1
|
Lee ZX, Guo H, Looi AD, Bhuvanendran S, Magalingam KB, Lee WL, Radhakrishnan AK. Carotenoids Modulate FoxO-Induced Cell Cycle Awrrest in Human Cancer Cell Lines: A Scoping Review. Food Sci Nutr 2025; 13:e70100. [PMID: 40161411 PMCID: PMC11953061 DOI: 10.1002/fsn3.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Carotenoids, a class of antioxidants, have shown great potential for cancer management. This scoping review aimed to elucidate the anticancer mechanisms of carotenoids by using a protein interactions and pathways approach. A literature search on five databases (Web of Science, PubMed, Ovid Medline, Ovid Embase and Scopus) was carried out, and studies investigating differential protein expression in cancer cell lines treated with carotenoids published in the last 10 years were included in the analysis. Sixty-three research articles were short-listed, and 17 carotenoids were used in these studies. The most studied carotenoids were fucoxanthin, astaxanthin, and crocin. The key cancer cell lines tested in these studies included breast, gastric, and lung cancers. Analysis of the proteins identified from these studies using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) revealed the upregulation of proteins belonging to the pro-apoptotic and FoxO signaling pathways. In contrast, several proteins in the PI3k/Akt and TNF signaling pathways and cell cycle regulation were downregulated, which can explain the observed anticancer effects. The findings from this scoping review suggest that the cell cycle arrest observed in carotenoid-treated cancer cells may work through activation of the FoxO signaling pathway in these cells, highlighting their role as potential anticancer agents. Nonetheless, the lack of evidence on the pharmacology, pharmacokinetics, and physiology of carotenoids necessitates more robust and well-designed clinical trials. Similarly, further investigations into the therapeutic effects of targeting the PI3K/Akt/FoxO axis to induce cell cycle arrest and its translational potential are required to ensure the successful development of effective treatments.
Collapse
Affiliation(s)
- Zi Xin Lee
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Hanting Guo
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Aaron Deming Looi
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Kasthuri Bai Magalingam
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| | - Wai Leng Lee
- School of ScienceMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
2
|
Shangguan F, Ma N, Chen Y, Zheng Y, Ma T, An J, Lin J, Yang H. Fucoxanthin suppresses pancreatic cancer progression by inducing bioenergetics metabolism crisis and promoting SLC31A1‑mediated sensitivity to DDP. Int J Oncol 2025; 66:31. [PMID: 40052552 PMCID: PMC11900939 DOI: 10.3892/ijo.2025.5737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors, with a 5‑year survival rate <10%. Chemosynthetic drugs are widely used in the treatment of PC; however, their toxicity and side effects often reduce the quality of life for patients. MTT and colony formation assay were performed to detect cell growth and viability in PC cells. Levels of ROS in whole cell and mitochondria were analyzed through flow cytometry. ATP production was evaluated using an ATP Assay Kit. Cellular bioenergetics were analyzed with a Seahorse XFe96 Analyzer, and changes in target molecules were monitored by western blotting. The present study reports that fucoxanthin (FX), a carotenoid derived from aquatic brown seaweed, significantly inhibits PC by inhibiting cell proliferation and inducing cell death via the non‑classical pathway. FX switches mitochondrial respiration to aerobic glycolysis in PC cells. Furthermore, FX decreases whole‑cell ATP levels, which indicates that promotion of glycolysis does not compensate for FX‑induced ATP depletion in mitochondria. Moreover, FX decreased the reduced glutathione/oxidized glutathione ratio observed under glucose‑limited conditions. These alterations caused by FX may decrease metabolic flexibility, indicating higher sensitivity to glucose‑limited (GL) conditions. FX increased the cytotoxicity of cisplatin (DDP) and the expression of solute carrier family 31 member 1 (SLC31A1) in PC cells. Furthermore, the knockdown of SLC31A1 can attenuate cytotoxicity caused by the combination of FX and DDP. It was inferred that FX increased the sensitivity of PC cells to DDP), potentially by upregulating SLC31A1 expression. In conclusion, FX exhibited potent antitumor effects by reprogramming energy metabolism and inducing a distinct form of regulated cell death. Therefore, combining FX with GL treatment or DDP presents a promising therapeutic strategy for PC.
Collapse
Affiliation(s)
- Fugen Shangguan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nengfang Ma
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yang Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ting Ma
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Jianhu Lin
- Department of Trauma Surgery and Emergency Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
3
|
Li S, Lu Z, Jiang W, Xu Y, Chen R, Wang J, Jiao B, Lu X. Chaetocin, a Natural Inhibitor of Transketolase, Suppresses the Non-Oxidative Pentose Phosphate Pathway and Inhibits the Growth of Drug-Resistant Non-Small Cell Lung Cancer. Antioxidants (Basel) 2025; 14:330. [PMID: 40227333 PMCID: PMC11939327 DOI: 10.3390/antiox14030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
Worldwide, lung cancer is the most common cause of cancer-related death, which is made worse by the development of drug resistance during treatment. It is urgent to develop new therapeutic methods and small molecule drugs for tumor resistance. Chaetocin, extracted from Chaetomium minutum, is a natural compound with good antitumor activity. However, there are few studies on its tumor resistance. In this paper, firstly, chaetotocin significantly inhibited the viability and migration of cisplatin-resistant non-small cell lung cancer (NSCLC) cells and inhibited the xenograft growth of nude mice. Chaetocin at 4 mg/kg significantly inhibited A549/DDP xenograft growth with an inhibition rate of 70.43%. Subsequently, the underlying mechanism behind the actions of chaetocin was explored. It was discovered that chaetocin can inhibit transketolase (TKT), thereby inhibiting the growth of NSCLC cells and inducing cell death. Compared with cisplatin-sensitive cells, a lower concentration of chaetocin can inhibit cisplatin-resistance cell viability and migration. Mechanistically, TKT was identified as a potential target for chaetocin. The KD value of the interaction between chaetocin and TKT was 63.2 μM. An amount of 0.2 μM chaetocin may suppress the enzyme activity and expression level of TKT. We found the TKT expression is higher in cisplatin-resistant cells, which further explains why these cells were more vulnerable to chaetocin in terms of cell phenotype. Additionally, the muti-omics analysis and RNA interference suggested that chaetocin can inhibit the PI3K/Akt signaling pathway through TKT. In conclusion, chaetocin could directly bind to TKT, inhibiting its enzyme activity and expression, which interfered with intracellular metabolism and oxidation-reduction balance, and then regulated the PI3K/Akt signaling pathway to inhibit the growth of NSCLC and induce apoptosis.
Collapse
Affiliation(s)
- Song Li
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Zhanying Lu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai 200433, China;
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Ran Chen
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (S.L.); (W.J.); (Y.X.); (R.C.); (J.W.)
| |
Collapse
|
4
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing cisplatin efficacy in hepatocellular carcinoma with selenocystine: The suppression of DNA repair and inhibition of proliferation in hepatoma cells. Chem Biol Interact 2025; 405:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Wang C, Huang X, Sun K, Li X, Feng D, Nakamura Y, Qi H. Whey protein and flaxseed gum co-encapsulated fucoxanthin promoted tumor cells apoptosis based on MAPK-PI3K/Akt regulation on Huh-7 cell xenografted nude mice. Int J Biol Macromol 2024; 278:134838. [PMID: 39159798 DOI: 10.1016/j.ijbiomac.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Fucoxanthin (FX), a non-provitamin-A carotenoid, is a well-known major xanthophyll contained in edible brown algae. The nanoencapsulation of FX was motivated due to its multiple activities. Here, nano-encapsulated-FX (nano-FX) was prepared according to our early method by using whey protein and flaxseed gum as the biomacromolecule carrier material, then in vivo antitumor effect and mechanism of nano-FX on xenograft mice were investigated. Thirty 4-week-old male BALB/c nude mice were fed adaptively for 7 days to establish xenograft tumor model with Huh-7 cells. The tumor-bearing mice consumed nano-FX (50, 25, and 12.5 mg kg-1) and doxorubicin hydrochloride (DOX, 1 mg kg-1) or did not consume (Control) for 21 days, n = 6. The tumor inhibition rates of nano-FX were as high as 54.67 ± 1.04 %. Nano-FX intervention promoted apoptosis and induced hyperchromatic pyknosis and focal necrosis in tumor tissue by down-regulating the expression of p-JNK, p-ERK, PI3Kp85α, p-AKT, p-p38MAPK, Bcl-2, CyclinD1 and Ki-67, while up-regulating the expression of cleaved caspase-3 and Bax. Nano-FX inhibited tumor growth and protected liver function of tumor bearing mice in a dose-dependent manner, up-regulate the level of apoptosis-related proteins, inhibit the MAPK-PI3K/Akt pathways, and promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kailing Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hang Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
7
|
Diego-González L, Simón-Vázquez R. Immunomodulatory properties of algae. FUNCTIONAL INGREDIENTS FROM ALGAE FOR FOODS AND NUTRACEUTICALS 2023:593-615. [DOI: 10.1016/b978-0-323-98819-3.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Carotenoids from Marine Microalgae as Antimelanoma Agents. Mar Drugs 2022; 20:md20100618. [PMID: 36286442 PMCID: PMC9604797 DOI: 10.3390/md20100618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy due to their safety and acceptable clinical tolerability. Many of them are currently used as food supplements. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various melanoma cell lines. MAPK and NF-ĸB pathway, MMP and apoptotic factors are frequently affected after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine).
Collapse
|
9
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
10
|
Pan X, Chen G, Hu W. Piperlongumine increases the sensitivity of bladder cancer to cisplatin by mitochondrial ROS. J Clin Lab Anal 2022; 36:e24452. [PMID: 35466450 PMCID: PMC9169161 DOI: 10.1002/jcla.24452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The development of cisplatin resistance often results in cisplatin inefficacy in advanced or recurrent bladder cancer. However, effective treatment strategies for cisplatin resistance have not been well established. METHODS Gene expression was measured by qRT-PCR and Western blotting. CCK-8 assay was performed to detect cell survival. The number of apoptotic cells was determined using the Annexin V-PI double-staining assay. The level of reactive oxygen species (ROS) was measured using 2',7'-dichlorodihydrofluorescein diacetate fluorescent dye, and the ATP level was detected using an ATP measurement kit. RESULTS The expression of receptor-interacting protein kinase 1 (RIPK1), a key regulator of necroptosis, gradually decreased during cisplatin resistance. We first used piperlongumine (PL) in combination with cisplatin to act on cisplatin-resistant BC cells and found that PL-induced activation of RIPK1 increased the sensitivity of T24 resistant cells to cisplatin treatment. Furthermore, we revealed that PL killed T24 cisplatin-resistant cells by triggering necroptosis, because cell death could be rescued by the mixed lineage kinase domain-like (MLKL) protein inhibitor necrotic sulfonamide or MLKL siRNA, but could not be suppressed by the apoptosis inhibitor z-VAD. We further explored the specific mechanism and found that PL activated RIPK1 to induce necroptosis in cisplatin-resistant cells by stimulating mitochondrial fission to produce excessive ROS. CONCLUSIONS Our results demonstrated the role of RIPK1 in cisplatin-resistant cells and the sensitization effect of the natural drug PL on bladder cancer. These may provide a new treatment strategy for overcoming cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Xiaobo Pan
- Department of UrologyThe Affiliated People's Hospital of Ningbo UniversityNingboChina
| | - Guangyao Chen
- Department of UrologyThe Affiliated People's Hospital of Ningbo UniversityNingboChina
| | - Wenhao Hu
- Department of UrologyThe Affiliated People's Hospital of Ningbo UniversityNingboChina
| |
Collapse
|
11
|
Chen D, Jin Y, Hu D, Ye J, Lu Y, Dai Z. One-Step Preparative Separation of Fucoxanthin from Three Edible Brown Algae by Elution-Extrusion Countercurrent Chromatography. Mar Drugs 2022; 20:257. [PMID: 35447930 PMCID: PMC9024483 DOI: 10.3390/md20040257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
A method for batch preparation of fucoxanthin from brown algae was established, which possessed the advantages of high yield and high purity. The ultrasonic-assisted extraction method was used to obtain a crude extract from Sargassum fusiforme as the separation sample. Then the crude extract was separated by elution-extrusion countercurrent chromatography. The optimum preparation conditions of fucoxanthin were determined as follows: n-hexane-ethanol-water (20:9:11, v:v:v) as a two-phase solvent system, the mobile phase flow rate was 5 mL min-1, the revolution speed was 800 r min-1, the loading capacity was 60 mg 10 mL-1 and the temperature was 25 °C. By this method, 12.8 mg fucoxanthin with a purity of 94.72% was obtained from the crude extract of Sargassum fusiforme. In addition, when the loading capacity was 50 mg 10 mL-1, the purity of fucoxanthin reached 96.01%. Two types of by-products, chlorophyll and pheophytin, could also be obtained during the process of separation. This optimal method was further applied to separate fucoxanthin from Laminaria japonica and Undaria pinnatifida, and 6.0 mg and 9.7 mg fucoxanthin with a purity of 96.24% and 92.62% were acquired, respectively. Therefore, it was demonstrated that the preparation method of fucoxanthin established in this study had an applicability to brown algae, which improved the utilization value of raw materials.
Collapse
Affiliation(s)
| | | | | | | | - Yanbin Lu
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; (D.C.); (Y.J.); (D.H.); (J.Y.); (Z.D.)
| | | |
Collapse
|
12
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
13
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
14
|
Treatment with protocatechuic acid attenuates cisplatin-induced toxicity in the brain and liver of male Wistar rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
16
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|
17
|
Ming JX, Wang ZC, Huang Y, Ohishi H, Wu RJ, Shao Y, Wang H, Qin MY, Wu ZL, Li YY, Chang Zhou S, Chen H, Liu H, Xu R. Fucoxanthin extracted from Laminaria Japonica inhibits metastasis and enhances the sensitivity of lung cancer to Gefitinib. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113302. [PMID: 32860893 DOI: 10.1016/j.jep.2020.113302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laminaria japonica, a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including lung cancer. AIM OF THE STUDY To demonstrate the effects of Fucoxanthin (FX), a major active component extracted from Laminaria japonica on metastasis and Gefitinib (Gef) sensitivity in human lung cancer cells both in vitro and in vivo. MATERIALS AND METHODS Invasion and migration of lung cancer cells were detected using the wound healing assay and transwell assay. Epithelial-to-mesenchymal transition (EMT) factors and PI3K/AKT/NF-κB pathways were analyzed by western blotting. RNA interference (RNAi) technology was used to silence TIMP-2 gene expression in A549 cells. The anti-metastatic effect of FX was evaluated in vivo in an experimental lung metastatic tumor model. On the other hand, cell counting kit-8 assay was used to study the cell viability of human lung cancer PC9 cells and Gef resistant PC9 cells (PC9/G) after Gef, FX or FX combined with Gef treatment. PC9 xenograft model was established to explore the anti-tumor effect of FX or combined with Gef. Immunohistochemistry staining assay and immunofluorescence staining assay were used to reveal the effects of FX on lung cancer cell proliferation and apoptosis. RESULTS FX was able to significantly inhibit lung cancer cells migration and invasion in vitro. FX suppressed the expressions of Snail, Twist, Fibronectin, N-cadherin, MMP-2, PI3K, p-AKT and NF-κB, and increased the expression of TIMP-2. Furthermore, knockdown of TIMP-2 attenuated FX-mediated invasion inhibition. Additionally, we demonstrated that FX inhibited lung cancer cells metastasis in vivo. The anti-metastatic effects of FX on lung cancer cells might be attributed to inhibition of EMT and PI3K/AKT/NF-κB pathway. We further demonstrated that the anti-tumor activity of FX was not only limited to the drug sensitive cell lines, but also prominent on lung cancer cells with Gef resistant phenotype. Furthermore, in vivo xenograft assay confirmed that FX inhibited tumor growth and enhanced the sensitivity of lung cancer cells to Gef and this effect may be due to inhibition of tumor cell proliferation and activation of apoptosis. CONCLUSION Collectively, our findings suggested that FX suppresses metastasis of lung cancer cells and overcomes EGFR TKIs resistance. Thus, FX is worthy of further investigation as a drug candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jia Xiong Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhao Cong Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | | | - Rong Ji Wu
- Eiho Technology (WUHAN) Co., Ltd., Wuhan, 430030, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yang Qin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze Liang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shun Chang Zhou
- Center of Experimental Animals, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
18
|
Wróblewska-Łuczka P, Grabarska A, Florek-Łuszczki M, Plewa Z, Łuszczki JJ. Synergy, Additivity, and Antagonism between Cisplatin and Selected Coumarins in Human Melanoma Cells. Int J Mol Sci 2021; 22:ijms22020537. [PMID: 33430369 PMCID: PMC7827586 DOI: 10.3390/ijms22020537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.
Collapse
Affiliation(s)
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, 20-400 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-03
| |
Collapse
|
19
|
Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: A Promising Bioactive Compound for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239273. [PMID: 33291743 PMCID: PMC7730715 DOI: 10.3390/ijms21239273] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Fucoxanthin is a well-known carotenoid of the xanthophyll family, mainly produced by marine organisms such as the macroalgae of the fucus genus or microalgae such as Phaeodactylum tricornutum. Fucoxanthin has antioxidant and anti-inflammatory properties but also several anticancer effects. Fucoxanthin induces cell growth arrest, apoptosis, and/or autophagy in several cancer cell lines as well as in animal models of cancer. Fucoxanthin treatment leads to the inhibition of metastasis-related migration, invasion, epithelial–mesenchymal transition, and angiogenesis. Fucoxanthin also affects the DNA repair pathways, which could be involved in the resistance phenotype of tumor cells. Moreover, combined treatments of fucoxanthin, or its metabolite fucoxanthinol, with usual anticancer treatments can support conventional therapeutic strategies by reducing drug resistance. This review focuses on the current knowledge of fucoxanthin with its potential anticancer properties, showing that fucoxanthin could be a promising compound for cancer therapy by acting on most of the classical hallmarks of tumor cells.
Collapse
|
20
|
Protein kinases as targets for developing anticancer agents from marine organisms. Biochim Biophys Acta Gen Subj 2020; 1865:129759. [PMID: 33038451 DOI: 10.1016/j.bbagen.2020.129759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/11/2023]
Abstract
Protein kinases play a fundamental role in the intracellular transduction because of their ability to phosphorylate plethora of proteins. Over the past three decades, numerous protein kinase inhibitors have been identified and are being used clinically successfully. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer agents in the treatment of human malignancies and a lot of bioactive ingredients from marine organisms display anticancer effects by affecting the protein kinases-mediated pathways. In the present mini-review, anticancer compounds from marine source were reviewed and discussed in context of their targeted pathways associated with protein kinases and the progress of these compounds as anticancer agents in recent five years were emphasized. The molecular entities and their modes of actions were presented. We focused on protein kinases-mediated signaling pathways including PI3K/Akt/mTOR, p38 MAPK, and EGFR. The marine compounds targeting special pathways of protein kinases were highlighted. We have also discussed the existing challenges and prospects related to design and development of novel protein kinase inhibitors from marine sources.
Collapse
|
21
|
Gonçalves de Oliveira-Júnior R, Grougnet R, Bodet PE, Bonnet A, Nicolau E, Jebali A, Rumin J, Picot L. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
23
|
Asiatic Acid, Extracted from Centella asiatica and Induces Apoptosis Pathway through the Phosphorylation p38 Mitogen-Activated Protein Kinase in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells. Biomolecules 2020; 10:biom10020184. [PMID: 31991751 PMCID: PMC7072674 DOI: 10.3390/biom10020184] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an important issue in Asia because of its unique geographical and ethnic distribution. Cisplatin-based regimens are commonly the first-line used chemotherapy, but resistance and toxicities remain a problem. Therefore, the use of anticancer agents derived from natural products may be a solution. Asiatic acid (AA), extracted from Centella asiatica, was found to have anticancer activity in various cancers. The aim of this study is to examine the cytotoxic effect and mediated mechanism of AA in cisplatin-resistant NPC cells. The results shows that AA significantly reduce the cell viability of cisplatin-resistant NPC cell lines (cis NPC-039 and cis NPC-BM) in dose and time dependent manners caused by apoptosis through the both intrinsic and extrinsic apoptotic pathways, including altered mitochondrial membrane potential, activated death receptors, increased Bax expression, and upregulated caspase 3, 8, and 9. The Western blot analysis of AA-treated cell lines reveals that the phosphorylation of MAPK pathway proteins is involved. Further, the results of adding inhibitors of these proteins indicates that the phosphorylation of p38 are the key mediators in AA-induced apoptosis in cisplatin-resistant human NPC cells. This is the first study to demonstrate the AA-induced apoptotic pathway through the phosphorylation p38 in human cisplatin-resistant nasopharyngeal carcinoma. AA is expected to be another therapeutic option for cisplatin-resistant NPC because of the promising anti-cancer effect and fewer toxic properties.
Collapse
|
24
|
Lambert IH, Nielsen D, Stürup S. Impact of the histone deacetylase inhibitor trichostatin A on active uptake, volume-sensitive release of taurine, and cell fate in human ovarian cancer cells. Am J Physiol Cell Physiol 2020; 318:C581-C597. [PMID: 31913698 DOI: 10.1152/ajpcell.00460.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The histone deacetylase inhibitor trichostatin A (TSA) reduces cell viability in cisplatin-sensitive (A2780WT) and cisplatin-resistant (A2780RES) human ovarian cancer cells due to progression of apoptosis (increased caspase-9 activity), autophagy (increased LC3-II expression), and cell cycle arrest (increased p21 expression). The TSA-mediated effect on p21 and caspase-9 is mainly p53 independent. Cisplatin increases DNA-damage (histone H2AX phosphorylation) in A2780WT cells, whereas cisplatin, due to reduced uptake [inductively coupled-plasma-mass spectrometry (Pt) analysis], has no DNA-damaging effect in A2780RES cells. TSA has no effect on cisplatin accumulation or cisplatin-induced DNA-damage in A2780WT/A2780RES cells. Tracer technique indicates that TSA inhibits the volume-sensitive organic anion channel (VSOAC) in A2780WT/A2780RES cells and that the activity is restored by exogenous H2O2. As TSA reduces NOX4 mRNA accumulation and concomitantly increases catalase mRNA/protein accumulation, we suggest that TSA increases the antioxidative defense in A2780 cells. Inhibition of the kinase mTOR (rapamycin, palomid, siRNA), which is normally associated with cell growth, reduces VSOAC activity synergistically to TSA. However, as TSA increases mTOR activity (phosphorylation of 4EBP1, S6 kinase, S6, ULK1, SGK1), the effect of TSA on VSOAC activity does not reflect the shift in mTOR signaling. Upregulation of the protein expression and activity of the taurine transporter (TauT) is a phenotypic characteristic of A2780RES cells. However, TSA reduces TauT protein expression in A2780RES cells and activity to values seen in A2780WT cells. It is suggested that therapeutic benefits of TSA in A2780 do not imply facilitation of cisplatin uptake but more likely a synergistic activation of apoptosis/autophagy and reduced TauT activity.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stürup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Tapia C, López B, Astuya A, Becerra J, Gugliandolo C, Parra B, Martínez M. Antiproliferative activity of carotenoid pigments produced by extremophile bacteria. Nat Prod Res 2019; 35:4638-4642. [PMID: 31809588 DOI: 10.1080/14786419.2019.1698574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Various microorganisms are able to synthesize pigments, which usually present antioxidant properties. The aim of this work was to evaluate the antiproliferative activity of bacterial pigments against cancer cells Neuro-2a, Saos-2 and MCF-7. Pigments were obtained from Deinococcus sp. UDEC-P1 and Arthrobacter sp. UDEC-A13. Both bacterial strains were isolated from cold environments (Patagonia and Antarctica, respectively). Pigments were purified and analyzed by HPLC. Antiproliferative activity was evaluated by 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) assay. Deinoxanthin carotenoid obtained from Deinococcus sp. UDEC-P1 was able to reduce significatively the viability of Saos-2 (37.1%), while no effect was observed against MCF-7 and Neuro-2a. Pigments obtained from Arthrobacter sp. UDEC-A13 showed a significant viability reduction of three tumour cells (20.6% Neuro-2a, 26.3% Saos-2 and 13.2% MCF-7). Therefore, carotenoid pigments produced by extremophilic bacteria Deinococcus sp. UDEC-P1 and Arthrobacter sp. UDEC-A13 could be proposed as novel complementary compounds in anticancer chemotherapy.
Collapse
Affiliation(s)
- Cristian Tapia
- Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Bárbara López
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Sur-Austral COPAS Program, University of Concepcion, Chile
| | - Allisson Astuya
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Sur-Austral COPAS Program, University of Concepcion, Chile
| | - José Becerra
- Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepcion, Chile
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina, Messina, Italy
| | - Boris Parra
- Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Miguel Martínez
- Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Chile
| |
Collapse
|
26
|
Garg S, Afzal S, Elwakeel A, Sharma D, Radhakrishnan N, Dhanjal JK, Sundar D, Kaul SC, Wadhwa R. Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Mar Drugs 2019; 17:md17060338. [PMID: 31195739 PMCID: PMC6627158 DOI: 10.3390/md17060338] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin is commonly found in marine organisms; however, to date, it has been one of the scarcely explored natural compounds. We investigated its activities in human cancer cell culture-based viability, migration, and molecular assays, and found that it possesses strong anticancer and anti-metastatic activities that work irrespective of the p53 status of cancer cells. In our experiments, fucoxanthin caused the transcriptional suppression of mortalin. Cell phenotype-driven molecular analyses on control and treated cells demonstrated that fucoxanthin caused a decrease in hallmark proteins associated with cell proliferation, survival, and the metastatic spread of cancer cells at doses that were relatively safe to the normal cells. The data suggested that the cancer therapy regimen may benefit from the recruitment of fucoxanthin; hence, it warrants further attention for basic mechanistic studies as well as drug development.
Collapse
Affiliation(s)
- Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Ahmed Elwakeel
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Damini Sharma
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Jaspreet Kaur Dhanjal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
27
|
Ko JC, Chen JC, Chen TY, Yen TC, Ma PF, Lin YC, Wu CH, Peng YS, Zheng HY, Lin YW. Inhibition of thymidine phosphorylase expression by Hsp90 inhibitor potentiates the cytotoxic effect of salinomycin in human non-small-cell lung cancer cells. Toxicology 2019; 417:54-63. [PMID: 30796972 DOI: 10.1016/j.tox.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 11/18/2022]
Abstract
Salinomycin is a polyether ionophore antibiotic having anti-tumorigenic property in various types of cancer. Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, are associated with an aggressive disease phenotype and poor prognoses. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-AAG could enhance salinomycin-induced cytotoxicity in NSCLC cells through modulating TP expression in two non-small-cell lung cancer (NSCLC) cell lines, A549 and H1975. We found that salinomycin increased TP expression in a MKK3/6-p38 MAPK activation manner. Knockdown of TP using siRNA or inactivation of p38 MAPK by pharmacological inhibitor SB203580 enhanced the cytotoxic and growth inhibition effects of salinomycin. In contrast, enforced expression of MKK6E (a constitutively active form of MKK6) reduced the cytotoxicity and cell growth inhibition of salinomycin. Moreover, Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of salinomycin in NSCLC cells, which were associated with down-regulation of TP expression and inactivation of p38 MAPK. Together, the Hsp90 inhibition induced TP down-regulation involved in enhancing the salinomycin-induced cytotoxicity in A549 and H1975 cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Peng-Fang Ma
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yuan-Cheng Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chia-Hung Wu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Shuan Peng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
28
|
Wang Z, Li H, Dong M, Zhu P, Cai Y. The anticancer effects and mechanisms of fucoxanthin combined with other drugs. J Cancer Res Clin Oncol 2019; 145:293-301. [PMID: 30627824 DOI: 10.1007/s00432-019-02841-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Fucoxanthin (Fx) is a characteristic carotenoid present in brown seaweed that has been shown to have various benefits, including anticancer effects. In vitro studies demonstrated these various effects, including the suppression of cell viability, the promotion of apoptosis, and antiangiogenic, antiproliferative, and antimetastatic activity. Interestingly, combinations of Fx with other drugs have better effects than either Fx or other drugs alone. Although the antiproliferative and cancer prevention activities of the combination of Fx and other drugs are still unclear, several effects have been discovered, including the induction of apoptosis, cell cycle arrest at G1/G0, enhanced gap junctional intercellular communication, and the induction of autophagy via various mechanisms, such as decreasing P-gp, activating the CYP3A4 promoter, increasing reactive oxygen species and cellular uptake and suppressing the PI3K/Akt/NFκB pathway. In this review, we address the anticancer effects and mechanisms of the combination of Fx and other drugs in different types of cancer. METHODS The relevant literature from PubMed and Web of Science databases is reviewed in this article. RESULTS Fx combined with other drugs could enhance the effect of both Fx and the other drug or reduce the dose without reducing the effect, which may create more effective and less harmful therapeutic strategies. CONCLUSION Fx combined with other drugs has significant anticancer effects by various mechanisms and could be a potential therapeutic strategy for different types of cancer.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Li
- Medical Examination Center, Zibo Sixth Hospital, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, China
| | - Minghao Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| |
Collapse
|
29
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
30
|
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2018; 110:518-527. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-based chemotherapeutic regimens are the most frequently used adjuvant treatments for many types of cancer. However, the development of chemoresistance to cisplatin results in treatment failure. Despite the significant developments in understanding the mechanisms of cisplatin resistance, effective strategies to enhance the chemosensitivity of cisplatin are lacking. Phytochemicals are naturally occurring plant-based compounds that can augment the anti-cancer activity of cisplatin, with minimal side effects. Notably, some novel phytochemicals, such as curcumin, not only increase the efficacy of cisplatin but also decrease toxicity induced by cisplatin. However, the exact mechanisms underlying this process remain unclear. In this review, we discussed the progress made in utilizing phytochemicals to enhance the anti-cancer efficacy of cisplatin. We also presented some ideal phytochemicals as novel agents for counteracting cisplatin-induced organ damage.
Collapse
|
31
|
Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, Tor YS, Khong NMH, Ismail M. Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. ACTA ACUST UNITED AC 2018; 21:e00296. [PMID: 30581767 PMCID: PMC6296166 DOI: 10.1016/j.btre.2018.e00296] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
Both treatments inhibited cancer proliferation in a time and dose dependent manner. FxRF treatment were effective in inducing apoptosis in HepG2 cells than crude extract. Treatments stimulated regulation in cell signalling, apoptotic and antioxidant genes.
In this study, anti-proliferative effects of C. calcitrans extract and its fucoxanthin rich fraction (FxRF) were assessed on human liver HepG2 cancer cell line. Efficacy from each extract was determined by cytotoxicity assay, morphological observation, and cell cycle analysis. Mechanisms of action observed were evaluated using multiplex gene expression analysis. Results showed that CME and FxRF induced cytotoxicity to HepG2 cells in a dose and time-dependent manner. FxRF (IC50: 18.89 μg.mL−1) was found to be significantly more potent than CME (IC50: 87.5 μg.mL−1) (p < 0.05). Gene expression studies revealed that anti-proliferative effects in treated cells by C. calcitrans extracts were mediated partly through the modulation of numerous genes involved in cell signaling (AKT1, ERK1/2, JNK), apoptosis (BAX, BID, Bcl-2, APAF, CYCS) and oxidative stress (SOD1, SOD2, CAT). Overall, C. calcitrans extracts demonstrated effective intervention against HepG2 cancer cells where enhanced apoptotic activities were observed with increased fucoxanthin content.
Collapse
Affiliation(s)
- Su Chern Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fatimah Md Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,The International Institute of Aquaculture and Aquatic Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mustapha Umar Imam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodio University, Sokoto, Nigeria
| | - Jhi Biau Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Norsharina Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Hanisah Azmi
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Nicholas M H Khong
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maznah Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
33
|
Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018; 9:777. [PMID: 30127738 PMCID: PMC6089330 DOI: 10.3389/fphar.2018.00777] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine environment has demonstrated to be an interesting source of compounds with uncommon and unique chemical features on which the molecular modeling and chemical synthesis of new drugs can be based with greater efficacy and specificity for the therapeutics. Cancer is a growing public health threat, and despite the advances in biomedical research and technology, there is an urgent need for the development of new anticancer drugs. In this field, it is estimated that more than 60% of commercially available anticancer drugs are natural biomimetic inspired. Among the marine organisms, algae have revealed to be one of the major sources of new compounds of marine origin, including those exhibiting antitumor and cytotoxic potential. These compounds demonstrated ability to mediate specific inhibitory activities on a number of key cellular processes, including apoptosis pathways, angiogenesis, migration and invasion, in both in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This review will focus on the bioactive molecules from algae with antitumor potential, from their origin to their potential uses, with special emphasis to the alga Sphaerococcus coronopifolius as a producer of cytotoxic compounds.
Collapse
Affiliation(s)
- Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Biology Department, DoMar Doctoral Programme on Marine Science, Technology and Management, University of Aveiro, Aveiro, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Maria C Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
34
|
Phull AR, Kim SJ. Undaria pinnatifida a Rich Marine Reservoir of Nutritional and Pharmacological Potential: Insights into Growth Signaling and Apoptosis Mechanisms in Cancer. Nutr Cancer 2018; 70:956-970. [PMID: 30616379 DOI: 10.1080/01635581.2018.1490449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/04/2018] [Indexed: 02/04/2023]
Abstract
Seaweeds are an important part of diet consumed in a different part of the world such as New Zealand, Ireland, Wales, and Asian countries including Korea, China, and Japan. In addition, seaweed is nutritious sources possessing health improving effects and therapeutic potential. Recently, one of the widely eaten seaweed species Undaria pinnatifida (U. pinnatifida) has got much attention because of its pharmacological properties for the prevention of various ailments, including cancer, inflammation, and other diseases. It is rich in all essential amino acids, physiologically significant fatty acids, vitamins, minerals, and has a variety of bioactive constituents which include fucoidan, carotenoids, and fucoxanthin. The present study reviews the nutritional aspects, key bioactivities specifically focusing on anticancer potential along with apoptosis and growth signaling mechanisms of U. pinnatifida or its constituents. It exhibited anticancer effects both in vitro and in vivo studies in a variety of experimental models. Due to a variety of pharmacological properties of U. pinnatifida can not only fulfilling nutritional necessities, but it can be used for treating, curing and preventing cancer.
Collapse
Affiliation(s)
- Abdul Rehman Phull
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
- b Department of Biochemistry , Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Song Ja Kim
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
| |
Collapse
|
35
|
Zhai Q, Li H, Song Y, Wu R, Tang C, Ma X, Liu Z, Peng J, Zhang J, Tang Z. Preparation and Optimization Lipid Nanocapsules to Enhance the Antitumor Efficacy of Cisplatin in Hepatocellular Carcinoma HepG2 Cells. AAPS PharmSciTech 2018; 19:2048-2057. [PMID: 29679292 DOI: 10.1208/s12249-018-1011-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
This work aimed to develop and optimize several lipid nanocapsule formulations (LNCs) to encapsulate cisplatin (CDDP) for treatment of hepatocellular carcinoma. By comparing the effect of oil/surfactant ratio, lecithin content, and oil/surfactant type on LNC characteristics, two LNCs were selected as optimal formulations: HS15-LNC (Solutol HS 15/MCT/lecithin, 54.5:42.5:3%, w/w) and EL-LNC (Cremophor EL/MCT/lecithin, 54.5:42.5:3%, w/w). Both LNCs could effectively encapsulate CDDP with the encapsulation efficiency of 73.48 and 78.84%. In vitro release study showed that both LNCs could sustain the release CDDP. Moreover, cellular uptake study showed that C6-labeled LNCs could be effectively internalized by HepG2 cells. Cellular cytotoxicity study revealed that both LNCs showed negligible cellular toxicity when their concentrations were below 313 μg/mL. Importantly, CDDP-loaded LNCs exhibited much stronger cell killing potency than free CDDP, with the IC50 values decreased from 17.93 to 3.53 and 5.16 μM after 72-h incubation. In addition, flow cytometric analysis showed that the percentage of apoptotic cells was significantly increased after treatment with LNCs. Therefore, the prepared LNC formulations exhibited promising anti-hepatocarcinoma effect, which could be beneficial to hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Qingqing Zhai
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hailong Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yanlin Song
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ruijiao Wu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chuanfang Tang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zhihao Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
36
|
Ravi H, Kurrey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:785-795. [PMID: 30033314 DOI: 10.1016/j.msec.2018.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/25/2018] [Accepted: 06/09/2018] [Indexed: 01/25/2023]
Abstract
Fucoxanthin (FUCO), a marine carotenoid is photo-, and thermo-labile and poorly bioavailable due to its lipophilicity. Hence, we developed a chitosan (CS) + glycolipid (GL) nanogels (NGs) to increase cellular uptake and anticancer efficacy of FUCO (10 μM) in human colon cells (Caco-2). Effect of FUCO loaded in NGs with/with no GL was studied in comparison with micellar FUCO. Results showed that the cell viability was lower (p < 0.05) in NGs + GL (50.5%) compared to NGs (-GL) (66.5%) and the mixed micelles (72.5%) groups over 48 h exposure. An enhanced reactive oxygen species (ROS) generation was evident in NGs + GL (379.2%) group compared to NGs (-GL) and mixed micelles groups. Further, induction of apoptosis with an increased chromatin condensation and DNA fragmentation as evidenced in DAPI staining and DNA ladder assay were higher in NGs + GL group than other groups. Down-regulation of Bcl-2 (6.6 folds) was higher in NGs + GL group compared to NGs (-GL) (1.94 fold) and mixed micelles (1.19 fold) groups. Higher Bax up-regulation in NGs + GL compared to other groups supports the Bcl-2 down regulation. Mitochondrial membrane polarisation (ΔΨm) was higher in NGs + GL group (2.46 fold) compared to NGs (-GL) (1.91 fold) and mixed micelles (1.26 fold) groups. The cellular FUCO uptake illustrated a positive correlation between its level (pmol/106 cells) in NGs + GL (758.3) and enhanced caspase-3 activity (25.8 folds). This could be the reason for an increased apoptotic activity in NGs + GL group than other groups. Results demonstrate that delivery of FUCO in NGs + GL carrier aids cellular uptake and chemotherapeutic potential of FUCO. Results further demonstrate, for the first time, higher anti-cancer activity of FUCO loaded in NGs + GL and the effect was through ROS generation via a caspase dependent mechanism in Caco-2 cells.
Collapse
Affiliation(s)
- Hindupur Ravi
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| | - Nawneet Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India
| | - Yuki Manabe
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru-570020, Karnataka, India.
| |
Collapse
|
37
|
Potočnjak I, Domitrović R. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation. Food Chem Toxicol 2016; 98:251-261. [DOI: 10.1016/j.fct.2016.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023]
|
38
|
Abdella EM, Mahmoud AM, El-Derby AM. Brown seaweeds protect against azoxymethane-induced hepatic repercussions through up-regulation of peroxisome proliferator-activated receptor gamma and attenuation of oxidative stress. PHARMACEUTICAL BIOLOGY 2016; 54:2496-2504. [PMID: 27050090 DOI: 10.3109/13880209.2016.1160938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Seaweeds of the genera Turbinaria and Padina have long been used as food and in traditional medicine for treating several diseases. OBJECTIVE The current study determines the protective efficacy of the brown seaweeds Turbinaria ornata (Turner) J. Agardh (Sargassaceae) and Padina pavonia (Linnaeus) J.V. Lamouroux (Dictyotaceae) against liver injury induced by azoxymethane (AOM). MATERIALS AND METHODS Male Swiss mice received 10 mg/kg AOM once a week for two consecutive weeks and then 100 mg/kg daily dose of either T. ornata or P. pavonia ethanolic extract. Thirteen weeks after the first AOM administration and 24 h after the last treatment, overnight fasted mice were sacrificed and samples collected. RESULTS Compared with the AOM group, both T. ornata and P. pavonia significantly decreased the activity of aminotransferases and the concentration of bilirubin while increased albumin levels in the serum. The antioxidative effect of both extracts was observed from the increased activity of superoxide dismutase and glutathione peroxidase activities in the liver, both of which were decreased by AOM. Moreover, the levels of malondialdehyde and nitric oxide were reduced, and histological findings also confirmed the antihepatotoxic activity. In addition, treatment with T. ornata and P. pavonia significantly increased PPARγ and decreased NF-κB expression in the liver of AOM-administered mice. DISCUSSION AND CONCLUSION Our findings indicate that the protective function of T. ornata and P. pavonia on AOM-induced liver injury may be possibly exerted by multiple pathways including abolishment of inflammation and oxidative damage, and activation of PPARγ.
Collapse
Affiliation(s)
- Ehab M Abdella
- a Cell Biology and Genetics Division, Zoology Department, Faculty of Science , Beni-Suef University , Beni-Suef , Egypt
| | - Ayman M Mahmoud
- b Physiology Division, Zoology Department, Faculty of Science , Beni-Suef University , Beni-Suef , Egypt
| | - Azza M El-Derby
- a Cell Biology and Genetics Division, Zoology Department, Faculty of Science , Beni-Suef University , Beni-Suef , Egypt
| |
Collapse
|
39
|
The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed Pharmacother 2016; 83:381-391. [DOI: 10.1016/j.biopha.2016.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023] Open
|
40
|
Liu H, Liu Z, Du J, He J, Lin P, Amini B, Starbuck MW, Novane N, Shah JJ, Davis RE, Hou J, Gagel RF, Yang J. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma. Sci Transl Med 2016; 8:353ra113. [PMID: 27559096 PMCID: PMC5109917 DOI: 10.1126/scitranslmed.aad8949] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/26/2016] [Indexed: 11/02/2022]
Abstract
Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications.
Collapse
Affiliation(s)
- Huan Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiqiang Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Du
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Jin He
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behrang Amini
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora Novane
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jatin J Shah
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E Davis
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hou
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Novak M, Žegura B, Baebler Š, Štern A, Rotter A, Stare K, Filipič M. Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14751-14761. [PMID: 26392091 DOI: 10.1007/s11356-015-5420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.
Collapse
Affiliation(s)
- Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Maribor, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Katja Stare
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
42
|
Lashmanova E, Proshkina E, Zhikrivetskaya S, Shevchenko O, Marusich E, Leonov S, Melerzanov A, Zhavoronkov A, Moskalev A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res 2015; 100:228-41. [DOI: 10.1016/j.phrs.2015.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022]
|
43
|
Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? CANCER MICROENVIRONMENT 2015; 9:33-43. [PMID: 26298314 DOI: 10.1007/s12307-015-0173-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
Thymidine phosphorylase (TP) is a nucleoside metabolism enzyme that plays an important role in the pyrimidine pathway.TP catalyzes the conversion of thymidine to thymine and 2-deoxy-α-D-ribose-1-phosphate (dRib-1-P). Although this reaction is reversible, the main metabolic function of TP is catabolic. TP is identical to the angiogenic factor platelet-derived endothelial-cell growth factor (PD-ECGF). TP is overexpressed in several human cancers in response to cellular stressful conditions like hypoxia, acidosis, chemotherapy and radiotherapy. TP has been shown to promote tumor angiogenesis, invasion, metastasis, evasion of the immune-response and resistance to apoptosis. Some of the biological effects of TP are dependent on its enzymatic activity, while others are mediated through cytokines like interleukin 10 (IL-10), basic fibroblast growth factor (bFGF) and tumour necrosis factor α (TNFα). Interestingly, TP also plays a role in cancer treatment through its role in the conversion of the oral fluoropyrimidine capecitabine into its active form 5-FU. TP is a predictive marker for fluoropyrimidine response. Given its various biological functions in cancer progression, TP is a promising target in cancer treatment. Further translational research is required in this area.
Collapse
Affiliation(s)
- Yasir Y Elamin
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland.
| | - Shereen Rafee
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Nemer Osman
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kenneth J O Byrne
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, St James's Hospital, Dublin, Ireland
| |
Collapse
|
44
|
Martin LJ. Fucoxanthin and Its Metabolite Fucoxanthinol in Cancer Prevention and Treatment. Mar Drugs 2015; 13:4784-98. [PMID: 26264004 PMCID: PMC4557004 DOI: 10.3390/md13084784] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/25/2015] [Accepted: 07/27/2015] [Indexed: 01/05/2023] Open
Abstract
Fucoxanthin is a carotenoid present in the chloroplasts of brown seaweeds. When ingested, it is metabolized mainly to fucoxanthinol by digestive enzymes of the gastrointestinal tract. These compounds have been shown to have many beneficial health effects, including anti-mutagenic, anti-diabetic, anti-obesity, anti-inflammatory and anti-neoplastic actions. In every cancer tested, modulatory actions of fucoxanthinol on viability, cell-cycle arrest, apoptosis and members of the NF-κB pathway were more pronounced than that of fucoxanthin. Anti-proliferative and cancer preventing influences of fucoxanthin and fucoxanthinol are mediated through different signalling pathways, including the caspases, Bcl-2 proteins, MAPK, PI3K/Akt, JAK/STAT, AP-1, GADD45, and several other molecules that are involved in cell cycle arrest, apoptosis, anti-angiogenesis or inhibition of metastasis. In this review, we address the mechanisms of action of fucoxanthin and fucoxanthinol according to different types of cancers. Current findings suggest that these compounds could be effective for treatment and/or prevention of cancer development and aggressiveness.
Collapse
Affiliation(s)
- Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| |
Collapse
|
45
|
Mahmoud AM, Abdella EM, El-Derby AM, Abdella EM. Protective Effects of Turbinaria ornata and Padina pavonia against Azoxymethane-Induced Colon Carcinogenesis through Modulation of PPAR Gamma, NF-κB and Oxidative Stress. Phytother Res 2015; 29:737-48. [PMID: 25676613 DOI: 10.1002/ptr.5310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/16/2023]
Abstract
The aim of this study was to investigate the antiproliferative and protective effects of the brown seaweeds, Turbinaria ornata and Padina pavonia, against azoxymethane (AOM)-induced colon carcinogenesis in mice. Both algal extracts showed anti-proliferative effects on the human carcinoma cell line HCT-116 in vitro, with T. ornata demonstrating a more potent effect. Male albino Swiss mice received intraperitoneal injections of AOM (10 mg/kg) once a week for two consecutive weeks and 100 mg/kg of either T. ornata or P. pavonia extracts. AOM-induced mice exhibited alterations in the histological structure of the colon, elevated lipid peroxidation and nitric oxide, declined glutathione content and reduced activity of superoxide dismutase and glutathione peroxidase. In addition, AOM induced downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and p53 mRNA expression, with concomitant upregulation of nuclear factor-kappa B (NF-κB) in colon tissue. Administration of either algal extract markedly alleviated the recorded alterations. In conclusion, the current study suggests that T. ornata and P. pavonia, through their antioxidant and anti-inflammatory effects, are able to attenuate colon inflammation by downregulating NF-κB expression. Furthermore, the protective effects of both algae against AOM-initiated carcinogenesis were attributed, at least in part, to their ability to upregulate colonic PPARγ and p53 expression.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | | | | | | |
Collapse
|
46
|
|
47
|
Li Z, Tu M, Han B, Gu Y, Xue X, Sun J, Ge Q, Miao Y, Qian Z, Gao W. Vasohibin 2 decreases the cisplatin sensitivity of hepatocarcinoma cell line by downregulating p53. PLoS One 2014; 9:e90358. [PMID: 24595063 PMCID: PMC3942424 DOI: 10.1371/journal.pone.0090358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/28/2014] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent problem worldwide. Chemotherapy, especially cisplatin (CDDP)-based systemic chemotherapy, is the best option for advanced liver cancer. However, CDDP resistance is becoming common and hindering the clinical application of CDDP. Meanwhile, no consensus has been reached regarding the chemotherapeutic use of vasohibin 2 (VASH2), which promotes the angiogenesis and proliferation of cancer cells. In this work, a tissue microarray was used to observe VASH2 and its possible role in cancer treatment. Results showed that VASH2 was highly expressed in HCC tissues and was significantly correlated with cancer differentiation. To further investigate the efficacy and mechanism of the combination of VASH2 with anti-cancer drugs in liver cancer cells, we stably built VASH2 overexpression and knockdown cell lines. We found that VASH2 can influence the CDDP sensitivity and that the cell overexpression of VASH2 had a higher cell viability and lower apoptosis rate after CDDP exposure. We also observed that VASH2 overexpression downregulated wild-type p53, as well as suppressed the expression of the pro-apoptotic protein BCL2-associated X protein (Bax) and cleaved caspase-3 (CC-3) after treatment by CDDP. Conversely, the knockdown of VASH2 significantly inhibited these effects. In an in vivo chemosensitivity study, nude mice were subcutaneously injected with tumor cells and received CDDP treatment through intraperitoneal administration every 3 days. We found that VASH2 knockdown markedly limited the tumor growth and enhanced the CDDP toxicity and apoptosis of tumor cells. Western blot analysis revealed that tumor cells with downregulated VASH2 had a higher expression of wild-type p53, Bax, and CC-3 than control cells. Overall, our results indicated the novel roles of VASH2 in the chemoresistance of hepatocarcinoma cells to CDDP and suggested that VASH2 may be a promising anticancer target.
Collapse
Affiliation(s)
- Zhanjun Li
- Laboratory of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Tu
- Laboratory of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Han
- Department of Endocrinology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuqing Gu
- Department of General Surgery, Taicang City First People's Hospital, Suzhou, China
| | - Xiaofeng Xue
- Department of General Surgery, the First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Jie Sun
- Department of General Surgery, Fuyang People's Hospital, Fuyang, China
| | - Qianqian Ge
- Laboratory of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Laboratory of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuyin Qian
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZQ); (WG)
| | - Wentao Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZQ); (WG)
| |
Collapse
|
48
|
Kumar SR, Hosokawa M, Miyashita K. Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 2013; 11:5130-47. [PMID: 24351910 PMCID: PMC3877908 DOI: 10.3390/md11125130] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/28/2022] Open
Abstract
Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.
Collapse
Affiliation(s)
- Sangeetha Ravi Kumar
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato Cho, Hakodate, Hokkaido 041-8611, Japan.
| | | | | |
Collapse
|
49
|
Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients 2013; 5:4978-89. [PMID: 24322524 PMCID: PMC3875925 DOI: 10.3390/nu5124978] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 01/11/2023] Open
Abstract
Epidemiological investigations have shown that overcoming the risk of cancer is related to the consumption of green vegetables and fruits. Many compounds from different origins, such as terrestrial plants and marine and microbial sources, have been reported to have therapeutic effects of which marine sources are the most important because the diversity of marine life is more varied than other sources. Fucoxanthin is one important compound with a marine origin and belongs to the group of carotenoids; it can be found in marine brown seaweeds, macroalgae, and diatoms, all of which have remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable medicinal potential and promising applications in human health. In this review, we summarize the anticancer effects of fucoxanthin through several different mechanisms including anti-proliferation, induction of apoptosis, cell cycle arrest and anti-angiogenesis, and its possible role in the treatment of cancer.
Collapse
|
50
|
Piovan A, Seraglia R, Bresin B, Caniato R, Filippini R. Fucoxanthin from Undaria pinnatifida: photostability and coextractive effects. Molecules 2013; 18:6298-310. [PMID: 23760030 PMCID: PMC6270627 DOI: 10.3390/molecules18066298] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023] Open
Abstract
Fucoxanthin is one of the most abundant carotenoids and possesses a number of beneficial medicinal qualities which include its anti-oxidant, anti-obesity and anti-cancer properties. In this study, the photostability of fucoxanthin in extracts with different chemical profiles was studied. The extracts were obtained from Undaria pinnatifida, a seaweed rich in this carotenoid, using conventional liquid solvent extraction procedures and the QuEChERS method. All the extracts contained all-trans-fucoxanthin as the major compound. Conventional procedures produced a fucoxanthin purity of lower than 50%, whereas after liquid-liquid partition, PSA cleanup, and PSA and GCB cleanup (QuEChERS method) fucoxanthin purity increased to 70%, 86%, and 94%, respectively. Although in the acetone extract the initial content of fucoxanthin was the highest, results demonstrate that coextractives play an important role in enhancing the rate of photodegradation. After light exposure, the conventional extracts lost around 90% of the initial fucoxanthin content. On the other hand, the extracts obtained by the QuEChERS method showed significantly higher light stability than the conventional extracts. These results suggest that the QuEChERS method could be used and further improved to obtain more purified and stable extracts for fucoxanthin from U. pinnatifida.
Collapse
Affiliation(s)
- Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padova 35131, Italy; E-Mails: (R.C.); (R.F.)
| | | | - Bruno Bresin
- ARPA-FVG Regional Agency for Environmental of Friuli Venezia Giulia Region, Via delle Acque 28, Pordenone 33170, Italy; E-Mail:
| | - Rosy Caniato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padova 35131, Italy; E-Mails: (R.C.); (R.F.)
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, Padova 35131, Italy; E-Mails: (R.C.); (R.F.)
| |
Collapse
|