1
|
Zainuddin ANZ, Mustakim NN, Rosemanzailani FA, Fadilah NIM, Maarof M, Fauzi MB. A Comprehensive Review of Honey-Containing Hydrogel for Wound Healing Applications. Gels 2025; 11:194. [PMID: 40136899 PMCID: PMC11942582 DOI: 10.3390/gels11030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has long been recognized for its medicinal properties, particularly in wound healing. Recent advancements in material science have led to the development of honey-containing hydrogels, combining the natural healing properties of honey with the versatile characteristics of hydrogel matrices. These hydrogels offer numerous advantages, including high moisture retention, biocompatibility, and the controlled release of bioactive compounds, making them highly effective for wound healing applications. Hydrogels hold significant potential in advancing medical applications, particularly for cutaneous injuries. The diverse properties of honey, including antimicrobial, anti-inflammatory, and anti-eschar effects, have shown promise in accelerating tissue regeneration. According to studies, they are effective in maintaining a good swelling ratio index, Water Vapour Transmission Rate (WVTR), contact angle, tensile and elongation at break, in vitro biodegradation rate, viscosity and porosity analysis, lowering bacterial infections, and encouraging rapid tissue regeneration with notable FTIR peaks and SEM average pore sizes. However, limitations such as low bioavailability and inefficiencies in direct application reduce their therapeutic effectiveness at the wound site. Integrating honey into hydrogels can help preserve its wound healing mechanisms while enhancing its ability to facilitate skin tissue recovery. This review explores the underlying mechanisms of honey in wound healing management and presents an extensive analysis of honey-containing hydrogels reported in the literature over the past eight years. It emphasizes the physicochemical and mechanical effectiveness and advancements of honey-incorporated hydrogels in promoting skin wound healing and tissue regeneration, supported by evidence from both in vitro and in vivo studies. While honey-based therapies for wound healing have demonstrated promising outcomes in numerous in vitro and animal studies, clinical studies remain limited. Despite that, honey's incorporation into hydrogel systems, however, offers a potent fusion of contemporary material technology and natural healing qualities, marking a substantial breakthrough in wound treatment.
Collapse
Affiliation(s)
- Andik Nisa Zahra Zainuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nurul Nadhirah Mustakim
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Farah Alea Rosemanzailani
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.N.Z.Z.); (N.N.M.); (F.A.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Nokhbatolfoghahaei H, Baniameri S, Tabrizi R, Yousefi-Koma AA, Dehghan MM, Derakhshan S, Gharehdaghi N, Farzad-Mohajeri S, Behroozibakhsh M, Khojasteh A. Pre-vascularized porous gelatin-coated β-tricalcium phosphate scaffolds for bone regeneration: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2025; 61:67-80. [PMID: 39382735 DOI: 10.1007/s11626-024-00973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/17/2024] [Indexed: 10/10/2024]
Abstract
Vascularization is vital in bone tissue engineering, supporting development, remodeling, and regeneration. Lack of vascularity leads to cell death, necessitating vascularization strategies. Angiogenesis, forming new blood vessels, provides crucial nutrients and oxygen. Pre-vascularized gelatin-coated β-tricalcium phosphate (G/β-TCP) scaffolds show promise in bone regeneration and vascularization. Our study evaluates G/β-TCP scaffolds' osteogenic and angiogenic potential in vitro and a canine model with vascular anastomosis. Channel-shaped G/β-TCP scaffolds were fabricated using foam casting and sintering of a calcium phosphate/silica slurry-coated polyurethane foam, then coated with cross-linked gelatin. Buccal fat pad-derived stem cells (BFPdSCs) were seeded onto scaffolds and assessed over time for adhesion, proliferation, and osteogenic capacity using scanning electron microscopy (SEM), 4,6-diamidino-2-phenylindole (DAPI) staining, Alamar blue, and alkaline phosphatase (ALP) assays. Scaffolds were implanted in a canine model to evaluate osteogenesis and angiogenesis by histology and CT scans at 12 wk. Our studies showed preliminary results for G/β-TCP scaffolds supporting angiogenesis and bone regeneration. In vitro analyses demonstrated excellent proliferation/viability, with BFPdSCs adhering and increasing on the scaffolds. ALP activity and protein levels increased, indicating osteogenic differentiation. Examination of tissue samples revealed granulation tissue with a well-developed vascular network, indicating successful angiogenesis and osteogenesis was further confirmed by a CT scan. In vivo, histology revealed scaffold resorption. However, scaffold placement beneath muscle tissue-restricted bone regeneration. Further optimization is needed for bone regeneration applications.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Ali Yousefi-Koma
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Preclinical Imaging Group, Preclinical Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Gharehdaghi
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Materials School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li XR, Deng QS, He SH, Liu PL, Gao Y, Wei ZY, Zhang CR, Wang F, Zhu TH, Dawes H, Rui BY, Tao SC, Guo SC. 3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling. J Nanobiotechnology 2024; 22:764. [PMID: 39695679 DOI: 10.1186/s12951-024-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone. Melatonin (MT) has attracted attention in recent years as an excellent factor for promoting cell viability and tissue repair. In this study, porous scaffolds were prepared by cryogenic printing with poly(lactic-co-glycolic acid) and ultralong hydroxyapatite nanowires. The hierarchical pore size distribution of the scaffolds was evaluated by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Sleep-inspired small extracellular vesicles (MT-sEVs) were then obtained from MT-stimulated cells and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-inorganic pyrophosphate (DSPE-PEG-PPi) was used to modify the membrane of MT-sEVs to obtain PPi-MT-sEVs. RNA sequencing was performed to explore the potential mechanisms. The results demonstrated that PPi-MT-sEVs not only enhanced cell proliferation, migration and angiogenesis, but also regulated the osteogenic/adipogenic fate determination and M1/M2 macrophage polarization switch in vitro. PPi-MT-sEVs were used to coat scaffolds, enabled by the capacity of PPi to bind to hydroxyapatite, and computational simulations were used to analyze the interfacial bonding of PPi and hydroxyapatite. The macrophage phenotype-modulating and osteogenesis-angiogenesis coupling effects were evaluated in vivo. In summary, this study suggests that the combination of hierarchical porous scaffolds and PPi-MT-sEVs could be a promising candidate for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hang He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Zhang WQ, Xing F, Zhe M, Huang LP, Shen ZX, Li QJ, Xiong M, Wu CY, Xie HQ. Multifunctional Dual Nano-MOF-Modified Decellularized Small Intestinal Submucosa Membrane Accelerates Healing of Infected Wound. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63368-63388. [PMID: 39528906 DOI: 10.1021/acsami.4c16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The treatment of complex or chronic skin wounds caused by burns, trauma, surgery, and genetic disorders has been a worldwide challenge. Small intestinal submucosa (SIS) is a biological material that is widely used in wound healing. How to further expand the wound healing application of SIS, especially in repairing infected wounds, remains a hot research topic for many tissue engineering and biomaterial scholars focusing on skin regeneration. This study uses nanometal-organic frameworks (nano-MOFs), which have not been applied to modify the SIS membrane before, to construct multifunctional dual nano-MOFs @ SIS membrane (dnMOF@SISm). Nano-MOFs are functionalized onto the nanofiber of SIS via in situ self-assembly under mild reaction conditions without any toxic reagent or complex instruments. The dnMOF@SISm can release Co2+, Zn2+, and bioactive factors, participating in the whole stage of the repair of infected wounds. In vitro, it can regulate the biological activities of various functional cells such as fibroblasts, endothelial cells, and macrophages and shows good antibacterial ability. In the infected full-thickness skin defect rat model, dnMOF@SISm can release metal ions and ligands, killing pathogenic bacteria colonized on the wound surface at the first stage, and then trigger and accelerate the skin repair process via angiogenesis, immune regulation, and collagen deposition. Above all, an efficient, nontoxic, mild self-assembly strategy realizes the functionalization of dual nano-MOFs on the nanofiber of SIS to expand its clinical application scenarios, especially in infected wounds.
Collapse
Affiliation(s)
- Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhi-Xue Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming Xiong
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China
| |
Collapse
|
5
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
6
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Zhang J, Suttapreyasri S, Leethanakul C, Samruajbenjakun B. Fabrication of vascularized tissue-engineered bone models using triaxial bioprinting. J Biomed Mater Res A 2024; 112:1093-1106. [PMID: 38411369 DOI: 10.1002/jbm.a.37694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/01/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Bone tissue is a highly vascularized tissue. When constructing tissue-engineered bone models, both the osteogenic and angiogenic capabilities of the construct should be carefully considered. However, fabricating a vascularized tissue-engineered bone to promote vascular formation and bone generation, while simultaneously establishing nutrition channels to facilitate nutrient exchange within the constructs, remains a significant challenge. Triaxial bioprinting, which not only allows the independent encapsulation of different cell types while simultaneously forming nutrient channels, could potentially emerge as a strategy for fabricating vascularized tissue-engineered bone. Moreover, bioinks should also be applied in combination to promote both osteogenesis and angiogenesis. In this study, employing triaxial bioprinting, we used a blend bioink of gelatin methacryloyl (GelMA), sodium alginate (Alg), and different concentrations of nano beta-tricalcium phosphate (nano β-TCP) encapsulated MC3T3-E1 preosteoblasts as the outer layer, a mixed bioink of GelMA and Alg loaded with human umbilical vein endothelial cells (HUVEC) as the middle layer, and gelatin as a sacrificial material to form nutrient channels in the inner layer to fabricate vascularized bone constructs simulating the microenvironment for bone and vascular tissues. The results showed that the addition of nano β-TCP could adjust the mechanical, swelling, and degradation properties of the constructs. Biological assessments revealed the cell viability of constructs containing different concentrations of nano β-TCP was higher than 90% on day 7, The cell-laden constructs containing 3% (w/v) nano β-TCP exhibited better osteogenic (higher Alkaline phosphatase activity and larger Osteocalcin positive area) and angiogenic (the gradual increased CD31 positive area) potential. Therefore, using triaxial bioprinting technology and employing GelMA, Alg, and nano β-TCP as bioink components could fabricate vascularized bone tissue constructs, offering a novel strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Guiyang Hospital of Stomatology, Guiyang, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Bancha Samruajbenjakun
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
8
|
Ibrahim Almusi BJ, Al-Kamali RK. Effect of Platelet-Rich Fibrin Combined With Hyaluronic Acid on Bone Formation in Dental Implant Sockets: An In Vivo Study in Sheep. Cureus 2024; 16:e64651. [PMID: 39015217 PMCID: PMC11251443 DOI: 10.7759/cureus.64651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES The goal was to evaluate the effect of the combined growth factor of hyaluronic acid (HA) and advanced platelet-rich fibrin (A-PRF) on acceleration and maturation of bone formation around titanium dental implants in the bone-free space (jumping distance) of an over-preparation socket. MATERIALS AND METHODS Thirty-two titanium dental implants were placed in four sheep and distributed into one control group (A) and three experimental groups (B, C, and D) in two different time periods. Each sheep received eight implants. The eight implants in each sheep were distributed into four groups. The first period was one month after the initial placement, 16 implants were used in two sheep. The second period was three months after the initial placement; another 16 implants were used in the other two sheep. All implants were placed in over-prepared implant sockets, resulting in minimal primary stability. In Group A: the space between the dental implant and the bone of the inner wall of the socket was left without a growth substrate material. In Group B: we added HA between the dental implant and the bone of the inner wall of the socket. In Group C: we added A-PRF between the dental implant and the bone of the inner wall of the socket. In Group D: we added a combination of HA and A-PRF between the dental implant and the bone of the inner wall of the socket. Data was collected for each group at one month and three months at the same time. A high-resolution, desktop micro-CT system (Bruker Skyscan 1275, Kontich, Belgium) was used to scan the specimens. The NRecon software (ver. 1.6.10.4, SkyScan) and CTAn (SkyScan) were used for the visualization and quantitative measurement of the samples. One-way analysis of variance (ANOVA) was used to compare the means of the four study groups in the same period. A post hoc test was used after ANOVA to compare the means of two samples at the same time. A p-value of ≤ 0.05 was considered statistically significant. RESULTS After one month and three months of using combined HA and A-PRF on Group D, significant acceleration was observed in bone formation in all tests around dental implants compared with other groups, while no significant acceleration was observed when they were used separately; all three study groups showed significant results when compared with the control group. CONCLUSION Our data showed that using a combination of HA and A-PRF had a significant effect on the acceleration of the bone formation and ossification process when added to bone-free space (jumping distance) around implants while leaving space without any growth substrates might delay the bone ossification process.
Collapse
Affiliation(s)
- Blend J Ibrahim Almusi
- Department of Oral Surgery, Khanazad Teaching Center, Erbil Health Care Institute, Ministry of Health, Erbil, IRQ
| | - Reiadh K Al-Kamali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Hawler Medical University, Erbil, IRQ
| |
Collapse
|
9
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
10
|
Shukla AK, Yoon S, Oh SO, Lee D, Ahn M, Kim BS. Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology. Biomimetics (Basel) 2024; 9:306. [PMID: 38786516 PMCID: PMC11118135 DOI: 10.3390/biomimetics9050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Liu H, Xing F, Yu P, Zhe M, Duan X, Liu M, Xiang Z, Ritz U. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Int J Biol Macromol 2024; 268:131623. [PMID: 38642687 DOI: 10.1016/j.ijbiomac.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
13
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
14
|
Debski T, Siennicka K, Idaszek J, Roszkowski B, Swieszkowski W, Pojda Z. Effect of adipose-derived stem cells seeding and surgical prefabrication on composite scaffold vascularization. J Biomater Appl 2023; 38:548-561. [PMID: 37732423 DOI: 10.1177/08853282231202601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), β-tricalcium phosphate (β-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+β-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+β-TCP+PLGA scaffolds, with PCL+β-TCP+PLGA scaffolds seeded with ASCs and with PCL+β-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+β-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.
Collapse
Affiliation(s)
- Tomasz Debski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Idaszek
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bartlomiej Roszkowski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
15
|
Liu P, Wang J, Xue Y, Zou L, Tian Y, Sun R, Zhang W, Li Y, Lv L, Gao Q, Fan B. Perfusion in vivo bioreactor promotes regeneration of vascularized tissue-engineered bone. Regen Med 2023; 18:707-718. [PMID: 37589274 DOI: 10.2217/rme-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Aim: This study improved the in vivo bioreactor (IVB) for bone regeneration by enhancing stem cell survival and promoting vascularized tissue-engineered bone. Methods: 12 New Zealand rabbits received β-TCP scaffolds with rabbit bone mesenchymal stem cells (BMSCs) implanted. Perfusion IVB with a perfusion electronic pump was compared with the control group using micro-CT, Microfil perfusion, histological staining and RT-PCR for gene expression. Results: Perfusion IVB demonstrated good biocompatibility, increased neoplastic bone tissue, neovascularization and upregulated osteogenic and angiogenesis-related genes in rabbits (p < 0.05). Conclusion: Perfusion IVB holds promise for bone regeneration and tissue engineering in orthopedics and maxillofacial surgery.
Collapse
Affiliation(s)
- Peng Liu
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Jian Wang
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yun Xue
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Lei Zou
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yongzheng Tian
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Ruilong Sun
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730050, China
| | - Wenhua Zhang
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Yunfei Li
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Lijun Lv
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Qiuming Gao
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| | - Bo Fan
- Orthopedic Centre, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, 730050, China
| |
Collapse
|
16
|
Zhang J, Suttapreyasri S, Leethanakul C, Samruajbenjakun B. Triaxial bioprinting large-size vascularized constructs with nutrient channels. Biomed Mater 2023; 18:055026. [PMID: 37604152 DOI: 10.1088/1748-605x/acf25a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Bioprinting has demonstrated great advantages in tissue and organ regeneration. However, constructing large-scale tissue and organsin vitrois still a huge challenge due to the lack of some strategies for loading multiple types of cells precisely while maintaining nutrient channels. Here, a new 3D bioprinting strategy was proposed to construct large-scale vascularized tissue. A mixture of gelatin methacrylate (GelMA) and sodium alginate (Alg) was used as a bioink, serving as the outer and middle layers of a single filament in the triaxial printing process, and loaded with human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells, respectively, while a calcium chloride (CaCl2) solution was used as the inner layer. The CaCl2solution crosslinked with the middle layer bioink during the printing process to form and maintain hollow nutrient channels, then a stable large-scale construct was obtained through photopolymerization and ion crosslinking after printing. The feasibility of this strategy was verified by investigating the properties of the bioink and construct, and the biological performance of the vascularized construct. The results showed that a mixture of 5% (w/v) GelMA and 1% (w/v) Alg bioink could be printed at room temperature with good printability and perfusion capacity. Then, the construct with and without channels was fabricated and characterized, and the results revealed that the construct with channels had a similar degradation profile to that without channels, but lower compressive modulus and higher swelling rate. Biological investigation showed that the construct with channels was more favorable for cell survival, proliferation, diffusion, migration, and vascular network formation. In summary, it was demonstrated that constructing large-scale vascularized tissue by triaxial printing that can precisely encapsulate multiple types of cells and form nutrient channels simultaneously was feasible, and this technology could be used to prepare large-scale vascularized constructs.
Collapse
Affiliation(s)
- Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Guiyang Hospital of Stomatology, Guiyang 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Bancha Samruajbenjakun
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
17
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
18
|
The Efficiency and Safety of Platelet-Rich Plasma Dressing in the Treatment of Chronic Wounds: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Pers Med 2023; 13:jpm13030430. [PMID: 36983611 PMCID: PMC10053387 DOI: 10.3390/jpm13030430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recently, many clinical trials have applied platelet-rich plasma (PRP) dressings to treat wounds that have stopped healing, which are also called chronic wounds. However, the clinical efficiency of PRP dressings in treating chronic wounds is still controversial. Therefore, we conducted this study to compare PRP dressings with normal saline dressings in treating chronic wounds. Relevant randomized controlled trials focusing on utilizing PRP dressings in treating chronic wounds were extracted from bibliographic databases. Finally, 330 patients with chronic wounds, reported in eight randomized controlled trials, were included in this study. In total, 169 out of 330 (51.21%) were treated with PRP dressings, and 161 out of 330 (48.79%) were treated with normal saline dressings. The pooled results showed that the complete healing rate of the PRP group was significantly higher than that of saline group at 8 weeks and 12 weeks, respectively. In addition, there were no significant differences in wound infection and adverse events. Compared with normal saline dressing, the PRP dressing could effectively enhance the prognosis of chronic wounds. Furthermore, the PRP did not increase wound infection rate or occurrence of adverse events as an available treatment for chronic wounds.
Collapse
|
19
|
Zhang B, Xing F, Chen L, Zhou C, Gui X, Su Z, Fan S, Zhou Z, Jiang Q, Zhao L, Liu M, Fan Y, Zhang X. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213261. [PMID: 36577193 DOI: 10.1016/j.bioadv.2022.213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Currently, various bioceramics have been widely used in bone regeneration. However, it remains a huge challenge to remote isolation bone regeneration, such as severed finger regeneration. The remote isolation bone tissue has a poor regenerative microenvironment that lacks enough blood and nutrition supply. It is very difficult to repair and regenerate. In this study, well-controlled multi-level porous 3D-printed calcium phosphate (CaP) bioceramic scaffolds with precision customized structures were fabricated by high-resolution digital light projection (DLP) printing technology for remote isolation bone regeneration. In vitro results demonstrated that optimizing material processing procedures could achieve multi-level control of 3D-printed CaP bioceramic scaffolds and enhance the osteoinduction ability of bioceramics effectively. In vivo results indicated that 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedure exhibited a promising ability of bone regeneration and osteoinduction in ectopic osteogenesis and in situ caudal vertebrae regeneration in beagles. This study provided a promising strategy based on 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedures for remote isolation bone regeneration, such as severed finger regeneration.
Collapse
Affiliation(s)
- Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shiqi Fan
- Schools of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhigang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Loukelis K, Helal ZA, Mikos AG, Chatzinikolaidou M. Nanocomposite Bioprinting for Tissue Engineering Applications. Gels 2023; 9:103. [PMID: 36826273 PMCID: PMC9956920 DOI: 10.3390/gels9020103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Bioprinting aims to provide new avenues for regenerating damaged human tissues through the controlled printing of live cells and biocompatible materials that can function therapeutically. Polymeric hydrogels are commonly investigated ink materials for 3D and 4D bioprinting applications, as they can contain intrinsic properties relative to those of the native tissue extracellular matrix and can be printed to produce scaffolds of hierarchical organization. The incorporation of nanoscale material additives, such as nanoparticles, to the bulk of inks, has allowed for significant tunability of the mechanical, biological, structural, and physicochemical material properties during and after printing. The modulatory and biological effects of nanoparticles as bioink additives can derive from their shape, size, surface chemistry, concentration, and/or material source, making many configurations of nanoparticle additives of high interest to be thoroughly investigated for the improved design of bioactive tissue engineering constructs. This paper aims to review the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues. An overview of the various bioinks and their classifications will be discussed with emphasis on cellular and mechanical material interactions, as well the various bioink formulation methodologies for 3D and 4D bioprinting techniques. The current advances and limitations within the field will be highlighted.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Zina A. Helal
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), 70013 Heraklion, Greece
| |
Collapse
|
21
|
Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater 2023; 156:4-20. [PMID: 35963520 DOI: 10.1016/j.actbio.2022.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 02/02/2023]
Abstract
The advent of three-dimensional (3D) bioprinting has enabled impressive progress in the development of 3D cellular constructs to mimic the structural and functional characteristics of natural tissues. Bioprinting has considerable translational potential in tissue engineering and regenerative medicine. This review highlights the rational design and biofabrication strategies of diverse 3D bioprinted tissue constructs for orthopedic tissue engineering applications. First, we elucidate the fundamentals of 3D bioprinting techniques and biomaterial inks and discuss the basic design principles of bioprinted tissue constructs. Next, we describe the rationale and key considerations in 3D bioprinting of tissues in many different aspects. Thereafter, we outline the recent advances in 3D bioprinting technology for orthopedic tissue engineering applications, along with detailed strategies of the engineering methods and materials used, and discuss the possibilities and limitations of different 3D bioprinted tissue products. Finally, we summarize the current challenges and future directions of 3D bioprinting technology in orthopedic tissue engineering and regenerative medicine. This review not only delineates the representative 3D bioprinting strategies and their tissue engineering applications, but also provides new insights for the clinical translation of 3D bioprinted tissues to aid in prompting the future development of orthopedic implants. STATEMENT OF SIGNIFICANCE: 3D bioprinting has driven major innovations in the field of tissue engineering and regenerative medicine; aiming to develop a functional viable tissue construct that provides an alternative regenerative therapy for musculoskeletal tissue regeneration. 3D bioprinting-based biofabrication strategies could open new clinical possibilities for creating equivalent tissue substitutes with the ability to customize them to meet patient demands. In this review, we summarize the significance and recent advances in 3D bioprinting technology and advanced bioinks. We highlight the rationale for biofabrication strategies using 3D bioprinting for orthopedic tissue engineering applications. Furthermore, we offer ample perspective and new insights into the current challenges and future direction of orthopedic bioprinting translation research.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
22
|
Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio 2022; 16:100382. [PMID: 36033373 PMCID: PMC9403505 DOI: 10.1016/j.mtbio.2022.100382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future. 3D bioprinting was used to fabricate in situ vascularized tissue engineered bone. In situ bioprinted endothelial cells exhibited uniform distribution and greater seeding efficiency. 3D-bioprinted scaffold produced coupling between angiogenesis and osteogenesis.
Collapse
Key Words
- 3D bioprinted BMSCs-laden GelMA hydrogel scaffold, (GB)
- 3D bioprinting
- 3D dual-extrusion bioprinted BMSCs-laden GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (GB-3PR)
- 3D dual-extrusion bioprinted GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (G-3PR)
- 3D printed GelMA hydrogel scaffold, (G)
- 4′,6-diamidino-2-phenylindole, (DAPI)
- Alizarin red S, (ARS)
- Alkaline phosphatase, (ALP)
- Dulbecco's modified Eagle's medium, (DMEM)
- Dulbecco's phosphate-buffered saline, (DPBS)
- Fourier-transform infrared, (FTIR)
- In situ vascularization
- Large segmental bone defects
- PLA-PEG-PLA, (3P)
- RNA sequencing Analysis
- Tissue engineering
- analysis of variance, (ANOVA)
- bone mesenchymal stem cells, (BMSCs)
- bone mineral density, (BMD)
- bone volume to tissue volume, (BV/TV)
- complementary DNA, (cDNA)
- differentially expressed genes, (DEGs)
- endothelial cells, (ECs)
- ethylenediamine tetraacetic acid, (EDTA)
- extracellular matrix, (ECM)
- fetal bovine serum, (FBS)
- gelatin methacryloyl, (GelMA)
- gene ontology, (GO)
- glyceraldehyde-3-phosphate dehydrogenase, (GAPDH)
- green fluorescent protein, (GFP)
- hematoxylin and eosin, (H&E)
- lithium phenyl-2,4,6-trimethylbenzoylphosphinate, (LAP)
- micro-computed tomography, (micro-CT)
- nuclear magnetic resonance, (NMR)
- optical density, (OD)
- paraformaldehyde, (PFA)
- phosphate-buffered saline, (PBS)
- polyethylene glycol, (PEG)
- polylactic acid, (PLA)
- polyvinylidene fluoride, (PVDF)
- radioimmunoprecipitation assay, (RIPA)
- rat aortic endothelial cells, (RAOECs)
- real-time polymerase chain reaction, (RT-PCR)
- standard deviation, (SD)
- tissue-engineered bone, (TEB)
- tris buffered saline with Tween-20, (TBST)
Collapse
Affiliation(s)
- Mingkui Shen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Gao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuangye Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sijing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohu Wang
- Department of Orthopedics, Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yao Guo
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| |
Collapse
|
23
|
3D Bioprinting Technology and Hydrogels Used in the Process. J Funct Biomater 2022; 13:jfb13040214. [PMID: 36412855 PMCID: PMC9680466 DOI: 10.3390/jfb13040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
3D bioprinting has gained visibility in regenerative medicine and tissue engineering due to its applicability. Over time, this technology has been optimized and adapted to ensure a better printability of bioinks and biomaterial inks, contributing to developing structures that mimic human anatomy. Therefore, cross-linked polymeric materials, such as hydrogels, have been highly targeted for the elaboration of bioinks, as they guarantee cell proliferation and adhesion. Thus, this short review offers a brief evolution of the 3D bioprinting technology and elucidates the main hydrogels used in the process.
Collapse
|
24
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Xing F, Yin HM, Zhe M, Xie JC, Duan X, Xu JZ, Xiang Z, Li ZM. Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14071437. [PMID: 35890332 PMCID: PMC9317219 DOI: 10.3390/pharmaceutics14071437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
3D-printing technology can be used to construct personalized bone substitutes with customized shapes, but it cannot regulate the topological morphology of the scaffold surface, which plays a vital role in regulating the biological behaviors of stem cells. In addition, stem cells are able to sense the topographical and mechanical cues of surface of scaffolds by mechanosensing and mechanotransduction. In our study, we fabricated a 3D-printed poly(ε-caprolactone) (PCL) scaffold with a nanotopographical surface and loaded it with urine-derived stem cells (USCs) for application of bone regeneration. The topological 3D-printed PCL scaffolds (TPS) fabricated by surface epiphytic crystallization, possessed uniformly patterned nanoridges, of which the element composition and functional groups of nanoridges were the same as PCL. Compared with bare 3D-printed PCL scaffolds (BPS), TPS have a higher ability for protein adsorption and mineralization in vitro. The proliferation, cell length, and osteogenic gene expression of USCs on the surface of TPS were significantly higher than that of BPS. In addition, the TPS loaded with USCs exhibited a good ability for bone regeneration in cranial bone defects. Our study demonstrated that nanotopographical 3D-printed scaffolds loaded with USCs are a safe and effective therapeutic strategy for bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Hua-Mo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ji-Chang Xie
- Laboratoire Roberval, FRE UTC-CNRS 2012, Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS60319, CEDEX, 60203 Compiègne, France;
| | - Xin Duan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
- Correspondence: (X.D.); (J.-Z.X.)
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-M.Y.); (Z.-M.L.)
| |
Collapse
|
26
|
Xu F, Tan F, Zheng Z, Zhou X. Effects of pre-osteogenic differentiation on the bone regeneration potentiality of marrow mesenchymal stem cells/poly(ethylene glycol)-diacrylate hydrogel using a rat cranial defect model. J Biomater Appl 2022; 37:786-794. [PMID: 35793113 DOI: 10.1177/08853282221112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transplanting cell/hydrogel constructs into a bone defect site is an effective strategy to repair the damaged tissues. However, before transplantation, there are various methods to culture cell/hydrogel constructs. Especially, the preferred pre-osteogenic differentiation period to achieve satisfied bone regeneration should be determined. To this end, Bone marrow mesenchymal stem cells (BMSCs) were firstly photo-encapsulated into poly(ethylene glycol)-diacrylate (PEGDA) hydrogel. Then the constructs were implanted in rat calvarial defects after being osteogenically induced for 0, 7, 14, and 21 days. In vitro experiments demonstrated that the proliferation of BMSCs in the hydrogels deceased significantly from 0 day to 7 days. The activity and the gene expression of alkaline phosphatase, besides the gene expression of bone morphogenetic protein-2 peaked at day 14, whereas the gene expression of osteocalcin and the formation of calcium nodules increased with the prolongation of differentiation time. In vivo results showed that limited areas of newly formed bone were found in the day0 and day21 groups. In the day7 group, obvious new bone with bone marrow space was found, while the day14 group nearly achieved complete bone healing. Our data suggested that the period of in vitro pre-osteogenic differentiation played a crucial role for the osteogenesis of BMSCs/PEGDA hydrogels. Furthermore, we found that a pre-differentiation for 14 days is preferable for bone regeneration in the rat cranial defects.
Collapse
Affiliation(s)
- Fei Xu
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Tan
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Zheng
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongwen Zhou
- 47904Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Yang Y, Wang Z, Xu Y, Xia J, Xu Z, Zhu S, Jin M. Preparation of Chitosan/Recombinant Human Collagen-Based Photo-Responsive Bioinks for 3D Bioprinting. Gels 2022; 8:gels8050314. [PMID: 35621612 PMCID: PMC9141723 DOI: 10.3390/gels8050314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Collagen and chitosan are frequently used natural biomaterials in tissue engineering. However, most collagen is derived from animal tissue, with inconsistent quality and pathogen transmittance risks. In this context, we aimed to use a reliable Type-III recombinant human collagen (RHC) as an alternative biomaterial together with chitosan to develop novel photo-responsive bioinks for three-dimensional (3D) bioprinting. RHC was modified with methacrylic anhydride to obtain the RHC methacryloyl (RHCMA) and mixed with acidified chitosan (CS) to form composites CS-RHCMA. The characterizations demonstrated that the mechanical properties and the degradation of the bioinks were tunable by introducing the CS. The printabilities improved by adding CS to RHCMA, and various structures were constructed via extrusion-based 3D printing successfully. Moreover, in vitro tests confirmed that these CS-RHCMA bioinks were biocompatible as human umbilical vein endothelial cells (HUVECs) were sustained within the constructs post-printing. The results from the current study illustrated a well-established bioinks system with the potential to construct different tissues through 3D bioprinting.
Collapse
Affiliation(s)
- Yang Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
- Correspondence:
| | - Zixun Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Yuanyuan Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
| | - Jingjing Xia
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Shuai Zhu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| |
Collapse
|
28
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
29
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
30
|
Lu Y, Yu CH, Yang G, Sun N, Jiang F, Zhou M, Wu X, Luo J, Huang C, Zhang W, Jiang X. A rapidly magnetically assembled stem cell microtissue with "hamburger" architecture and enhanced vascularization capacity. Bioact Mater 2021; 6:3756-3765. [PMID: 33898876 PMCID: PMC8044908 DOI: 10.1016/j.bioactmat.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
With the development of magnetic manipulation technology based on magnetic nanoparticles (MNPs), scaffold-free microtissues can be constructed utilizing the magnetic attraction of MNP-labeled cells. The rapid in vitro construction and in vivo vascularization of microtissues with complex hierarchical architectures are of great importance to the viability and function of stem cell microtissues. Endothelial cells are indispensable for the formation of blood vessels and can be used in the prevascularization of engineered tissue constructs. Herein, safe and rapid magnetic labeling of cells was achieved by incubation with MNPs for 1 h, and ultrathick scaffold-free microtissues with different sophisticated architectures were rapidly assembled, layer by layer, in 5 min intervals. The in vivo transplantation results showed that in a stem cell microtissue with trisection architecture, the two separated human umbilical vein endothelial cell (HUVEC) layers would spontaneously extend to the stem cell layers and connect with each other to form a spatial network of functional blood vessels, which anastomosed with the host vasculature. The "hamburger" architecture of stem cell microtissues with separated HUVEC layers could promote vascularization and stem cell survival. This study will contribute to the construction and application of structural and functional tissues or organs in the future.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chun-Hua Yu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjia Sun
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fei Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiaxin Luo
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
31
|
Somasekharan LT, Raju R, Kumar S, Geevarghese R, Nair RP, Kasoju N, Bhatt A. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Int J Biol Macromol 2021; 189:398-409. [PMID: 34419550 DOI: 10.1016/j.ijbiomac.2021.08.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Biofabrication of skin tissue equivalents using 3D bioprinting technology has gained much attention in recent times due to the simplicity, the versatility of the technology and its ability in bioengineering biomimetic tissue histology. The key component being the bioink, several groups are actively working on the development of various bioink formulations for optimal skin tissue construction. METHODS Here, we present alginate (ALG), gelatin (GEL) and diethylaminoethyl cellulose (DCEL) based bioink formulation and its application in bioprinting and biofabrication of skin tissue equivalents. Briefly, DEAE cellulose powder was dispersed in alginate solution with constant stirring at 60 °C to obtain a uniform distribution of cellulose fibers; this was then mixed with GEL solution to prepare the bioink. The formulation was systematically characterized for its morphological, physical, chemical, rheological, biodegradation and biocompatibility properties. The printability, shape fidelity and cell-laden printing were assessed using the CellInk bioprinter. RESULTS The bioink proved to be a good printable, non-cytotoxic and stable hydrogel formulation. The primary human fibroblast and keratinocyte-loaded 3D bioprinted constructs showed excellent cell viability, collagen synthesis, skin-specific marker and biomimetic tissue histology. CONCLUSION The results demonstrated the successful formulation of ALG-GEL-DCEL bioink and its application in the development of human skin tissue equivalents with distinct epidermal-dermal histological features.
Collapse
Affiliation(s)
- Lakshmi T Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Riya Raju
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Suvanish Kumar
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Rency Geevarghese
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Renjith P Nair
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
32
|
Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J Clin Med 2021; 10:jcm10214966. [PMID: 34768485 PMCID: PMC8584432 DOI: 10.3390/jcm10214966] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is an emerging field that centers on the restoration and regeneration of functional components of damaged tissue. Tissue engineering is an application of regenerative medicine and seeks to create functional tissue components and whole organs. Using 3D printing technologies, native tissue mimics can be created utilizing biomaterials and living cells. Recently, regenerative medicine has begun to employ 3D bioprinting methods to create highly specialized tissue models to improve upon conventional tissue engineering methods. Here, we review the use of 3D bioprinting in the advancement of tissue engineering by describing the process of 3D bioprinting and its advantages over other tissue engineering methods. Materials and techniques in bioprinting are also reviewed, in addition to future clinical applications, challenges, and future directions of the field.
Collapse
|
33
|
Chai M, Jiang M, Gu C, Lu Q, Zhou Y, Jin Z, Zhou Y, Tan W. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro. Biotechnol Appl Biochem 2021; 69:2138-2150. [PMID: 34694656 DOI: 10.1002/bab.2274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The absence of blood vessels in tissue engineered bone often leads to necrosis of internal cells after implantation, ultimately affecting the process of bone repair. Herein, mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to induce osteogenesis and angiogenesis. Based on the findings, the number of HUVECs in the coculture system increased in the growth medium group, but decreased in the osteogenic induction medium (OIM) group. Considering that the paracrine effects of MSCs had changed, we tested the genes expression of osteogenically differentiated MSCs. The expression of osteogenic genes in MSCs increased during osteogenesis. Further, the expression levels of pigment epithelial-derived factor (PEDF) gene and protein, an antivascular factor, were also increased. To verify whether MSCs promote HUVECs apoptosis via PEDF, PEDF was silenced via siRNA. The conditioned medium of differentiated MSCs with PEDF silencing significantly improved the proliferation and apoptosis of HUVECs. Based on further experiments, PEDF mediated the apoptosis and proliferation of HUVECs through p53, BAX/BCL-2, FAS, and c-Caspase-3. However, when PEDF was silenced with siRNA, the osteogenic potential of MSCs was affected. The results of this study provide a theoretical basis for the construction of prevascularized bone tissues in vitro.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingli Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
34
|
Abstract
Owing to COVID-19, the world has advanced faster in the era of the Fourth Industrial Revolution, along with the 3D printing technology that has achieved innovation in personalized manufacturing. Three-dimensional printing technology has been utilized across various fields such as environmental fields, medical systems, and military materials. Recently, the 3D food printer global market has shown a high annual growth rate and is a huge industry of approximately one billion dollars. Three-dimensional food printing technology can be applied to various food ranges based on the advantages of designing existing food to suit one’s taste and purpose. Currently, many countries worldwide produce various 3D food printers, developing special foods such as combat food, space food, restaurants, floating food, and elderly food. Many people are unaware of the utilization of the 3D food printing technology industry as it is in its early stages. There are various cases using 3D food printing technology in various parts of the world. Three-dimensional food printing technology is expected to become a new trend in the new normal era after COVID-19. Compared to other 3D printing industries, food 3D printing technology has a relatively small overall 3D printing utilization and industry size because of problems such as insufficient institutionalization and limitation of standardized food materials for 3D food printing. In this review, the current industrial status of 3D food printing technology was investigated with suggestions for the improvement of the food 3D printing market in the new normal era.
Collapse
|
35
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
36
|
Jiang W, Mei H, Zhao S. Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. J Biomed Nanotechnol 2021; 17:989-1006. [PMID: 34167615 DOI: 10.1166/jbn.2021.3078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, 3D bio-printing technology has developed rapidly and become an advanced bio-manufacturing technology. At present, 3D bio-printing technology has been explored in the fields of tissue engineering, drug testing and screening, regenerative medicine and clinical disease research and has achieved many research results. Among them, the application of 3D bio-printing technology in tissue engineering has been widely concerned by researchers, and it contributing many breakthroughs in the preparation of tissue engineering scaffolds. In the future, it is possible to print fully functional tissues or organs by using 3D bio-printing technology which exhibiting great potential development prospects in th applications of organ transplantation and human body implants. It is expected to solve thebiomedical problems of organ shortage and repair of damaged tissues and organs. Besides,3Dbio-printing technology will benefit human beings in more fields. Therefore, this paper reviews the current applications, research progresses and limitations of 3D bio-printing technology in biomedical and life sciences, and discusses the main printing strategies of 3D bio-printing technology. And, the research emphases, possible development trends and suggestions of the application of 3D bio-printing are summarized to provide references for the application research of 3D bio-printing.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Haiying Mei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Shuyan Zhao
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| |
Collapse
|
37
|
Cellular Technologies in Traumatology: From Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injuries and degenerative changes of tendons are common damages of the musculoskeletal system. Due to its hypovascular character the tendon has a limited natural ability to recover. For typical surgical treatment, the tendon integrity is restored, but in most cases, there occurs formation of the connective tissue scar resulting in structural and mechanical functionality disruption. The insufficient effectiveness of traditional therapy methods requires the search for alternative ways to restore damaged tendon tissues. This article discusses new effective methods for improving the treatment that base on the use of cellular technologies among which one of the main directions is mesenchymal stem cell application. Due to mesenchymal stem cells, there is a shift from pro-fibrotic and pro-inflammatory reactions of cells to pro-regenerative ones. Stem cells being multipotent and having among other things tenogenic potential are considered a promising material for repairing damaged tendons. The article also describes the sources of progenitor tendon cells including the tendon bundles and pericytes the main markers of which are Scx and Mkx that are proteins of the transcription factor superfamily, and Tnmd that is transmembrane glycoprotein.The growth factors that not only enhance the proliferative activity of mesenchymal stem cells but also promote in vitro tenogenic genes expression as well as the collagen Itype production what is necessary for tendon formation are considered. Along with growth factors, the morphogenetic protein BMP14 is presented, this protein increases themesenchymal stem cell proliferation and contributes directed tenogenic differentiation of these cells, suppressing their adipogenic and chondrogenic potentials.In recent years, mesenchymal stem cells have been used both separately and in combination with various growth factors and different three-dimensional structures providing the interaction with all of the cell types.The issues of the latest 3D-bioprinting technology allowing to make tissue-like structures for replacement damaged tissues and organs are discussed. 3D-bioprinting technology is known to allow acting exact spatio-temporal control of the distribution of cells, growth factors, small molecules, drugs and biologically active substances.
Collapse
|
38
|
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021; 26:333-366. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models-a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies-microextrusion, droplet-based/inkjet, and light-based/crosslinking-are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Collapse
Affiliation(s)
- Anh Tong
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Quang Long Pham
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Paul Abatemarco
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Austin Mathew
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Dhruv Gupta
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Siddharth Iyer
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| | - Roman Voronov
- The Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of Technology Newark College of Engineering, Newark, NJ, USA
| |
Collapse
|
39
|
Freeman FE, Burdis R, Kelly DJ. Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors. Trends Mol Med 2021; 27:700-711. [PMID: 34090809 DOI: 10.1016/j.molmed.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Regenerating large bone defects remains a significant clinical challenge, motivating increased interest in additive manufacturing and 3D bioprinting to engineer superior bone graft substitutes. 3D bioprinting enables different biomaterials, cell types, and growth factors to be combined to develop patient-specific implants capable of directing functional bone regeneration. Current approaches to bioprinting such implants fall into one of two categories, each with their own advantages and limitations. First are those that can be 3D bioprinted and then directly implanted into the body and second those that require further in vitro culture after bioprinting to engineer more mature tissues prior to implantation. This review covers the key concepts, challenges, and applications of both strategies to regenerate damaged and diseased bone.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
40
|
Bojin F, Robu A, Bejenariu MI, Ordodi V, Olteanu E, Cean A, Popescu R, Neagu M, Gavriliuc O, Neagu A, Arjoca S, Păunescu V. 3D Bioprinting of Model Tissues That Mimic the Tumor Microenvironment. MICROMACHINES 2021; 12:535. [PMID: 34065040 PMCID: PMC8151644 DOI: 10.3390/mi12050535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
The tumor microenvironment (TME) influences cancer progression. Therefore, engineered TME models are being developed for fundamental research and anti-cancer drug screening. This paper reports the biofabrication of 3D-printed avascular structures that recapitulate several features of the TME. The tumor is represented by a hydrogel droplet uniformly loaded with breast cancer cells (106 cells/mL); it is embedded in the same type of hydrogel containing primary cells-tumor-associated fibroblasts isolated from the peritumoral environment and peripheral blood mononuclear cells. Hoechst staining of cryosectioned tissue constructs demonstrated that cells remodeled the hydrogel and remained viable for weeks. Histological sections revealed heterotypic aggregates of malignant and peritumoral cells; moreover, the constituent cells proliferated in vitro. To investigate the interactions responsible for the experimentally observed cellular rearrangements, we built lattice models of the bioprinted constructs and simulated their evolution using Metropolis Monte Carlo methods. Although unable to replicate the complexity of the TME, the approach presented here enables the self-assembly and co-culture of several cell types of the TME. Further studies will evaluate whether the bioprinted constructs can evolve in vivo in animal models. If they become connected to the host vasculature, they may turn into a fully organized TME.
Collapse
Affiliation(s)
- Florina Bojin
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- OncoGen Institute, 300723 Timisoara, Romania; (V.O.); (A.C.)
| | - Andreea Robu
- Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, 300223 Timisoara, Romania;
| | - Maria Iulia Bejenariu
- Faculty of Mechanical Engineering, “Politehnica” University of Timisoara, 300222 Timisoara, Romania;
| | - Valentin Ordodi
- OncoGen Institute, 300723 Timisoara, Romania; (V.O.); (A.C.)
| | - Emilian Olteanu
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- Department of Microscopic Morphology-Morphopathology, ANAPATMOL Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Ada Cean
- OncoGen Institute, 300723 Timisoara, Romania; (V.O.); (A.C.)
| | - Roxana Popescu
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
| | - Monica Neagu
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- Center for Modeling Biological Systems and Data Analysis, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Oana Gavriliuc
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- OncoGen Institute, 300723 Timisoara, Romania; (V.O.); (A.C.)
| | - Adrian Neagu
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- Center for Modeling Biological Systems and Data Analysis, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Stelian Arjoca
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- Center for Modeling Biological Systems and Data Analysis, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Virgil Păunescu
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (E.O.); (R.P.); (M.N.); (O.G.); (A.N.); (V.P.)
- OncoGen Institute, 300723 Timisoara, Romania; (V.O.); (A.C.)
| |
Collapse
|
41
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021; 138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | | | - Parvathy Prasad
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW 2000, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France
| |
Collapse
|
43
|
Hu Q, Tang H, Yao Y, Liu S, Zhang H, Ramalingam M. Rapid fabrication of gelatin-based scaffolds with prevascularized channels for organ regeneration. Biomed Mater 2021; 16. [PMID: 33730706 DOI: 10.1088/1748-605x/abef7b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
One of the biggest hinders in tissue engineering over the last decades was the complexity of the prevascularized channels of the engineered scaffold, which was still lower than that of human tissues. Another relative trouble was lacking precision molding capability, which restricted the clinical applications of the huge engineered scaffold. In this study, a promising approach was proposed to prepare hydrogel scaffold with prevascularized channels by liquid bath printing, which chitosan/β-sodium glycerophosphate (CS/β-GP) severed as the ink hydrogel, and gelation/nanoscale bacterial cellulose (Gel/BC) acted as the supporting hydrogel. Here, the ink hydrogel was printed by a versatile nozzle and embedded in the supporting hydrogel. Ink hydrogel transformed into liquid effluent at low temperature after cross-linking of gelatin by microbial transglutaminase (mTG). No residual template was seen on the channel surface after template removal. This preparation had a high degree of freedom in the geometry of the channel, which was demonstrated by making various prevascularized channels including circular, branched, and tree-shaped networks. The molding accuracy of the channel was detected by studying the roundness of the cross-section of the molded hollow channel, and the effect of the mechanical properties by adding BC to supporting hydrogel was analyzed. Human umbilical vein endothelial cells (HUVECs) were injected into the aforementioned channels and formed confluent and homogeneous distribution on the surface of channels. Altogether, these results showed that this approach can construct hydrogel scaffold with complex and accurate molding prevascularized channels, and had great potential to resolve urgent vascularization issue of bulk tissue-engineering scaffold.
Collapse
Affiliation(s)
- Qingxi Hu
- Shanghai University, 99, , Shanghai, 200444, CHINA
| | - Haihu Tang
- Shanghai University, 99, , Shanghai, 200444, CHINA
| | - Yuan Yao
- Shanghai University, 99, , Shanghai, 200444, CHINA
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, Shanghai University, No.99 Shangda Road, BaoShan District, Shanghai, China, Shanghai, 200444, CHINA
| | | | - Murugan Ramalingam
- Vellore Institute of Technology, Vandalur - Kelambakkam Road, Chennai , Vellore, Tamil Nadu, 632014, INDIA
| |
Collapse
|
44
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
45
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
46
|
Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci 2021; 41:1105-1115. [PMID: 34874486 PMCID: PMC8648557 DOI: 10.1007/s11596-021-2474-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient's diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.
Collapse
Affiliation(s)
- Peng-ran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Lin Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jia-yao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Tong-tong Huo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Song-xiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe-wei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
47
|
Rojek I, Mikołajewski D, Dostatni E, Macko M. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. MATERIALS 2020; 13:ma13235437. [PMID: 33260398 PMCID: PMC7730732 DOI: 10.3390/ma13235437] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
While the intensity, complexity, and specificity of robotic exercise may be supported by patient-tailored three-dimensional (3D)-printed solutions, their performance can still be compromised by non-optimal combinations of technological parameters and material features. The main focus of this paper was the computational optimization of the 3D-printing process in terms of features and material selection in order to achieve the maximum tensile force of a hand exoskeleton component, based on artificial neural network (ANN) optimization supported by genetic algorithms (GA). The creation and 3D-printing of the selected component was achieved using Cura 0.1.5 software and 3D-printed using fused filament fabrication (FFF) technology. To optimize the material and process parameters we compared ten selected parameters of the two distinct printing materials (polylactic acid (PLA), PLA+) using ANN supported by GA built and trained in the MATLAB environment. To determine the maximum tensile force of the exoskeleton, samples were tested using an INSTRON 5966 universal testing machine. While the balance between the technical requirements and user safety constraints requires further analysis, the PLA-based 3D-printing parameters have been optimized. Additive manufacturing may support the successful printing of usable/functional exoskeleton components. The network indicated which material should be selected: Namely PLA+. AI-based optimization may play a key role in increasing the performance and safety of the final product and supporting constraint satisfaction in patient-tailored solutions.
Collapse
Affiliation(s)
- Izabela Rojek
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-32-57-630
| | - Dariusz Mikołajewski
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Ewa Dostatni
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marek Macko
- Department of Mechatronics, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| |
Collapse
|
48
|
Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, Wang W, Pu X, Gu L, Liu L, Xiang Z, Zhang X. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Hyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Linnan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Wenzhao Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xiaobing Pu
- Department of Orthopedics Medical Center, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, College of Engineering & Science, Florida Institute of Technology , Melbourne , FL, 32901 , United States of America
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| |
Collapse
|