1
|
Maurer C, Fleischer R, Mandal A, Chandramohan KRK, Herpell FC, Köhler CH, Cetin D, Schnakenburg G, Bunescu A. Extensive Studies on the Synthesis and Characterization of π-Arene Chromium Complexes and Their Performance in S NAr and Suzuki-Miyaura Cross-Coupling Reactions. Chem Asian J 2025:e202500139. [PMID: 40276881 DOI: 10.1002/asia.202500139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
We report an efficient synthesis of a series of new (η6-arene)Cr(CO)3 complexes via ligand exchange strategy under thermal conditions using chromium hexacarbonyl and readily accessible arene feedstocks. We optimized the previously reported procedures and found that the high excess of arenes usually employed is not required to access the π-arene chromium complexes in high yields. Consequently, the revised procedure simplifies the purification of chromium tricarbonyl complexes bearing arenes with high boiling points. The reaction is amenable to provide (η6-arene)Cr(CO)3 complexes decorated with various functional groups. Notably, the novel and already reported chromium complexes with missing spectroscopic characterization were fully characterized by nuclear magnetic resonance (NMR), infrared (IR) spectroscopies, and high-resolution mass spectrometry (HRMS). Besides, we report the structure of 20 chromium complexes characterized via X-ray crystallography. The potential application of these π-arene chromium complexes has also been exploited toward the selective construction of poly(hetero)aryls possessing a single chromium tricarbonyl unit through SNAr and Suzuki-Miyaura cross-coupling reactions. This work is meant to be a practical guide for the synthesis of π-arene chromium complexes and to fill the gap in their spectroscopic characterization.
Collapse
Affiliation(s)
- Clemens Maurer
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Ruben Fleischer
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Anup Mandal
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Kavin Raj Kumar Chandramohan
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Fabian Christophe Herpell
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Christopher Heinz Köhler
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Defne Cetin
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße1, Bonn, 53121, Germany
| | - Ala Bunescu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn, 53121, Germany
| |
Collapse
|
2
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
3
|
Gordon EM, Chawla SP, Tellez WA, Younesi E, Thomas S, Chua-Alcala VS, Chomoyan H, Valencia C, Brigham DA, Moradkhani A, Quon D, Srikureja A, Wong SG, Tseng W, Federman N. SAINT: A Phase I/Expanded Phase II Study Using Safe Amounts of Ipilimumab, Nivolumab and Trabectedin as First-Line Treatment of Advanced Soft Tissue Sarcoma. Cancers (Basel) 2023; 15:cancers15030906. [PMID: 36765863 PMCID: PMC9913367 DOI: 10.3390/cancers15030906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This Phase 1/2 study is based on the hypothesis that immune checkpoint inhibitors are more effective when given earlier in the course of the disease for advanced soft tissue sarcoma. METHODS Phase I endpoints-maximum tolerated dose in previously treated patients; Phase II endpoints-best response, progression free survival and overall survival and incidence of adverse events in previously untreated patients; Phase I treatments-escalating doses of trabectedin (1.0, 1.2, 1.5 mg/m2) as continuous intravenous infusion over 24 h every 3 weeks, 1 mg/kg of ipilimumab given intravenously every 12 weeks, and 3 mg/kg of nivolumab given intravenously every 2 weeks; Phase II treatments-maximum tolerated dose of trabectedin and defined doses of ipilimumab and nivolumab. RESULTS Phase I (n = 9)-the maximum tolerated dose of trabectedin was 1.2 mg/m2; Phase II (n = 79)-6 complete responses, 14 partial responses, 49 stable disease, 25.3% best response rate, 87.3% disease control rate; median progression-free survival, 6.7 months (CI 95%: 4.4-7.9), median overall survival, 24.6 months (CI 95%: 17.0-.); Grade 3/4 therapy-related adverse events (n = 92)-increased ALT (25%), fatigue (8.7%), increased AST (8.7%), decreased neutrophil count (5.4%) and anemia (4.6%). CONCLUSION SAINT is a safe and effective first-line treatment for advanced soft tissue sarcoma.
Collapse
Affiliation(s)
- Erlinda Maria Gordon
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
- Aveni Foundation, Santa Monica, CA 90403, USA
- Correspondence: ; Tel.: +1-310-552-9999
| | - Sant P. Chawla
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | | | - Elan Younesi
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | - Sonu Thomas
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | | | | | | | | | - Ania Moradkhani
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | - Doris Quon
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | | | - Steven G. Wong
- Sarcoma Oncology Research Center, Santa Monica, CA 90403, USA
| | - William Tseng
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Noah Federman
- UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Wang J, Wang P, Zeng Z, Lin C, Lin Y, Cao D, Ma W, Xu W, Xiang Q, Luo L, Wang W, Shi Y, Gao Z, Zhao Y, Liu H, Liu SL. Trabectedin in Cancers: Mechanisms and Clinical Applications. Curr Pharm Des 2022; 28:1949-1965. [PMID: 35619256 DOI: 10.2174/1381612828666220526125806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 12/09/2022]
Abstract
Trabectedin, a tetrahydroisoquinoline alkaloid, is the first marine antineoplastic agent approved with special anticancer mechanisms involving DNA binding, DNA repair pathways, transcription regulation and regulation of the tumor microenvironment. It has favorable clinical applications, especially for the treatment of patients with advanced soft tissue sarcoma, who failed in anthracyclines and ifosfamide therapy or could not receive these agents. Currently, trabectedin monotherapy regimen and regimens of combined therapy with other agents are both widely used for the treatment of malignancies, including soft tissue sarcomas, ovarian cancer, breast cancer, and non-small-cell lung cancer. In this review, we summarized the basic information and some updated knowledge on trabectedin, including its molecular structure, metabolism in various cancers, pharmaceutical mechanisms, clinical applications, drug combination, and adverse reactions, along with prospections on its possibly more optimal use in cancer treatment.
Collapse
Affiliation(s)
- Jiali Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yiru Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Danli Cao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Lingjie Luo
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenxue Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yongwei Shi
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zixiang Gao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Yufan Zhao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine Pharmaceutics of China), College of Pharmacy, and, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
5
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
6
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
7
|
Patel S, von Mehren M, Reed DR, Kaiser P, Charlson J, Ryan CW, Rushing D, Livingston M, Singh A, Seth R, Forscher C, D'Amato G, Chawla SP, McCarthy S, Wang G, Parekh T, Knoblauch R, Hensley ML, Maki RG, Demetri GD. Overall survival and histology-specific subgroup analyses from a phase 3, randomized controlled study of trabectedin or dacarbazine in patients with advanced liposarcoma or leiomyosarcoma. Cancer 2019; 125:2610-2620. [PMID: 31173362 PMCID: PMC6771856 DOI: 10.1002/cncr.32117] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND We performed a randomized phase 3 study of trabectedin versus dacarbazine in previously-treated patients with liposarcoma/leiomyosarcoma (LPS/LMS). METHODS Patients were randomized 2:1 to trabectedin (n = 384) or dacarbazine (n = 193) administered intravenously every 3 weeks. The primary objective was overall survival (OS). Secondary objectives were progression-free survival, objective response rate, safety, and patient-reported outcomes, all previously reported and demonstrating superior disease control with trabectedin. Results of the final OS analysis in preplanned subgroups of patients with LPS/LMS are presented. RESULTS At the time of the final OS analysis, 577 patients had been assigned randomly, including 423 (73%) with LMS and 154 (27%) with LPS. The median duration of treatment exposure was higher in the trabectedin arm compared with the dacarbazine arm (4 vs 2 cycles), as was the proportion of patients receiving an extended number of therapy courses (≥6 cycles: 42% vs 22%). This pattern was consistent across histological subgroups: the median number of treatment cycles (4 vs 2 for both subgroups) and proportion of patients with ≥6 treatment cycles (LMS, 43% vs 24%; LPS, 40% vs 16%). Despite improved disease control by trabectedin, no improvement in OS was observed; the final median OS for trabectedin versus dacarbazine was 13.7 versus 13.1 months (P = .49). Sensitivity analyses of OS suggest confounding by post-study anticancer therapies, which were utilized in most patients in both treatment arms (71% vs 69%, respectively). CONCLUSION The final OS results demonstrated comparable survival between LPS/LMS patients receiving trabectedin or dacarbazine, which is consistent with the interim analysis results. Both LPS and LMS demonstrated improved disease control with trabectedin.
Collapse
Affiliation(s)
| | | | | | - Pamela Kaiser
- Lutheran General Advanced Care Center, Park Ridge, Illinois
| | | | - Christopher W Ryan
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Daniel Rushing
- Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Michael Livingston
- Blumenthal Cancer Center, Carolinas HealthCare System, Charlotte, North Carolina
| | - Arun Singh
- UCLA Medical Center, Los Angeles, California
| | - Rahul Seth
- SUNY Upstate University Hospital, Syracuse, New York
| | | | - Gina D'Amato
- Georgia Cancer Specialists, Northside Hospital Cancer Institute, Atlanta, Georgia
| | | | | | - George Wang
- Janssen Research & Development, LLC, Raritan, New Jersey
| | - Trilok Parekh
- Janssen Research & Development, LLC, Raritan, New Jersey
| | | | | | | | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Tantari M, Barra F, Di Domenico S, Ferraioli D, Vellone VG, De Cian F, Ferrero S. Current state of the art and emerging pharmacotherapy for uterine leiomyosarcomas. Expert Opin Pharmacother 2019; 20:713-723. [DOI: 10.1080/14656566.2019.1571042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matteo Tantari
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Stefano Di Domenico
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Domenico Ferraioli
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Valerio Gaetano Vellone
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco De Cian
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Dasari R, Błauż A, Medellin DC, Kassim RM, Viera C, Santarosa M, van der Westhuyzen AE, van Otterlo WAL, Olivas T, Yildiz T, Betancourt T, Shuster CB, Rogelj S, Rychlik B, Hudnall T, Frolova LV, Kornienko A. Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins: Exploration of the N3 and N9 Positions and Interaction with Multidrug-Resistance Proteins. ChemMedChem 2019; 14:322-333. [PMID: 30562414 PMCID: PMC6476547 DOI: 10.1002/cmdc.201800658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Our laboratories have been investigating synthetic analogues of marine alkaloid rigidins that possess promising anticancer activities. These analogues, based on the 7-deazahypoxanthine skeleton, are available in one- or two-step synthetic sequences and exert cytotoxicity by disrupting microtubule dynamics in cancer cells. In the present work we extended the available structure-activity relationship (SAR) data to N3- and N9-substituted derivatives. Although N3 substitution results in loss of activity, the N9-substituted compounds retain nanomolar antiproliferative activities and the anti-tubulin mode of action of the original unsubstituted compounds. Furthermore, our results also demonstrate that multidrug-resistance (MDR) proteins do not confer resistance to both N9-unsubstituted and -substituted compounds. It was found that sublines overexpressing ABCG2, ABCC1, and ABCB1 proteins are as responsive to the rigidin analogues as their parental cell lines. Thus, the study reported herein provides further impetus to investigate the rigidin-inspired 7-deazahypoxanthines as promising anticancer agents.
Collapse
Affiliation(s)
- Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Roaa M Kassim
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Carlos Viera
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Maximo Santarosa
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Alet E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Stellenbosch, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, 7602, Stellenbosch, South Africa
| | - Taryn Olivas
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Tugba Yildiz
- Materials Science and Engineering Program, Texas State University, San Marcos, TX, 78666, USA
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
- Materials Science and Engineering Program, Texas State University, San Marcos, TX, 78666, USA
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Todd Hudnall
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Tech, Socorro, NM, 87801, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| |
Collapse
|
10
|
Liverani C, La Manna F, Groenewoud A, Mercatali L, Van Der Pluijm G, Pieri F, Cavaliere D, De Vita A, Spadazzi C, Miserocchi G, Bongiovanni A, Recine F, Riva N, Amadori D, Tasciotti E, Snaar-Jagalska E, Ibrahim T. Innovative approaches to establish and characterize primary cultures: an ex vivo 3D system and the zebrafish model. Biol Open 2017; 6:133-140. [PMID: 27895047 PMCID: PMC5312106 DOI: 10.1242/bio.022483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patient-derived specimens are an invaluable resource to investigate tumor biology. However, in vivo studies on primary cultures are often limited by the small amount of material available, while conventional in vitro systems might alter the features and behavior that characterize cancer cells. We present our data obtained on primary dedifferentiated liposarcoma cells cultured in a 3D scaffold-based system and injected into a zebrafish model. Primary cells were characterized in vitro for their morphological features, sensitivity to drugs and biomarker expression, and in vivo for their engraftment and invasiveness abilities. The 3D culture showed a higher enrichment in cancer cells than the standard monolayer culture and a better preservation of liposarcoma-associated markers. We also successfully grafted primary cells into zebrafish, showing their local migratory and invasive abilities. Our work provides proof of concept of the ability of 3D cultures to maintain the original phenotype of ex vivo cells, and highlights the potential of the zebrafish model to provide a versatile in vivo system for studies with limited biological material. Such models could be used in translational research studies for biomolecular analyses, drug screenings and tumor aggressiveness assays.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy.,Leiden University Medical Center, Department of Urology, J-3-100, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Arwin Groenewoud
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333BE, The Netherlands
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Gabri Van Der Pluijm
- Leiden University Medical Center, Department of Urology, J-3-100, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì 47121, Italy
| | - Davide Cavaliere
- Unit of Surgery and Advanced Oncologic Therapies, Morgagni-Pierantoni Hospital, Forlì 47121, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Nada Riva
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Ewa Snaar-Jagalska
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333BE, The Netherlands
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| |
Collapse
|
11
|
De Vita A, Mercatali L, Recine F, Pieri F, Riva N, Bongiovanni A, Liverani C, Spadazzi C, Miserocchi G, Amadori D, Ibrahim T. Current classification, treatment options, and new perspectives in the management of adipocytic sarcomas. Onco Targets Ther 2016; 9:6233-6246. [PMID: 27785071 PMCID: PMC5067014 DOI: 10.2147/ott.s112580] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal tumors arising from soft tissue or bone, with an uncertain etiology and difficult classification. Soft tissue sarcomas (STSs) account for around 1% of all adult cancers. Till date, more than 50 histologic subtypes have been identified. Adipocyte sarcoma or liposarcoma (LPS) is one of the most common STS subtypes, accounting for 15% of all sarcomas, with an incidence of 24% of all extremity STSs and 45% of all retroperitoneal STSs. The new World Health Organization classification system has divided LPS into four different subgroups: atypical lipomatous tumor/well-differentiated LPS, dedifferentiated LPS, myxoid LPS, and pleomorphic LPS. These lesions can develop at any location and exhibit different aggressive potentials reflecting their morphologic diversity and clinical behavior. Patients affected by LPS should be managed in specialized multidisciplinary cancer centers. Whereas surgical resection is the mainstay of treatment for localized disease, the benefits of adjuvant and neoadjuvant chemotherapy are still unclear. Systemic treatment, particularly chemotherapy, is still limited in metastatic disease. Despite the efforts toward a better understanding of the biology of LPS, the outcome of advanced and metastatic patients remains poor. The advent of targeted therapies may lead to an improvement of treatment options and clinical outcomes. A larger patient enrollment into translational and clinical studies will help increase the knowledge of the biological behavior of LPSs, test new drugs, and introduce new methodological studies, that is, on treatment response.
Collapse
Affiliation(s)
- Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Nada Riva
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC
| |
Collapse
|
12
|
Abstract
Trabectedin (ET743, Yondelis®, manufactured by Baxter Oncology GmbH, Halle/Westfalen, Germany, for Janssen Products, LP, Horsham, PA), derived from the marine ascidian, Ecteinascidia turbinata, is a natural alkaloid with multiple complex mechanisms of action. On 23 October 2015, 15 years after the results of the first Phase 1 clinical trial using trabectedin for chemotherapy-resistant solid malignancies was reported, and 8 years after its approval in Europe, the United States Food and Drug Administration (USFDA) finally approved trabectedin for the treatment of unresectable or metastatic liposarcoma or leiomyosarcoma that has failed a prior anthracycline-containing regimen. Approval was based on the results of a pivotal Phase 3 trial involving a 2:1 randomization of 518 patients (who were further stratified by soft tissue sarcoma subtype), in which a significant improvement in progression-free survival was reported in the trabectedin-treated group vs. the dacarbazine-treated group (p < 0.001). In this trial, the most common adverse reactions were nausea, fatigue, vomiting, constipation, anorexia, diarrhea, peripheral edema, dyspnea, and headache, while the most serious were neutropenic sepsis, rhabdomyolysis, cardiomyopathy, hepatotoxicity, and extravasation leading to tissue necrosis. The most common grade 3–4 adverse events were laboratory abnormalities of myelosuppression in both arms and transient transaminitis in the trabectedin arm. In a recent Phase 2 trial, trabectedin had a similar outcome as doxorubicin when given as a single agent in the first-line setting. Studies are also being conducted to expand the use of trabectedin not only as a first-line cancer drug, but also for a number of other clinical indications, for example, in the case of mesenchymal chondrosarcoma, for which trabectedin has been reported to be exceptionally active. The possibility of combining trabectedin with targeted therapies, immune checkpoint inhibitors or virotherapy would also be an interesting concept. In short, trabectedin is an old new drug with proven potential to impact the lives of patients with soft tissue sarcoma and other solid malignancies. Funding: Sarcoma Oncology Center, Santa Monica, CA 90405.
Collapse
|
13
|
Nijampatnam B, Dutta S, Velu SE. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chin J Nat Med 2016; 13:561-77. [PMID: 26253489 DOI: 10.1016/s1875-5364(15)30052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/29/2022]
Abstract
The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs.
Collapse
Affiliation(s)
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Medellin DC, Zhou Q, Scott R, Hill RM, Frail SK, Dasari R, Ontiveros SJ, Pelly SC, van Otterlo WAL, Betancourt T, Shuster CB, Hamel E, Bai R, LaBarbera DV, Rogelj S, Frolova LV, Kornienko A. Novel Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins with Potent in Vitro and in Vivo Anticancer Activities. J Med Chem 2015; 59:480-5. [PMID: 26641132 DOI: 10.1021/acs.jmedchem.5b01426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Docking studies of tubulin-targeting C2-substituted 7-deazahypoxanthine analogues of marine alkaloid rigidins led to the design and synthesis of compounds containing linear C2-substituents. The C2-alkynyl analogue was found to have double- to single-digit nanomolar antiproliferative IC50 values and showed statistically significant tumor size reduction in a colon cancer mouse model at nontoxic concentrations. These results provide impetus and further guidance for the development of these rigidin analogues as anticancer agents.
Collapse
Affiliation(s)
- Derek C Medellin
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - R Matthew Hill
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Sarah K Frail
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Steven J Ontiveros
- Department of Biology, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University , Stellenbosch, Western Cape, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University , Stellenbosch, Western Cape, South Africa
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States.,Materials Science, Engineering, and Commercialization Program, Texas State University , San Marcos, Texas 78666, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick National Laboratory of Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick National Laboratory of Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Snezna Rogelj
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Liliya V Frolova
- Departments of Chemistry and Biology, New Mexico Tech , Socorro, New Mexico 87801, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University , San Marcos, Texas 78666, United States
| |
Collapse
|
15
|
Affiliation(s)
- Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; E-Mail:
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russian Federation
- School of Natural Sciences, Far East Federal University, 690022 Vladivostok, Russian Federation
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; E-Mail:
- Tumor and Breast Center ZeTuP St. Gallen, 9006 St. Gallen, Switzerland
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|