1
|
Adamczuk M, Bownik A, Pawlik-Skowrońska B. Single and mixture effect of cyanobacterial metabolites, cylindrospermopsin, anabaenopeptin-A, microginin-FR1 and aeruginosin 98-A, on behaviour, food uptake, oxygen consumption and muscular F-actin degradation of Thamnocephalus platyurus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104677. [PMID: 40122194 DOI: 10.1016/j.etap.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
This study showed that single cyanobacterial metabolites had various effects on the tested parameters. Among them, only cylindrospermopsin was lethal to the animals; cylindrospermopsin was also the most potent inhibitor of the remaining parameters. Cylindrospermopsin in binary mixtures with the other tested metabolites displayed antagonistic or additive effects for survival, movement, food uptake and oxygen consumption and synergistic effect for F-actin degradation. Aeruginosin 98 A at lower concentrations displayed an enhanced effect on movement, food uptake and oxygen consumption while inhibiting these parameters at higher concentrations. Anabaenopeptin-A at higher concentrations (> 250 µg/L) had a significant inhibitory effect on T. platyurus. Microginin-FR1 had the lowest impact on T. platyurus, but produced mainly synergistic effects in a binary mixture with aeruginosin 98 A and mostly antagonistic or additive effects in a mixture with anabaenopeptin-A. Quaternary mixtures of metabolites had mostly antagonistic effects on the examined parameters.
Collapse
Affiliation(s)
- Małgorzata Adamczuk
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland.
| | - Adam Bownik
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland
| | | |
Collapse
|
2
|
Zorrilla JG, Siciliano A, Petraretti M, Saviano L, Spampinato M, Cimmino A, Guida M, Pollio A, Bravi S, Masi M. Ecotoxicological assessment of cyclic peptides produced by a Planktothrix rubescens bloom: Impact on aquatic model organisms. ENVIRONMENTAL RESEARCH 2024; 257:119394. [PMID: 38866313 DOI: 10.1016/j.envres.2024.119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.
Collapse
Affiliation(s)
- Jesús G Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy; Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510, Puerto Real, Spain.
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Mariagioia Petraretti
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Lorenzo Saviano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Sergio Bravi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
3
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Owens SL, Ahmed SR, Lang RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L. Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R. Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M. Lang
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E. Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
5
|
Konkel R, Grabski M, Cegłowska M, Wieczerzak E, Węgrzyn G, Mazur-Marzec H. Anabaenopeptins from Nostoc edaphicum CCNP1411. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12346. [PMID: 36231642 PMCID: PMC9564503 DOI: 10.3390/ijerph191912346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.
Collapse
Affiliation(s)
- Robert Konkel
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| |
Collapse
|
6
|
Phan CS, Mehjabin JJ, Anas ARJ, Hayasaka M, Onoki R, Wang J, Umezawa T, Washio K, Morikawa M, Okino T. Nostosin G and Spiroidesin B from the Cyanobacterium Dolichospermum sp. NIES-1697. JOURNAL OF NATURAL PRODUCTS 2022; 85:2000-2005. [PMID: 35948062 DOI: 10.1021/acs.jnatprod.2c00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical investigation of the cyanobacterium Dolichospermum sp. NIES-1697 afforded nostosin G (1), a linear tripeptide, spiroidesin B (2), and two known compounds, anabaenopeptins I (3) and J (4). Planar structures and absolute configurations for 1 and 2 were determined by 2D NMR, HRMS, Marfey's methodology, chiral-phase HPLC, and enzymatic degradation. Nostosin G (1) is a unique example of a linear peptide containing three subunits, 4-hydroxyphenyllactic acid (Hpla), homotyrosine (Hty), and argininal, with potent trypsin inhibitory properties. The biosynthetic gene clusters for nostosin G (1) and spiroidesin B (2) were investigated based on the genome sequence of Dolichospermum sp. NIES-1697.
Collapse
|
7
|
Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena. Appl Environ Microbiol 2022; 88:e0096622. [PMID: 35862669 PMCID: PMC9361812 DOI: 10.1128/aem.00966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nodularia spumigena is a bloom-forming cyanobacterium that produces several classes of nonribosomal peptides (NRPs) that are biologically active; however, the ecological roles of specific NRPs remain largely unknown. Here, we explored the involvement of NRPs produced by N. spumigena in interspecific interactions by coculturing the cyanobacterium and its algal competitors, the diatom Phaeodactylum tricornutum and the cryptomonad Rhodomonas salina, and measuring NRP levels and growth responses in all three species. Contrary to the expected growth suppression in the algae, it was N. spumigena that was adversely affected by the diatom, while the cryptomonad had no effect. Reciprocal effects of N. spumigena on the algae were manifested as the prolonged lag phase in R. salina and growth stimulation in P. tricornutum; however, these responses were largely attributed to elevated pH and not to specific NRPs. Nevertheless, the NRP levels in the cocultures were significantly higher than in the monocultures, with an up to 5-fold upregulation of cell-bound nodularins and exudation of nodularin and anabaenopeptin. Thus, chemically mediated interspecific interactions can promote NRP production and release by cyanobacteria, resulting in increased input of these compounds into the water. IMPORTANCE NRPs were involved in growth responses of both cyanobacteria and algae; however, the primary driver of the growth trajectories was high pH induced by N. spumigena. Thus, the pH-mediated inhibition of eukaryotic phytoplankton may be involved in the bloom formation of N. spumigena. We also report, for the first time, the reciprocal growth inhibition of N. spumigena by diatoms resistant to alkaline conditions. As all species in this study can co-occur in the Baltic Sea during summer, these findings are highly relevant for understanding ecological interactions in planktonic communities in this and other systems experiencing regular cyanobacteria blooms.
Collapse
|
8
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
9
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
10
|
Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). WATER 2021. [DOI: 10.3390/w13131760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system and were coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer. During the investigation period (2013–2017), 10 microcystins, nodularin, anatoxin-a, 16 anabaenopeptins, including 1 oscillamide, 12 aeruginosins, 1 aeruginosamide, 3 cyanopeptolins and 4 microginins were detected. The most frequently detected metabolites were found at all investigated sites. Demethylated microcystin variants and anabaenopeptins had the strongest relationship with Planktothrix agardhii, while non-demethylated microcystin variants and anatoxin had the strongest relationship with Microcystis spp. Low concentrations of some microcystins: [Asp3]MC-RR, MC-RR, MC-LR, as well as a few other cyanopeptides: AP-A and AEG-A were found during the cold period (December–March). Over the study period, Aphanizomenon, Planktothrix and Microcystis were the main dominant cyanobacteria species, while Planktothrix, Microcystis, and Dolichospermum were potentially producers of cyanopeptides and anatoxin detected in samples from the Curonian Lagoon.
Collapse
|
11
|
Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell'Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. WATER RESEARCH 2021; 196:117017. [PMID: 33765498 DOI: 10.1016/j.watres.2021.117017] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 05/06/2023]
Abstract
Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260 Piracicaba, SP, Brazil
| | - Mariana A Torres
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Karolina Szubert
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland.
| |
Collapse
|
12
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Pawlik-Skowrońska B, Bownik A. Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon 2021; 198:1-11. [PMID: 33915136 DOI: 10.1016/j.toxicon.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Comparison of the toxic effects caused by the pure cyanobacterial cyclic hexapeptide anabaenopeptin-B (AN-B), the heptapeptides: microcystin-LR (MC-LR) and MC-LF as well as a binary mixture of AN-B with MC-LR on the swimming speed and hopping frequency - essential activities of Daphnia, was experimentally determined. Till now, no information on behavioral effects of AN-B and its mixture with microcystins, commonly produced by cyanobacteria, was available. Also MC-LF effect on aquatic crustaceans was determined for the first time. The results showed that AN-B exerted considerable inhibition of D. magna swimming speed and hopping frequency similar to MC-LR and MC-LF. The mixture of AN-B and MC-LR caused stronger toxic effects, than the individual oligopeptides used at the same concentration. The much lower 48 h- EC50 value of the AN-B and MC-LR mixture (0.95 ± 0.12 μg/mL) than those of individual oligopeptides AN-B (6.3 ± 0.63 μg/mL), MC-LR (4.0 ± 0.27 μg/mL), MC-LF (3.9 ± 0.20 μg/mL) that caused swimming speed inhibition explains the commonly observed stronger toxicity of complex crude cyanobacterial extracts to daphnids than individual microcystins. The obtained results indicated that AN-B, microcystins and their mixture exerted time- and concentration-dependent motility disturbances of crustaceans and they can be good candidates for evaluation of toxicity in early warning systems. Other cyanobacterial oligopeptides beyond microcystins should be considered as a real threat for aquatic organisms.
Collapse
Affiliation(s)
- Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
14
|
Zervou S–K, Kaloudis T, Hiskia A, Mazur-Marzec H. Fragmentation mass spectra dataset of linear cyanopeptides - microginins. Data Brief 2020; 31:105825. [PMID: 32671141 PMCID: PMC7341370 DOI: 10.1016/j.dib.2020.105825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022] Open
Abstract
Microginins are the less common class of bioactive linear cyanobacterial peptides. Recently, an investigation for their presence in cyanobacteria from Greek freshwaters and strain cultures was carried out. The present dataset is related to the research article “New microginins from cyanobacteria of Greek freshwaters” [1]. Cyanobacterial biomass from bloom samples and cultured strains were extracted with aqueous methanol. Extracts were analysed by liquid chromatography coupled to hybrid triple quadrupole/linear ion trap mass spectrometer (LC-qTRAP MS/MS) in information dependent acquisition (IDA) mode. Enhanced ion product (EIP) mode was applied for the collection of ion fragmentation spectra. Identification of microginins was based on the characteristic fragment ions of the unique microginin amino acid 3-amino-2-hydroxy-decanoic acid (Ahda) and its modified forms. The analysis of fragmentation spectra revealed 51 microginin structures, including 36 new variants. This article provides the dataset of fragmentation mass spectra of the microginins detected in cyanobacteria from Greek freshwaters. As this class of cyanopeptides is produced by cyanobacteria from different geographical regions, the aim of this dataset is to enable the identification of microginins in future studies and therefore to contribute to a better evaluation of their presence in freshwater bodies worldwide.
Collapse
Affiliation(s)
- Sevasti – Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece
- Corresponding author:
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
15
|
|
16
|
Toporowska M, Mazur-Marzec H, Pawlik-Skowrońska B. The Effects of Cyanobacterial Bloom Extracts on the Biomass, Chl-a, MC and Other Oligopeptides Contents in a Natural Planktothrix agardhii Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082881. [PMID: 32331227 PMCID: PMC7215471 DOI: 10.3390/ijerph17082881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/29/2023]
Abstract
Blooms of the cyanobacterium Planktothrix agardhii are common in shallow, eutrophic freshwaters. P. agardhii may produce hepatotoxic microcystins (MCs) and many other bioactive secondary metabolites belonging mostly to non-ribosomal oligopeptides. The aim of this work was to study the effects of two extracts (Pa-A and Pa-B) of P. agardhii-predominated bloom samples with different oligopeptide profiles and high concentration of biogenic compounds on another natural P. agardhii population. We hypothesised that the P. agardhii biomass and content of oligopeptides in P. agardhii is shaped in a different manner by diverse mixtures of metabolites of different P. agardhii-dominated cyanobacterial assemblages. For this purpose, the biomass, chlorophyll a and oligopeptides content in the treated P. agardhii were measured. Seven-day microcosm experiments with four concentrations of the extracts Pa-A and Pa-B were carried out. Generally, aeruginosins (AERs), cyanopeptolins (CPs) and anabaenopeptins (APs) were the most numerous peptides; however, only 16% of them were common for both extracts. The addition of the extracts resulted in similar effects on P. agardhii: an increase in biomass, Chl-a and MC content in the exposed P. agardhii as well as changes in its oligopeptide profile were observed. MCs present in the extracts did not inhibit accumulation of P. agardhii biomass, and did not have any negative effect on MC and Chl-a content. No evidence for bioaccumulation of dissolved peptides in the P. agardhii exposed was found. As the two tested extracts differed considerably in oligopeptide composition, but contained similar high concentrations of nutrients, it seems that biogenic compounds, not oligopeptides themselves, positively influenced the mixed natural P. agardhii population.
Collapse
Affiliation(s)
- Magdalena Toporowska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland;
- Correspondence:
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland;
| |
Collapse
|
17
|
Riba M, Kiss-Szikszai A, Gonda S, Parizsa P, Deák B, Török P, Valkó O, Felföldi T, Vasas G. Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Popin RV, Delbaje E, de Abreu VAC, Rigonato J, Dörr FA, Pinto E, Sivonen K, Fiore MF. Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins (Basel) 2020; 12:toxins12030141. [PMID: 32106513 PMCID: PMC7150779 DOI: 10.3390/toxins12030141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains—two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment—revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin—a volatile compound with unpleasant taste and odor—was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
Collapse
Affiliation(s)
- Rafael Vicentini Popin
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Vinicius Augusto Carvalho de Abreu
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Institute of Exact and Natural Sciences, Federal University of Pará, Rua Augusto Corrêa 1, Belém 66075-10, Pará, Brazil
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Correspondence:
| |
Collapse
|
19
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
20
|
Cell membrane fatty acid and pigment composition of the psychrotolerant cyanobacterium Nodularia spumigena CHS1 isolated from Hopar glacier, Pakistan. Extremophiles 2019; 24:135-145. [PMID: 31655895 DOI: 10.1007/s00792-019-01141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
In the present study, cyanobacterium isolate CHS1 isolated from Hopar glacier, Pakistan, was analyzed for the first time for cell membrane fatty acids and production of pigments. Sequencing of the 16-23S intergenetic region confirmed identification of the isolate CHS1 as Nodularia spumigena. All chlorophyll and carotenoid pigments were quantified using high-performance liquid chromatography and experiments to test tolerance against a range of physico-chemical conditions were conducted. Likewise, the fatty acid profile of the cell membrane CHS1 was analyzed using gas chromatography and mass spectroscopy. The cyanobacterium isolate CHS1 demonstrated tolerance to 8 g/L% NaCl, 35°C and pH 5-9. The characteristic polyunsaturated fatty acid (PUFA) of isolate CHS1, C18:4, was observed in fatty acid methyl esters (FAMEs) extracted from the cell membrane. CHS1 was capable of producing saturated fatty acids (SFA) (e.g., C16:0), monounsaturated fatty acids (MUFA) (e.g., C18:1) and polyunsaturated fatty acids (e.g., C20:5) in the cell membrane. In this study, we hypothesize that one mechanism of cold adaptation displayed by isolate CHS1 is the accumulation of high amounts of PUFA in the cell membrane.
Collapse
|
21
|
Riba M, Kiss-Szikszai A, Gonda S, Boros G, Vitál Z, Borsodi AK, Krett G, Borics G, Ujvárosi AZ, Vasas G. Microcystis Chemotype Diversity in the Alimentary Tract of Bigheaded Carp. Toxins (Basel) 2019; 11:E288. [PMID: 31121822 PMCID: PMC6563263 DOI: 10.3390/toxins11050288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Most cyanobacterial organisms included in the genus Microcystis can produce a wide repertoire of secondary metabolites. In the mid-2010s, summer cyanobacterial blooms of Microcystis sp. occurred regularly in Lake Balaton. During this period, we investigated how the alimentary tract of filter-feeding bigheaded carps could deliver different chemotypes of viable cyanobacteria with specific peptide patterns. Twenty-five Microcystis strains were isolated from pelagic plankton samples (14 samples) and the hindguts of bigheaded carp (11 samples), and three bloom samples were collected from the scums of cyanobacterial blooms. An LC-MS/MS-based untargeted approach was used to analyze peptide patterns, which identified 36 anabaenopeptin, 17 microginin, and 13 microcystin variants. Heat map clustering visualization was used to compare the identified chemotypes. A lack of separation was observed in peptide patterns of Microcystis that originated from hindguts, water samples, and bloom-samples. Except for 13 peptides, all other congeners were detected from the viable and cultivated chemotypes of bigheaded carp. This finding suggests that the alimentary tract of bigheaded carps is not simply an extreme habitat, but may also supply the cyanobacterial strains that represent the pelagic chemotypes.
Collapse
Affiliation(s)
- Milán Riba
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gergely Boros
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Zoltán Vitál
- Balaton Limnological Institute, MTA Centre for Ecological Research, H-8237 Tihany, Hungary.
| | - Andrea Kériné Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Gábor Borics
- Danube Research Institute, MTA Centre for Ecological Research, H-1113 Budapest, Hungary.
| | - Andrea Zsuzsanna Ujvárosi
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
22
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
23
|
Synthesis and Evaluation of Spumigin Analogues Library with Thrombin Inhibitory Activity. Mar Drugs 2018; 16:md16110413. [PMID: 30373260 PMCID: PMC6266488 DOI: 10.3390/md16110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023] Open
Abstract
Spumigins are marine natural products derived from cyanobacteria Nodularia spumigena, which mimics the structure of the d-Phe-Pro-Arg sequence and is crucial for binding to the active site of serine proteases thrombin and factor Xa. Biological evaluation of spumigins showed that spumigins with a (2S,4S)-4-methylproline central core represent potential lead compounds for the development of a new structural type of direct thrombin inhibitors. Herein, we represent synthesis and thrombin inhibitory activity of a focused library of spumigins analogues with indoline ring or l-proline as a central core. Novel compounds show additional insight into the structure and biological effects of spumigins. The most active analogue was found to be a derivative containing l-proline central core with low micromolar thrombin inhibitory activity.
Collapse
|
24
|
Shishido TK, Jokela J, Fewer DP, Wahlsten M, Fiore MF, Sivonen K. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543. ACS Chem Biol 2017; 12:2746-2755. [PMID: 28933529 DOI: 10.1021/acschembio.7b00570] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.
Collapse
Affiliation(s)
- Tânia K. Shishido
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Matti Wahlsten
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| | - Marli F. Fiore
- Center
for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Kaarina Sivonen
- Department
of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
25
|
Jokela J, Heinilä LMP, Shishido TK, Wahlsten M, Fewer DP, Fiore MF, Wang H, Haapaniemi E, Permi P, Sivonen K. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Front Microbiol 2017; 8:1963. [PMID: 29062311 PMCID: PMC5640712 DOI: 10.3389/fmicb.2017.01963] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/25/2017] [Indexed: 01/26/2023] Open
Abstract
Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A-F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h) in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.
Collapse
Affiliation(s)
- Jouni Jokela
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lassi M P Heinilä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tânia K Shishido
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Matti Wahlsten
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Hao Wang
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, Helsinki, Finland
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Helsinki, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Lima ST, Alvarenga DO, Etchegaray A, Fewer DP, Jokela J, Varani AM, Sanz M, Dörr FA, Pinto E, Sivonen K, Fiore MF. Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. ACS Chem Biol 2017; 12:769-778. [PMID: 28085246 DOI: 10.1021/acschembio.6b00948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria produce a broad range of natural products, many of which are potent protease inhibitors. Biosynthetic gene clusters encoding the production of novel protease inhibitors belonging to the spumigin and anabaenopeptin family of nonribosomal peptides were identified in the genome of the bloom-forming cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. The genetic architecture and gene organization of both nonribosomal peptide biosynthetic clusters were compared in parallel with their chemical structure variations obtained by liquid chromatography (LC-MS/MS). The spumigin (spu) and anabaenopeptin (apt) gene clusters are colocated in the genomes of S. torques-reginae ITEP-024 and Nodularia spumigena CCY9414 and separated by a 12 kb region containing genes encoding a patatin-like phospholipase, l-homophenylalanine (l-Hph) biosynthetic enzymes, and four hypothetical proteins. hphABCD gene cluster encoding the production of l-Hph was linked to all eight apt gene clusters investigated here. We suggest that while the HphABCD enzymes are an integral part of the anabaenopeptin biosynthetic pathway, they provide substrates for the biosynthesis of both anabaenopeptins and spumigins. The organization of the spu and apt suggests a plausible model for the biosynthesis of the 4-(4-hydroxyphenyl)-2-acid (Hpoba) precursor of spumigin variants in S. torques-reginae ITEP-024 based on the acceptable substrates of HphABCD enzymes.
Collapse
Affiliation(s)
- Stella T. Lima
- University of São Paulo, Center for Nuclear
Energy in Agriculture, Piracicaba-SP, Brazil
| | - Danillo O. Alvarenga
- University of São Paulo, Center for Nuclear
Energy in Agriculture, Piracicaba-SP, Brazil
| | - Augusto Etchegaray
- Pontifical Catholic University of Campinas, Faculty
of Chemistry, Campinas-SP, Brazil
| | - David P. Fewer
- University of Helsinki, Department of Food and Environmental
Sciences, Division of Microbiology and Biotechnology, Helsinki, Finland
| | - Jouni Jokela
- University of Helsinki, Department of Food and Environmental
Sciences, Division of Microbiology and Biotechnology, Helsinki, Finland
| | - Alessandro M. Varani
- São Paulo State University, College of Agricultural
and Veterinary Sciences, Department of Technology, Jaboticabal-SP, Brazil
| | - Miriam Sanz
- University of São Paulo, School of Pharmaceutical
Sciences, São Paulo-SP, Brazil
| | - Felipe A. Dörr
- University of São Paulo, School of Pharmaceutical
Sciences, São Paulo-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical
Sciences, São Paulo-SP, Brazil
| | - Kaarina Sivonen
- University of Helsinki, Department of Food and Environmental
Sciences, Division of Microbiology and Biotechnology, Helsinki, Finland
| | - Marli F. Fiore
- University of São Paulo, Center for Nuclear
Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
27
|
Mazur-Marzec H, Bertos-Fortis M, Toruńska-Sitarz A, Fidor A, Legrand C. Chemical and Genetic Diversity of Nodularia spumigena from the Baltic Sea. Mar Drugs 2016; 14:md14110209. [PMID: 27834904 PMCID: PMC5128752 DOI: 10.3390/md14110209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Nodularia spumigena is a toxic, filamentous cyanobacterium occurring in brackish waters worldwide, yet forms extensive recurrent blooms in the Baltic Sea. N. spumigena produces several classes of non-ribosomal peptides (NRPs) that are active against several key metabolic enzymes. Previously, strains from geographically distant regions showed distinct NRP metabolic profiles. In this work, conspecific diversity in N. spumigena was studied using chemical and genetic approaches. NRP profiles were determined in 25 N. spumigena strains isolated in different years and from different locations in the Baltic Sea using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genetic diversity was assessed by targeting the phycocyanin intergenic spacer and flanking regions (cpcBA-IGS). Overall, 14 spumigins, 5 aeruginosins, 2 pseudaeruginosins, 2 nodularins, 36 anabaenopeptins, and one new cyanopeptolin-like peptide were identified among the strains. Seven anabaenopeptins were new structures; one cyanopeptolin-like peptide was discovered in N. spumigena for the first time. Based on NRP profiles and cpcBA-IGS sequences, the strains were grouped into two main clusters without apparent influence of year and location, indicating persistent presence of these two subpopulations in the Baltic Sea. This study is a major step in using chemical profiling to explore conspecific diversity with a higher resolution than with a sole genetic approach.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Mireia Bertos-Fortis
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Anna Fidor
- Department of Marine Biotechnology, University of Gdansk, Marszałka J. Piłusudskiego 46, 81378 Gdynia, Poland.
| | - Catherine Legrand
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial Model Systems, Linnaeus University, 39182 Kalmar, Sweden.
| |
Collapse
|
28
|
Bertos-Fortis M, Farnelid HM, Lindh MV, Casini M, Andersson A, Pinhassi J, Legrand C. Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors. Front Microbiol 2016; 7:625. [PMID: 27242679 PMCID: PMC4860504 DOI: 10.3389/fmicb.2016.00625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/15/2016] [Indexed: 11/30/2022] Open
Abstract
Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time- series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An “epidemic population structure” (dominance of asingle cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this clusters imultaneously occurred with opportunistic clusters/OTUs, e.g., Nodularia spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formeda consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocynobacteria and the bloom offilamentous/colonialclusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.
Collapse
Affiliation(s)
- Mireia Bertos-Fortis
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Hanna M Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Markus V Lindh
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Michele Casini
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research Lysekil, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Sciences, Umeå University Umeå, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| |
Collapse
|
29
|
Spoof L, Błaszczyk A, Meriluoto J, Cegłowska M, Mazur-Marzec H. Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Mar Drugs 2015; 14:8. [PMID: 26729139 PMCID: PMC4728505 DOI: 10.3390/md14010008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
Anabaenopeptins, bioactive cyclic hexapeptides, were isolated by preparative reversed-phase high performance liquid chromatography from an extract of Baltic Sea cyanobacterial bloom material composed of Nodularia spumigena (50%), Aphanizomenon flos-aquae (40%) and Dolichospermum spp. (10%). Five new anabaenopeptins and nine previously known anabaenopeptins were isolated, and their putative structures were determined by tandem mass spectrometry. The activity of the peptides against carboxypeptidase A and protein phosphatase 1 as well as chymotrypsin, trypsin and thrombin was tested. All anabaenopeptins inhibited carboxypeptidase A (apart from one anabaenopeptin variant) and protein phosphatase 1 with varying potency, but no inhibition against chymotrypsin, trypsin and thrombin was observed.
Collapse
Affiliation(s)
- Lisa Spoof
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Marta Cegłowska
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
30
|
Sanz M, Dörr FA, Pinto E. First report of spumigin production by the toxic Sphaerospermopsis torques-reginae cyanobacterium. Toxicon 2015; 108:15-8. [PMID: 26394197 DOI: 10.1016/j.toxicon.2015.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
High resolution mass spectrometry investigation of an extract of the toxic cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 led to the discovery of four new spumigin congeners. The structures for these peptides were postulated on the basis of accurate mass data and isotopic pattern information of both full scan and product ion spectra. This is the first reported evidence of spumigins on Sphaerospermopsis species.
Collapse
Affiliation(s)
- Miriam Sanz
- School of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl 17 05508-900, São Paulo, SP, Brazil
| | - Felipe Augusto Dörr
- School of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl 17 05508-900, São Paulo, SP, Brazil
| | - Ernani Pinto
- School of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl 17 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Sanz M, Andreote APD, Fiore MF, Dörr FA, Pinto E. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry. Mar Drugs 2015; 13:3892-919. [PMID: 26096276 PMCID: PMC4483662 DOI: 10.3390/md13063892] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).
Collapse
Affiliation(s)
- Miriam Sanz
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ana Paula Dini Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ernani Pinto
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Liu L, Budnjo A, Jokela J, Haug BE, Fewer DP, Wahlsten M, Rouhiainen L, Permi P, Fossen T, Sivonen K. Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem Biol 2015; 10:725-33. [PMID: 25419633 DOI: 10.1021/cb5004306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nodularia spumigena is a filamentous cyanobacterium that forms toxic blooms in brackish waters around the world through the production of the pentapeptide toxin nodularin. This cyanobacterium also produces large amounts of protease inhibitors belonging to the aeruginosin and spumigin families. Here we report the discovery of previously unknown protease inhibitors, pseudoaeruginosins NS1 (1) and NS2 (2), from 33 strains of N. spumigena isolated from the Baltic Sea. Pseudoaeruginosin NS1 (1) and NS2 (2) contain hexanoic acid, tyrosine, 4-methylproline, and argininal/argininol. The chemical structure of the two pseudoaeruginosins was verified by thorough comparison of the liquid chromatography-mass spectrometry (LC-MS) analyses of the extracts from the N. spumigena strains with synthetic peptides. The structures of the synthetic pseudoaeruginosins were confirmed using nuclear magnetic resonance spectroscopy. Surprisingly, the structure of pseudoaeruginosin NS1 (1) and NS2 (2) combines features of both aeruginosins and spumigins, suggesting that they have been produced through the joint action of both the spumigin and aeruginosin biosynthesis pathways. We screened with polymerase chain reaction and LC-MS 68 N. spumigena strains from the Baltic Sea and Australia. Pseudoaeruginosins were present in half of the Baltic Sea strains but were not found from the Australian strains. The production of pseudoaeruginosin seems to be coupled to the production of aeruginosins and 4-methylproline-containing spumigins. Pseudoaeruginosin NS1 was found to be as potent trypsin inhibitor as the most potent aeruginosins and spumigins with an IC50 of 0.19 ± 0.04 μM. This finding suggests that cooperation between the spumigin and aeruginosin biosynthetic pathways results in hybrid pseudoaeruginosin peptides.
Collapse
Affiliation(s)
- Liwei Liu
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Adnan Budnjo
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Jouni Jokela
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Bengt Erik Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - David P. Fewer
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Matti Wahlsten
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Leo Rouhiainen
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Perttu Permi
- Program in Structural
Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Kaarina Sivonen
- Food and
Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| |
Collapse
|
33
|
Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M. Expression profiling of the bloom-forming cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions. ISME JOURNAL 2015; 9:2139-52. [PMID: 25689027 DOI: 10.1038/ismej.2015.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022]
Abstract
Massive blooms of toxic cyanobacteria frequently occur in the central Baltic Sea during the summer. In the surface scum, cyanobacterial cells are exposed to high light (HL) intensity, high oxygen partial pressure and other stresses. To mimic these conditions, cultures of Nodularia spumigena CCY9414, which is a strain isolated from a cyanobacterial summer bloom in the Baltic Sea, were incubated at a HL intensity of 1200 μmol photons m(-2) s(-1) or a combination of HL and increased oxygen partial pressure. Using differential RNA sequencing, we compared the global primary transcriptomes of control and stressed cells. The combination of oxidative and light stresses induced the expression of twofold more genes compared with HL stress alone. In addition to the induction of known stress-responsive genes, such as psbA, ocp and sodB, Nodularia cells activated the expression of genes coding for many previously unknown light- and oxidative stress-related proteins. In addition, the expression of non-protein-coding RNAs was found to be stimulated by these stresses. Among them was an antisense RNA to the phycocyanin-encoding mRNA cpcBAC and the trans-encoded regulator of photosystem I, PsrR1. The large genome capacity allowed Nodularia to harbor more copies of stress-relevant genes such as psbA and small chlorophyll-binding protein genes, combined with the coordinated induction of these and many additional genes for stress acclimation. Our data provide a first insight on how N. spumigena became adapted to conditions relevant for a cyanobacterial bloom in the Baltic Sea.
Collapse
Affiliation(s)
- Matthias Kopf
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie, Genetik und Experimentelle Bioinformatik, Freiburg, Germany
| | - Fred Möke
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | - Wolfgang R Hess
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie, Genetik und Experimentelle Bioinformatik, Freiburg, Germany
| | - Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| |
Collapse
|
34
|
Grabowska M, Kobos J, Toruńska-Sitarz A, Mazur-Marzec H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch Microbiol 2014; 196:697-707. [PMID: 24972671 PMCID: PMC4168019 DOI: 10.1007/s00203-014-1008-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 10/31/2022]
Abstract
Planktothtrix agardhii (Oscillatoriales) is a filamentous cyanobacterium, which frequently forms blooms in shallow, polymictic and eutrophicated waters. This species is also a rich source of unique linear and cyclic peptides. In the current study, the profile of the peptides in samples from the P. agardhii-dominated Siemianówka Dam Reservoir (SDR) (northeast Poland) was analyzed for four subsequent years (2009-2012). The LC-MS/MS analyses revealed the presence of 33 peptides. Twelve of the most abundant ones, including five microcystins, five anabaenopeptins, one aeruginosin and one planktocyclin, were present in all field samples collected during the study. The detection of different peptides in two P. agardhii isolates indicated that the SDR population was composed of several chemotypes, characterized by different peptide patterns. The total concentration of microcystins (MCs) positively correlated with the biomass of P. agardhii. Between subsequent years, the changes in the ratio of the total MCs concentration to the biomass of P. agardhii were noticed, but they were less than threefold. This is the first study on the production of different classes of non-ribosomal peptides by freshwater cyanobacteria in Poland.
Collapse
Affiliation(s)
- Magdalena Grabowska
- Department of Hydrobiology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | - Justyna Kobos
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Toruńska-Sitarz
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
35
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
36
|
Turja R, Guimarães L, Nevala A, Kankaanpää H, Korpinen S, Lehtonen KK. Cumulative effects of exposure to cyanobacteria bloom extracts and benzo[a]pyrene on antioxidant defence biomarkers in Gammarus oceanicus (Crustacea: Amphipoda). Toxicon 2014; 78:68-77. [DOI: 10.1016/j.toxicon.2013.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022]
|
37
|
Persson KJ, Bergström K, Mazur-Marzec H, Legrand C. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis. Toxicon 2013; 76:178-86. [DOI: 10.1016/j.toxicon.2013.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
38
|
Kapuścik A, Hrouzek P, Kuzma M, Bártová S, Novák P, Jokela J, Pflüger M, Eger A, Hundsberger H, Kopecký J. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem 2013; 14:2329-37. [PMID: 24123716 DOI: 10.1002/cbic.201300246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Indexed: 01/13/2023]
Abstract
Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect.
Collapse
Affiliation(s)
- Aleksandra Kapuścik
- Department of Phototrophic Microorganisms-ALGATECH, Institute of Microbiology, Academy of Science of the Czech Republic, Opatovický mlýn, 379 81 Třeboň (Czech Republic)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS One 2013; 8:e73618. [PMID: 24040002 PMCID: PMC3765200 DOI: 10.1371/journal.pone.0073618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022] Open
Abstract
Nodularia spumigena is a filamentous diazotrophic cyanobacterium that forms blooms in brackish water bodies. This cyanobacterium produces linear and cyclic peptide protease inhibitors which are thought to be part of a chemical defense against grazers. Here we show that N. spumigena produces structurally novel members of the aeruginosin family of serine protease inhibitors. Extensive chemical analyses including NMR demonstrated that the aeruginosins are comprised of an N-terminal short fatty acid chain, L-Tyr, L-Choi and L-argininal and in some cases pentose sugar. The genome of N. spumigena CCY9414 contains a compact 18-kb aeruginosin gene cluster encoding a peptide synthetase with a reductive release mechanism which offloads the aeruginosins as reactive peptide aldehydes. Analysis of the aeruginosin and spumigin gene clusters revealed two different strategies for the incorporation of N-terminal protecting carboxylic acids. These results demonstrate that strains of N. spumigena produce aeruginosins and spumigins, two families of structurally similar linear peptide aldehydes using separate peptide synthetases. The aeruginosins were chemically diverse and we found 11 structural variants in 16 strains from the Baltic Sea and Australia. Our findings broaden the known structural diversity of the aeruginosin peptide family to include peptides with rare N-terminal short chain (C2–C10) fatty acid moieties.
Collapse
|