PMCID: PMC10391933 DOI: 10.1016/j.heliyon.2023.e18401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Depression in later life is associated with dementia. Changes in motivated behavior are an important mechanism contributing to dysfunctional cognitive control in depression. Although continuous intake of quercetin-rich onion suppresses cognitive decline in aged people by improving their emotional condition, the effect of quercetin-rich onion on emotional condition in people living with cognitive impairment remains unclear. In this randomized, double-blind, placebo-controlled study of subjects with cognitive impairment, we found that subjects wrote more adjectives and adverbs per sentence on the Mini-Mental State Examination after intake of quercetin-rich onion powder than before intake, although regional cerebral blood flow on n-isopropyl-4-[123]iodoamphetamine hydrochloride single-photon emission computed tomography was not changed. In the EPM, mice that had received a quercetin-supplemented chow diet made a significantly increased number of exploratory head dips from the open arms of the maze. Moreover, the 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl decay rate, reflecting redox activity, was increased in mice fed a quercetin-added diet. These results indicate that quercetin-rich onion may affect motivated behavior in subjects with cognitive impairment, for whom quercetin intake may preserve redox homeostasis in the brain.
Collapse
Affiliation(s)
- Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Institute for Advanced Study Gifu University, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Nursing, University of Tokyo Health Science, Tokyo, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Masuko Kobori
- Institute of Food Research, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
27
|
Manta K, Papakyriakopoulou P, Nikolidaki A, Balafas E, Kostomitsopoulos N, Banella S, Colombo G, Valsami G. Comparative Serum and Brain Pharmacokinetics of Quercetin after Oral and Nasal Administration to Rats as Lyophilized Complexes with β-Cyclodextrin Derivatives and Their Blends with Mannitol/Lecithin Microparticles. Pharmaceutics 2023; 15:2036. [PMID: 37631250 PMCID: PMC10459069 DOI: 10.3390/pharmaceutics15082036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin (Que) is one of the most studied flavonoids with strong antioxidant properties ascribed to its ability to bind free radicals and inactivate them. However, the low solubility of the compound along with its inadequate absorption after oral administration limit its beneficial effects. Que's complexation with two different cyclodextrin (CD) derivatives (hydroxypropyl-β-CD and methyl-β-CD) via the neutralization/lyophilization method has been found to improve its physicochemical properties. Moreover, blends of the lyophilized powders with mannitol/lecithin microparticles (MLMPs) have been proposed as candidates for intranasal (IN) administration after in vitro and ex vivo evaluations. In this context, a comparative pharmacokinetic (PK) study of the IN vs oral administration of Que lyophilized powders and their blends with MLMPs (75:25 w/w) was performed on Wistar rats. The PK parameters estimated by a non-compartmental analysis using the sparse data methodology in Phoenix® 8.3 (Certara, Princeton, NJ, USA) illustrated the effectiveness of IN administration either in brain targeting or in reaching the bloodstream. Significant levels of the compound were achieved at both sites, compared to those after oral delivery which were negligible. These results favor the potential application of the prepared Que nasal powders for systemic and nose-to-brain delivery for the prevention and/or treatment of neuroinflammatory degenerative conditions, such as Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Konstantina Manta
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Anna Nikolidaki
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Evangelos Balafas
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| |
Collapse
|
28
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
29
|
Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J Clin Med 2023; 12:jcm12103520. [PMID: 37240625 DOI: 10.3390/jcm12103520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Although autism spectrum disorder (ASD) is a multifaceted neurodevelopmental syndrome, accumulating evidence indicates that oxidative stress and inflammation are common features of ASD. Flavonoids, one of the largest and best-investigated classes of plant-derived compounds, are known to exert antioxidant, anti-inflammatory, and neuroprotective effects. This review used a systematic search process to assess the available evidence on the effect of flavonoids on ASD. A comprehensive literature search was carried out in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. A total of 17 preclinical studies and 4 clinical investigations met our inclusion criteria and were included in the final review. Most findings from animal studies suggest that treatment with flavonoids improves oxidative stress parameters, reduces inflammatory mediators, and promotes pro-neurogenic effects. These studies also showed that flavonoids ameliorate the core symptoms of ASD, such as social deficits, repetitive behavior, learning and memory impairments, and motor coordination. However, there are no randomized placebo-controlled trials that support the clinical efficacy of flavonoids in ASD. We only found open-label studies and case reports/series, using only two flavonoids such as luteolin and quercetin. These preliminary clinical studies indicate that flavonoid administration may improve specific behavioral symptoms of ASD. Overall, this review is the first one to systematically report evidence for the putative beneficial effects of flavonoids on features of ASD. These promising preliminary results may provide the rationale for future randomized controlled trials aimed at confirming these outcomes.
Collapse
Affiliation(s)
- Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, 71122 Foggia, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
30
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Semwal P, Rauf A, Olatunde A, Singh P, Zaky MY, Islam MM, Khalil AA, Aljohani ASM, Al Abdulmonem W, Ribaudo G. The medicinal chemistry of Urtica dioica L.: from preliminary evidence to clinical studies supporting its neuroprotective activity. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:16. [PMID: 37171512 PMCID: PMC10176313 DOI: 10.1007/s13659-023-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Urtica dioica is a perennial herb from the family of Urticaceae that is commonly known as stinging nettle. This plant is widespread in Europe, Africa, America, and a part of Asia, as it adapts to different environments and climatic conditions. The leaves, stalk, and bark of U. dioica found applications in the field of nutrition, cosmetics, textile, pest control and pharmacology. In this connection, bioactive chemical constituents such as flavonoids, phenolic acids, amino acids, carotenoids, and fatty acids have been isolated from the plant. With this review, we aim at providing an updated and comprehensive overview of the contributions in literature reporting computational, in vitro, pre-clinical and clinical data supporting the therapeutic applications of U. dioica. Experimental evidence shows that U. dioica constituents and extracts can provide neuroprotective effects by acting through a combination of different molecular mechanisms, that are discussed in the review. These findings could lay the basis for the identification and design of more effective tools against neurodegenerative diseases.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Biotechnology, Graphic Era Deemed to be University, 566/6 Bell Road, Clement Town, Dehra Dun, India.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Pooja Singh
- Department of Biotechnology, Graphic Era Deemed to be University, 566/6 Bell Road, Clement Town, Dehra Dun, India
| | - Mohamed Y Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Oncology Division, Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Md Mozahidul Islam
- Department of Environmental Management, SESM, Independent University, Bangladesh, Bashundhara R/A, Dhaka, Bangladesh
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
32
|
Gonzales MM, Garbarino VR, Kautz T, Palavicini JP, Lopez-Cruzan M, Dehkordi SK, Mathews J, Zare H, Xu P, Zhang B, Franklin C, Habes M, Craft S, Petersen RC, Tchkonia T, Kirkland J, Salardini A, Seshadri S, Musi N, Orr ME. Senolytic therapy to modulate the progression of Alzheimer's Disease (SToMP-AD) - Outcomes from the first clinical trial of senolytic therapy for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2809973. [PMID: 37162971 PMCID: PMC10168460 DOI: 10.21203/rs.3.rs-2809973/v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cellular senescence has been identified as a pathological mechanism linked to tau and amyloid beta (Aβ) accumulation in mouse models of Alzheimer's disease (AD). Clearance of senescent cells using the senolytic compounds dasatinib (D) and quercetin (Q) reduced neuropathological burden and improved clinically relevant outcomes in the mice. Herein, we conducted a vanguard open-label clinical trial of senolytic therapy for AD with the primary aim of evaluating central nervous system (CNS) penetrance, as well as exploratory data collection relevant to safety, feasibility, and efficacy. Participants with early-stage symptomatic AD were enrolled in an open-label, 12-week pilot study of intermittent orally-delivered D+Q. CNS penetrance was assessed by evaluating drug levels in cerebrospinal fluid (CSF) using high performance liquid chromatography with tandem mass spectrometry. Safety was continuously monitored with adverse event reporting, vitals, and laboratory work. Cognition, neuroimaging, and plasma and CSF biomarkers were assessed at baseline and post-treatment. Five participants (mean age: 76±5 years; 40% female) completed the trial. The treatment increased D and Q levels in the blood of all participants ranging from 12.7 to 73.5 ng/ml for D and 3.29-26.30 ng/ml for Q. D levels were detected in the CSF of four participants ranging from 0.281 to 0.536 ng/ml (t(4)=3.123, p=0.035); Q was not detected. Treatment was well-tolerated with no early discontinuation and six mild to moderate adverse events occurring across the study. Cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment. CNS levels of IL-6 and GFAP increased from baseline to post-treatment (t(4)=3.913, p=008 and t(4)=3.354, p=0.028, respectively) concomitant with decreased levels of several cytokines and chemokines associated with senescence, and a trend toward higher levels of Aβ42 (t(4)=-2.338, p=0.079). Collectively the data indicate the CNS penetrance of D and provide preliminary support for the safety, tolerability, and feasibility of the intervention and suggest that astrocytes and Aβ may be particularly responsive to the treatment. While early results are promising, fully powered, placebo-controlled studies are needed to evaluate the potential of AD modification with the novel approach of targeting cellular senescence.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tiffany Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James Kirkland
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nicolas Musi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Geriatric Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
33
|
Do TMH, Choi M, Kim JK, Kim YJ, Park C, Park CH, Park NI, Kim C, Sathasivam R, Park SU. Impact of Light and Dark Treatment on Phenylpropanoid Pathway Genes, Primary and Secondary Metabolites in Agastache rugosa Transgenic Hairy Root Cultures by Overexpressing Arabidopsis Transcription Factor AtMYB12. Life (Basel) 2023; 13:life13041042. [PMID: 37109572 PMCID: PMC10142052 DOI: 10.3390/life13041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Agastache rugosa, otherwise called Korean mint, has a wide range of medicinal benefits. In addition, it is a rich source of several medicinally valuable compounds such as acacetin, tilianin, and some phenolic compounds. The present study aimed to investigate how the Tartary buckwheat transcription factor AtMYB12 increased the primary and secondary metabolites in Korean mint hairy roots cultured under light and dark conditions. A total of 50 metabolites were detected by using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The result showed that the AtMYB12 transcription factor upregulated the phenylpropanoid biosynthesis pathway genes, which leads to the highest accumulation of primary and secondary metabolites in the AtMYB12-overexpressing hairy root lines (transgenic) than that of the GUS-overexpressing hairy root line (control) when grown under the light and dark conditions. However, when the transgenic hairy root lines were grown under dark conditions, the phenolic and flavone content was not significantly different from that of the control hairy root lines. Similarly, the heat map and hierarchical clustering analysis (HCA) result showed that most of the metabolites were significantly abundant in the transgenic hairy root cultures grown under light conditions. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) showed that the identified metabolites were separated far based on the primary and secondary metabolite contents present in the control and transgenic hairy root lines grown under light and dark conditions. Metabolic pathway analysis of the detected metabolites showed 54 pathways were identified, among these 30 were found to be affected. From these results, the AtMYB12 transcription factor activity might be light-responsive in the transgenic hairy root cultures, triggering the activation of the primary and secondary metabolic pathways in Korean mint.
Collapse
Affiliation(s)
- Thi Minh Hanh Do
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minsol Choi
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Nam Il Park
- Division of Plant Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Chiang MC, Tsai TY, Wang CJ. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int J Mol Sci 2023; 24:6328. [PMID: 37047299 PMCID: PMC10094159 DOI: 10.3390/ijms24076328] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
35
|
Shala AL, Arduino I, Salihu MB, Denora N. Quercetin and Its Nano-Formulations for Brain Tumor Therapy—Current Developments and Future Perspectives for Paediatric Studies. Pharmaceutics 2023; 15:pharmaceutics15030963. [PMID: 36986827 PMCID: PMC10057501 DOI: 10.3390/pharmaceutics15030963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The development of efficient treatments for tumors affecting the central nervous system (CNS) remains an open challenge. Particularly, gliomas are the most malignant and lethal form of brain tumors in adults, causing death in patients just over 6 months after diagnosis without treatment. The current treatment protocol consists of surgery, followed using synthetic drugs and radiation. However, the efficacy of these protocols is associated with side effects, poor prognosis and with a median survival of fewer than two years. Recently, many studies were focused on applying plant-derived products to manage various diseases, including brain cancers. Quercetin is a bioactive compound derived from various fruits and vegetables (asparagus, apples, berries, cherries, onions and red leaf lettuce). Numerous in vivo and in vitro studies highlighted that quercetin through multitargeted molecular mechanisms (apoptosis, necrosis, anti-proliferative activity and suppression of tumor invasion and migration) effectively reduces the progression of tumor cells. This review aims to summarize current developments and recent advances of quercetin’s anticancer potential in brain tumors. Since all reported studies demonstrating the anti-cancer potential of quercetin were conducted using adult models, it is suggested to expand further research in the field of paediatrics. This could offer new perspectives on brain cancer treatment for paediatric patients.
Collapse
Affiliation(s)
- Aida Loshaj Shala
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Ilaria Arduino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
| | - Mimoza Basholli Salihu
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
36
|
Xu X, Han C, Wang P, Zhou F. Natural products targeting cellular processes common in Parkinson's disease and multiple sclerosis. Front Neurol 2023; 14:1149963. [PMID: 36970529 PMCID: PMC10036594 DOI: 10.3389/fneur.2023.1149963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
The hallmarks of Parkinson's disease (PD) include the loss of dopaminergic neurons and formation of Lewy bodies, whereas multiple sclerosis (MS) is an autoimmune disorder with damaged myelin sheaths and axonal loss. Despite their distinct etiologies, mounting evidence in recent years suggests that neuroinflammation, oxidative stress, and infiltration of the blood-brain barrier (BBB) all play crucial roles in both diseases. It is also recognized that therapeutic advances against one neurodegenerative disorder are likely useful in targeting the other. As current drugs in clinical settings exhibit low efficacy and toxic side effects with long-term usages, the use of natural products (NPs) as treatment modalities has attracted growing attention. This mini-review summarizes the applications of natural compounds to targeting diverse cellular processes inherent in PD and MS, with the emphasis placed on their neuroprotective and immune-regulating potentials in cellular and animal models. By reviewing the many similarities between PD and MS and NPs according to their functions, it becomes evident that some NPs studied for one disease are likely repurposable for the other. A review from this perspective can provide insights into the search for and utilization of NPs in treating the similar cellular processes common in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Xuxu Xu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| |
Collapse
|
37
|
Antihyaluronidase and Antioxidant Potential of Atriplex sagittata Borkh. in Relation to Phenolic Compounds and Triterpene Saponins. Molecules 2023; 28:molecules28030982. [PMID: 36770647 PMCID: PMC9921161 DOI: 10.3390/molecules28030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The genus Atriplex provides species that are used as food and natural remedies. In this work, the levels of soluble phenolic acids (free and conjugated) and flavonoids in extracts from roots, stems, leaves and flowers of the unexplored Atriplex sagittata Borkh were investigated by LC-ESI-MS/MS, together with their antioxidant and antihyaluronidase activity. Phenolic acids were present in all parts of A. sagittata; and were most abundant in the leaves (225.24 μg/g dw.), whereas the highest content of flavonoids were found in the flowers (242.71 μg/g dw.). The most common phenolics were 4-hydroxybenzoic and salicylic acids, kaempferol-3-glucoside-7-rhamnoside, kaempferol-3-rutinoside and the rare narcissoside, which was present in almost all morphotic parts. The stem extract had the highest antioxidant activity and total phenolic content (611.86 mg/100 g dw.), whereas flower extract exerted the most potent antihyaluronidase effect (IC50 = 84.67 µg/mL; control-quercetin: IC50 = 514.28 μg/mL). Phytochemical analysis of the flower extract led to the isolation of two triterpene saponins that were shown to be strong hyaluronidase inhibitors (IC50 = 33.77 and 168.15 µg/mL; control-escin: IC50 = 307.38 µg/mL). This is the first report on the presence of phenolics and saponins in A. sagittata. The results suggest that both groups of metabolites may contribute to the overall activity of this plant species.
Collapse
|
38
|
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 2023; 144:104955. [PMID: 36395983 DOI: 10.1016/j.neubiorev.2022.104955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Quercetin is a naturally occurring bioactive flavonoid abundant in many plants and fruits. Quercetin and its derivatives have shown an array of pharmacological activities in preclinical tests against various illnesses and ailments. Owing to its protective role against oxidative stress and neuroinflammation, quercetin is a possible therapeutic choice for the treatment of neurological disorders. Quercetin and its derivatives can modulate a variety of signal transductions, including neuroreceptor, neuroinflammatory receptor, and redox signaling events. The research on quercetin and its derivatives in neurology-related illnesses mainly focused on the targets, such as redox stress, neuroinflammation, and signaling pathways; however, the function of quercetin and its derivatives on specific molecular targets, such as nuclear receptors and proinflammatory mediators are yet to be explored. Findings showed that various molecular targets of quercetin and its derivatives have therapeutic potential against psychological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saniya Arfin
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Dhruv Kumar
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007.
| |
Collapse
|
39
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SSU. Applications of Extracellular Vesicles in Nervous System Disorders: An Overview of Recent Advances. Bioengineering (Basel) 2022; 10:51. [PMID: 36671622 PMCID: PMC9854809 DOI: 10.3390/bioengineering10010051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diseases affecting the brain and spinal cord fall under the umbrella term "central nervous system disease". Most medications used to treat or prevent chronic diseases of the central nervous system cannot cross the blood-brain barrier (BBB) and hence cannot reach their intended target. Exosomes facilitate cellular material movement and signal transmission. Exosomes can pass the blood-brain barrier because of their tiny size, high delivery efficiency, minimal immunogenicity, and good biocompatibility. They enter brain endothelial cells via normal endocytosis and reverse endocytosis. Exosome bioengineering may be a method to produce consistent and repeatable isolation for clinical usage. Because of their tiny size, stable composition, non-immunogenicity, non-toxicity, and capacity to carry a wide range of substances, exosomes are indispensable transporters for targeted drug administration. Bioengineering has the potential to improve these aspects of exosomes significantly. Future research into exosome vectors must focus on redesigning the membrane to produce vesicles with targeting abilities to increase exosome targeting. To better understand exosomes and their potential as therapeutic vectors for central nervous system diseases, this article explores their basic biological properties, engineering modifications, and promising applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Alaqeel NK, AlSheikh MH, Al-Hariri MT. Quercetin Nanoemulsion Ameliorates Neuronal Dysfunction in Experimental Alzheimer's Disease Model. Antioxidants (Basel) 2022; 11:1986. [PMID: 36290710 PMCID: PMC9598210 DOI: 10.3390/antiox11101986] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 09/05/2023] Open
Abstract
Aluminum is the most abundant metal that can get admission to the human through several means that include our food, drinking water, cans, drugs, and deodorants, causing neurodegenerative diseases such as Alzheimer's disease (AD). The present study aims to evaluate the role of quercetin nanoemulsion (QCNE) in attenuating neuronal dysfunction in aluminum chloride (AlCl3)-induced experimental AD. All animals were classified into six groups including negative control group (I): received a vehicle; QC group: received intraperitoneal (IP) injection of QC; Alzheimer's group: received AlCl3 orally; treated group (I): received AlCl3 orally and IP injection of QC; treated group (II): received AlCl3 orally and QC orally; and treated group (III): received AlCl3 orally and IP injection of QCNE. At the end of the experimental period (30 days), the brain was used to study biochemical parameters (measurement of neurotransmitters (serotonin, dopamine, and norepinephrine), oxidant/antioxidant parameters (reduced glutathione, malondialdehyde, superoxide dismutase, and advanced oxidation protein product), and inflammatory markers (adiponectin, interleukin 1β, and plasma tumor necrosis factor-alpha)), while another part was for brain immune-histochemical analysis (study cyclooxygenases (COX-1 and COX-2)). Results showed that the mean value of oxidative stress markers was significantly increased in the AD group as well as the inflammatory biomarkers and all the study neurotransmitters, whereas these parameters were attenuated in treated groups, especially those that received QCNE. The immunohistochemistry findings confirm our results. Both approaches (QC and QCNE) succeeded in retracting the negative impact of AlCl3. Meanwhile, the effect of QCNE is more potent in mitigating the impact mediated by AlCl3 in treated animals. In conclusion, the treatment mainly by QCNE has huge potential in protecting against AlCl3-induced neuronal dysfunction, as shown in our results by the elevation of brain antioxidant/anti-inflammatory activities and neurotransmitter levels as well as mending of the histopathological changes in animal models.
Collapse
Affiliation(s)
- Nouf K. Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mona H. AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| | - Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| |
Collapse
|
43
|
Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6038996. [PMID: 36071869 PMCID: PMC9441372 DOI: 10.1155/2022/6038996] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the serious and progressive neurodegenerative disorders in the elderly worldwide. Various genetic, environmental, and lifestyle factors are associated with its pathogenesis that affect neuronal cells to degenerate over the period of time. AD is characterized by cognitive dysfunctions, behavioural disability, and psychological impairments due to the accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFT). Several research reports have shown that flavonoids are the polyphenolic compounds that significantly improve cognitive functions and inhibit or delay the amyloid beta aggregation or NFT formation in AD. Current research has uncovered that dietary use of flavonoid-rich food sources essentially increases intellectual abilities and postpones or hinders the senescence cycle and related neurodegenerative problems including AD. During AD pathogenesis, multiple signalling pathways are involved and to target a single pathway may relieve the symptoms but not provides the permanent cure. Flavonoids communicate with different signalling pathways and adjust their activities, accordingly prompting valuable neuroprotective impacts. Flavonoids likewise hamper the movement of obsessive indications of neurodegenerative disorders by hindering neuronal apoptosis incited by neurotoxic substances. In this short review, we briefly discussed about the classification of flavonoids and their neuroprotective properties that could be used as a potential source for the treatment of AD. In this review, we also highlight the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
Collapse
|
44
|
Optimization of the Extraction Procedure for the Phenolic-Rich Glechoma hederacea L. Herb and Evaluation of Its Cytotoxic and Antioxidant Potential. PLANTS 2022; 11:plants11172217. [PMID: 36079600 PMCID: PMC9460379 DOI: 10.3390/plants11172217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
The dried Glechoma hederacea L. herb has a long history of use in traditional medicine. Its therapeutic potential is related to the presence of phenolic compounds. To optimize extraction efficiency the effect of the use of different techniques (HRE—heat reflux extraction, I/ME—infusion combined with maceration, UE—sonication and SE—Soxhlet extraction), various solvents (water and ethanol) and processing time (15 min to 2 h) on phenolics content was investigated. The HPLC method was applied to determine and compare the content of phenolic acids (rosmarinic, chlorogenic, protocatechuic) and flavonoids (rutin, isoquercetin) in the extracts. Furthermore, the cytotoxic activity of the extracts was examined for the first time against human cancer and normal cells of skin origin (A375, HTB140, HaCaT) and gastrointestinal origin (Caco-2 and HT-29, HepG2). In addition, the antioxidant potential was evaluated using the DPPH and FRAP method. The I/ME-water and HRE/ethanol procedures turned out to be optimal for obtaining extracts of dried G. hederacea L. herb rich in bioactive phenolics. These extracts exhibited high antioxidant activity, correlated with the content of the compounds analyzed. Furthermore, the extracts of the dried Glechoma herb were not toxic to normal human cells, indicating its safe use both internally and externally.
Collapse
|
45
|
Ebokaiwe AP, Ushang OR, Ogunwa TH, Kikiowo B, Olusanya O. Quercetin attenuates cyclophosphamide induced-immunosuppressive indoleamine 2,3-dioxygenase in the hippocampus and cerebral cortex of male Wister rats. J Biochem Mol Toxicol 2022; 36:e23179. [PMID: 35906875 DOI: 10.1002/jbt.23179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022]
Abstract
This study investigated the protective effect of quercetin against cyclophosphamide-induced immunosuppressive indoleamine 2,3-dioxygenase (IDO) via the mechanism of oxidative-inflammatory stress and behavioral indices. Cyclophosphamide (CYP) was administered to male Wister rats at a dose of 100 mg/kg with or without quercetin 50 mg/kg every other day for 7 days. Experimental techniques including western blotting, immunohistochemistry analysis, and inflammatory and oxidative stress marker assays were carried out. We also conducted behavioral analyses such as open field, tail suspension, and Y-maze tests for cognitive assessment. The results indicated that quercetin attenuated oxidative-inflammatory stress induced by CYP in the hippocampus and cerebral cortex of male Wister rats by augmenting the activities of antioxidant enzymes and suppressing lipid peroxidation as well as inflammatory mediators such as interleukin-6 and interferon-γ. Concomitantly, quercetin partially prevented the alteration in brain tissue histological architecture and mitigated the activities of IDO/tryptophan 2,3-dioxygenase (TDO) and protein expression of IDO1. This was corroborated by the IDO-quercetin model obtained in silico, revealing a favorable inhibitory interaction between quercetin and the enzyme. Finally, the results of behavioral tests suggested that quercetin significantly prevented the depressive-like posture of the CYP-treated rats. Our study for the first time revealed that quercetin ameliorates the effect of CYP-instigated IDO/TDO activities in the cerebral cortex and hippocampus via restoration of antioxidant enzymes and preventing oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Azubuike P Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Nigeria
| | - Odobi R Ushang
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Nigeria
| | - Tomisin H Ogunwa
- Center for Bio-Computing and Drug Design, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Babatomiwa Kikiowo
- Center for Bio-Computing and Drug Design, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Olasiende Olusanya
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, Chaoyang, China.,Department of Biochemistry, University of Benin, Benin City, Nigeria
| |
Collapse
|
46
|
Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F, Dana VG, Seif F. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 2022; 27:60. [PMID: 35883021 PMCID: PMC9327369 DOI: 10.1186/s11658-022-00355-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is involved in many immunological processes, including cell growth, proliferation, differentiation, apoptosis, and inflammatory responses. Some of these processes can contribute to cancer progression and neurodegeneration. Owing to the complexity of this pathway and its potential crosstalk with alternative pathways, monotherapy as targeted therapy has usually limited long-term efficacy. Currently, the majority of JAK-STAT-targeting drugs are still at preclinical stages. Meanwhile, a variety of plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK-STAT pathway through known and unknown mechanisms. Quercetin has shown prominent inhibitory effects on the JAK-STAT pathway in terms of anti-inflammatory and antitumor activity, as well as control of neurodegenerative diseases. This review discusses the pharmacological effects of quercetin on the JAK-STAT signaling pathway in solid tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | | | | | - Farid Pakizeh
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Ghobadi Dana
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Enghelab St., Aboureyhan St., Vahid Nazari Crossroad, P17, Tehran, Postal code: 1315795613 Iran
| |
Collapse
|