1
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025; 39:1238-1258. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Sun ZC, Liao R, Xian C, Lin R, Wang L, Fang Y, Zhang Z, Liu Y, Wu J. Natural pachypodol integrated, lung targeted and inhaled lipid nanomedicine ameliorates acute lung injury via anti-inflammation and repairing lung barrier. J Control Release 2024; 375:300-315. [PMID: 39265826 DOI: 10.1016/j.jconrel.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a high-mortality disease caused by multiple disorders such as COVID-19, influenza, and sepsis. Current therapies mainly rely on the inhalation of nitric oxide or injection of pharmaceutical drugs (e.g., glucocorticoids); however, their toxicity, side effects, or administration routes limit their clinical application. In this study, pachypodol (Pac), a hydrophobic flavonol with anti-inflammatory effects, was extracted from Pogostemon cablin Benth and intercalated in liposomes (Pac@liposome, Pac-lipo) to improve its solubility, biodistribution, and bioavailability, aiming at enhanced ALI/ARDS therapy. Nanosized Pac-lipo was confirmed to have stable physical properties, good biodistribution, and reliable biocompatibility. In vitro tests proved that Pac-lipo has anti-inflammatory property and protective effects on endothelial and epithelial barriers in lipopolysaccharide (LPS)-induced macrophages and endothelial cells, respectively. Further, the roles of Pac-lipo were validated on treating LPS-induced ALI in mice. Pac-lipo showed better effects than did Pac alone on relieving ALI phenotypes: It significantly attenuated lung index, improved pulmonary functions, inhibited cytokine expression such as TNF-α, IL-6, IL-1β, and iNOS in lung tissues, alleviated lung injury shown by HE staining, reduced protein content and total cell number in bronchoalveolar lavage fluid, and repaired lung epithelial and vascular endothelial barriers. As regards the underlying mechanisms, RNA sequencing results showed that the effects of the drugs were associated with numerous immune- and inflammation-related signaling pathways. Molecular docking and western blotting demonstrated that Pac-lipo inhibited the activation of the TLR4-MyD88-NF-κB/MAPK signaling pathway. Taken together, for the first time, our new drug (Pac-lipo) ameliorates ALI via inhibition of TLR4-MyD88-NF-κB/MAPK pathway-mediated inflammation and disruption of lung barrier. These findings may provide a promising strategy for ALI treatment in the clinic.
Collapse
Affiliation(s)
- Zhi-Chao Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Ran Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Caihong Xian
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Ran Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Liying Wang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifei Fang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Yuntao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong SAR.
| |
Collapse
|
3
|
Jafarzadeh A, Chauhan P, Nemati M, Jafarzadeh S, Yoshimura A. Aberrant expression of suppressor of cytokine signaling (SOCS) molecules contributes to the development of allergic diseases. Clin Exp Allergy 2023; 53:1147-1161. [PMID: 37641429 DOI: 10.1111/cea.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Chauhan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
5
|
Guo M, Shen Q, Wu Y, Li L, Zhang L, Wang Y, Zhang Y, Zhuang P, Guo H. Multivariate analysis of original identification and chemical markers exploration of Chinese ginger. Food Sci Biotechnol 2023; 32:911-920. [PMID: 37123069 PMCID: PMC10130292 DOI: 10.1007/s10068-022-01229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023] Open
Abstract
Ginger (Zingiber officinale) is one of the most widely consumed dietary supplements. However, the content of active ingredients varied greatly from place to place. In this study, we first identified and compared the compositions of ginger samples from six different origins. Then, we evaluated the anti-inflammatory activity of different samples in LPS-stimulated RAW264.7 cells. The results indicated that highly variable in chemical composition and activity for ginger from different origin. Further, correlation analysis showed that isoborneol, terpineol, α-curcumene, germacrene D, α-elemol and 8-shogaol exhibited a strong correlation with inflammatory factors, which could be used as potential chemical markers to evaluate quality and distinguish source of ginger. Finally, comprehensive evaluation found that the ginger from Sichuan exerts stronger anti-inflammatory properties. This study will help to select ginger varieties with excellent characteristics, provide theoretical basis for the development and utilization of ginger. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01229-2.
Collapse
Affiliation(s)
- Mengqing Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Qian Shen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yu Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Lili Li
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Lin Zhang
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yanjun Zhang
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Hong Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| |
Collapse
|
6
|
Maheswari V, Babu PAS. Phlorotannin and its Derivatives, a Potential Antiviral Molecule from Brown Seaweeds, an Overview. RUSSIAN JOURNAL OF MARINE BIOLOGY 2022; 48:309-324. [PMID: 36405241 PMCID: PMC9640822 DOI: 10.1134/s1063074022050169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 05/31/2023]
Abstract
Research on seaweeds provides a continual discovery of natural bioactive compounds. The review presents new information on studies of the potential and specific antiviral action of phlorotannin and their derivatives from marine brown algae. Phlorotannin is a polyphenolic derivative and a secondary metabolite from marine brown algae which exhibits a high quality of biological properties. Phlorotannin has a variety of biological activities that include antioxidant, anticancer, antiviral, anti-diabetic, anti-allergic, antibacterial, antihypertensive and immune modulating activities. These phlorotannin properties were revealed by various biochemical and cell-based assays in vitro. This distinctive polyphenol from the marine brown algae may be a potential pharmaceutical and nutraceutical compound. In this review, the extraction, quantification, characterization, purification, and biological applications of phlorotannin are discussed, and antiviral potential is described in detail.
Collapse
Affiliation(s)
- V. Maheswari
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| | - P. Azhagu Saravana Babu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| |
Collapse
|
7
|
Sun X, Gu X, Li K, Li M, Peng J, Zhang X, Yang L, Xiong J. Melatonin Promotes Antler Growth by Accelerating MT1-Mediated Mesenchymal Cell Differentiation and Inhibiting VEGF-Induced Degeneration of Chondrocytes. Int J Mol Sci 2022; 23:ijms23020759. [PMID: 35054949 PMCID: PMC8776005 DOI: 10.3390/ijms23020759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The sika deer is one type of seasonal breeding animal, and the growth of its antler is affected by light signals. Melatonin (MLT) is a neuroendocrine hormone synthesized by the pineal gland and plays an important role in controlling the circadian rhythm. Although the MLT/MT1 (melatonin 1A receptor) signal has been identified during antler development, its physiological function remains almost unknown. The role of MLT on antler growth in vivo and in vitro is discussed in this paper. In vivo, MLT implantation was found to significantly increase the weight of antlers. The relative growth rate of antlers showed a remarkable increased trend as well. In vitro, the experiment showed MLT accelerated antler mesenchymal cell differentiation. Further, results revealed that MLT regulated the expression of Collage type II (Col2a) through the MT1 binding mediated transcription of Yes-associated protein 1 (YAP1) in antler mesenchymal cells. In addition, treatment with vascular endothelial growth factor (VEGF) promoted chondrocytes degeneration by downregulating the expression of Col2a and Sox9 (SRY-Box Transcription Factor 9). MLT effectively inhibited VEGF-induced degeneration of antler chondrocytes by inhibiting the Signal transducers and activators of transcription 5/Interleukin-6 (STAT5/IL-6) pathway and activating the AKT/CREB (Cyclin AMP response-element binding protein) pathway dependent on Sox9 expression. Together, our results indicate that MLT plays a vital role in the development of antler cartilage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liguo Yang
- Correspondence: (L.Y.); (J.X.); Tel.: +86-027-8728-1813 (L.Y.); +86-027-8728-0020 (J.X.)
| | - Jiajun Xiong
- Correspondence: (L.Y.); (J.X.); Tel.: +86-027-8728-1813 (L.Y.); +86-027-8728-0020 (J.X.)
| |
Collapse
|
8
|
Sanapala P, Pola S, Nageswara Rao Reddy N, Pallaval VB. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. MARINE BIOMATERIALS 2022:307-349. [DOI: 10.1007/978-981-16-5374-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
10
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
11
|
Lee SH, Kim M, Park MH. Diphlorethohydroxycamalol isolated from Ishige okamurae prevents H 2O 2-induced oxidative damage via BMP2/Runx2 signaling in osteoblastic MC3T3-E1 cells. Fitoterapia 2021; 152:104921. [PMID: 33984434 DOI: 10.1016/j.fitote.2021.104921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Accumulating evidence has shown an association between osteoporosis and oxidative damage. In the present study, the protective effects of diphlorethohydroxycarmalol (DPHC) isolated from the brown algae Ishige okamurae against H2O2-induced oxidative damage via bone morphogenetic protein 2 (BMP2)/ runt-related transcription factor 2 (Runx2) signaling were investigated using MC3T3-E1 osteoblastic cells. DPHC counteracted the reduction in cell viability caused by H2O2 exposure and protected against H2O2-induced dysfunction, demonstrated by improved cellular alkaline phosphatase (ALP) activity and calcium deposition. In addition, treatment with 0.05-0.2 mM DPHC elevated the protein expression of osteoblast differentiation factors type 1 collagen, ALP, p-Smad1/5, Osterix, BMP2, and Runx2, in response to H2O2-induced oxidative damage. Importantly, DPHC decreased the expression levels of receptor activator of nuclear factor kappa-B ligand, which promotes bone resorption, and inhibited the H2O2-induced generation of reactive oxygen species. Taken together, the results suggest that DPHC counteracts the effects of oxidative stress in osteoblastic cells and has the potential to be effective in preventing and alleviating osteoporosis.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea
| | - Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea.
| |
Collapse
|
12
|
Murray M, Dordevic AL, Cox K, Scholey A, Ryan L, Bonham MP. Twelve weeks' treatment with a polyphenol-rich seaweed extract increased HDL cholesterol with no change in other biomarkers of chronic disease risk in overweight adults: A placebo-controlled randomized trial. J Nutr Biochem 2021; 96:108777. [PMID: 34015499 DOI: 10.1016/j.jnutbio.2021.108777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/25/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVD) are the leading global cause of death. Strategies to reduce CVD risk are urgently needed. Polyphenols represent a class of bioactive compounds with potential to moderate biochemical risk factors for CVD (cholesterol, triglycerides, glucose, and inflammation). This double-blind, placebo-controlled, randomized parallel-groups trial investigated the effect of a polyphenol-rich seaweed (Fucus vesiculosus) extract on biochemical markers of CVD risk. Thirty-four overweight and obese adults (21 female, 13 male) with elevated low-density lipoprotein cholesterol (>2.0 mmol/L) were randomized to either the seaweed extract (2000 mg/d) or placebo for twelve weeks. Fasting blood samples were collected at baseline, week six and week twelve to assess biochemical markers. Tests of cognitive performance and mood were performed at baseline, week six and week twelve. A 9.5% (-2.3, 12.9) increase in high-density lipoprotein (HDL) cholesterol was identified following the seaweed extract (baseline: mean (SD) 1.28 (0.23) mmol/L, week 12: 1.35 (0.24) mmol/L) which was different to placebo (baseline: 1.38 (0.54) mmol/L, week 12: 1.35 (0.59) mmol/L) (P=.045). No changes were identified in low-density lipoprotein cholesterol, total cholesterol, triglycerides, glucose, insulin, interleukin (IL)-2, IL-6, IL-8, IL-10, or tumour necrosis factor-alpha levels in the blood, or in cognitive performance or mood between the treatment and placebo groups. Despite the small increase observed in HDL cholesterol, the polyphenol-rich seaweed extract did not change CVD risk factors in adults with high fasting lipids. A larger sample size would be required to confirm the clinical relevance of the changes in HDL cholesterol.
Collapse
Affiliation(s)
- Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; School of Chemistry, Monash University, Clayton, Australia.
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia.
| | - Kate Cox
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia.
| | - Andrew Scholey
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia.
| | - Lisa Ryan
- Department of Natural Sciences, Galway-Mayo Institute of Technology, Galway, Ireland.
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia.
| |
Collapse
|
13
|
Kim SY, Ahn G, Kim HS, Je JG, Kim KN, Jeon YJ. Diphlorethohydroxycarmalol (DPHC) Isolated from the Brown Alga Ishige okamurae Acts on Inflammatory Myopathy as an Inhibitory Agent of TNF-α. Mar Drugs 2020; 18:E529. [PMID: 33114618 PMCID: PMC7692396 DOI: 10.3390/md18110529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation affects various organs of the human body, including skeletal muscle. Phlorotannins are natural biologically active substances found in marine brown algae and exhibit anti-inflammatory activities. In this study, we focused on the effects of phlorotannins on anti-inflammatory activity and skeletal muscle cell proliferation activity to identify the protective effects on the inflammatory myopathy. First, the five species of marine brown algal extracts dramatically inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without toxicity at all the concentrations tested. Moreover, the extracts collected from Ishige okamurae (I. okamurae) significantly increased cell proliferation of C2C12 myoblasts compared to the non-treated cells with non-toxicity. In addition, as a result of finding a potential tumor necrosis factor (TNF)-α inhibitor that regulates the signaling pathway of muscle degradation in I. okamurae-derived natural bioactive compounds, Diphlorethohydroxycarmalol (DPHC) is favorably docked to the TNF-α with the lowest binding energy and docking interaction energy value. Moreover, DPHC down-regulated the mRNA expression level of pro-inflammatory cytokines and suppressed the muscle RING-finger protein (MuRF)-1 and Muscle Atrophy F-box (MAFbx)/Atrgoin-1, which are the key protein muscle atrophy via nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPKs) signaling pathways in TNF-α-stimulated C2C12 myotubes. Therefore, it is expected that DPHC isolated from IO would be developed as a TNF-α inhibitor against inflammatory myopathy.
Collapse
Affiliation(s)
- Seo-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
- Department of Applied Research, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
| |
Collapse
|
14
|
Cha SH, Hwang Y, Heo SJ, Jun HS. Diphlorethohydroxycarmalol Attenuates Palmitate-Induced Hepatic Lipogenesis and Inflammation. Mar Drugs 2020; 18:E475. [PMID: 32962167 PMCID: PMC7551772 DOI: 10.3390/md18090475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease, encompassing a range of conditions caused by lipid deposition within liver cells, and is also associated with obesity and metabolic diseases. Here, we investigated the protective effects of diphlorethohydroxycarmalol (DPHC), which is a polyphenol isolated from an edible seaweed, Ishige okamurae, on palmitate-induced lipotoxicity in the liver. DPHC treatment repressed palmitate-induced cytotoxicity, triglyceride content, and lipid accumulation. DPHC prevented palmitate-induced mRNA and protein expression of SREBP (sterol regulatory element-binding protein) 1, C/EBP (CCAAT-enhancer-binding protein) α, ChREBP (carbohydrate-responsive element-binding protein), and FAS (fatty acid synthase). In addition, palmitate treatment reduced the expression levels of phosphorylated AMP-activated protein kinase (AMPK) and sirtuin (SIRT)1 proteins, and DPHC treatment rescued this reduction. Moreover, DPHC protected palmitate-induced liver toxicity and lipogenesis, as well as inflammation, and enhanced AMPK and SIRT1 signaling in zebrafish. These results suggest that DPHC possesses protective effects against palmitate-induced toxicity in the liver by preventing lipogenesis and inflammation. DPHC could be used as a potential therapeutic or preventive agent for fatty liver diseases.
Collapse
Affiliation(s)
- Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Chungcheongnam-do 31962, Korea
| | - Yongha Hwang
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21999, Korea;
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Korea;
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Sook Jun
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21999, Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- College of Pharmacy, Gachon University, Incheon 21999, Korea
| |
Collapse
|
15
|
Bactericidal Effect and Anti-Inflammatory Activity of Cassia garettiana Heartwood Extract. ScientificWorldJournal 2020; 2020:1653180. [PMID: 32765193 PMCID: PMC7374238 DOI: 10.1155/2020/1653180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022] Open
Abstract
Natural products are used as alternative drugs in traditional medicine to treat infection and inflammation and relieve pain. Heartwood of Cassia garettiana Craib has been investigated as an ingredient in Thai traditional medicine for anti-HIV protease, but there is no report on its antibacterial and anti-inflammatory activities. The objectives of this study were to investigate the anti-inflammatory and antibacterial activities, time-kill profile, and main active constituents of an ethanolic extract of C. garettiana heartwood. The study followed the generally accepted experimental design. All tests were investigated in triplicate. The heartwood of C. garettiana was extracted by maceration with 95% EtOH. The antibacterial activity of the extract and its chemical constituents were determined by their MIC values using resazurin as an indicator. Time-kill profile was determined at 0, 2, 4, 6, 8, 10, 12, and 24 hrs and expressed as log CFU/mL. The anti-inflammatory activity of the extract and its chemical components was investigated by their inhibiting effect on IL-6 and TNF-α production by ELISA. The ethanolic extract was analyzed for its chemical constituents by HPLC technique. The ethanolic extract showed both dose- and time-dependent bactericidal effects against Staphylococcus aureus, methicillin-resistance Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhi, Salmonella Typhimurium, Klebsiella pneumoniae, and Shigella dysenteriae with MIC values of 312.5, 312.5, 312.5, 1,250, 2,500, 625, 625, 2,500, and 625 μg/mL, respectively. It showed an inhibiting effect on IL-6 production at concentrations of 12.5 to 100 μg/mL. The main active chemical constituent of C. garettiana was piceatannol that showed antibacterial activity against all test bacteria except P. aeruginosa. C. garettiana showed a broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria. Piceatannol and resveratrol from the plant strongly inhibited IL-6 production. Based on these results, we concluded that the ethanolic extract of C. garettiana showed both an antibacterial activity and inhibition of IL-6. Piceatannol is the active constituent of the extract and showed anti-inflammatory and antibacterial activities against Gram-negative and Gram-positive bacteria.
Collapse
|
16
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Kim MS, Oh GW, Jang YM, Ko SC, Park WS, Choi IW, Kim YM, Jung WK. Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110352. [PMID: 31761165 DOI: 10.1016/j.msec.2019.110352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
In this study, we fabricated polyvinyl alcohol hydrogels containing diphlorethohydroxycarmalol (DPHC) from Ishige okamurae for its anti-bacterial effect in wound-dressing applications. First, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DPHC against Staphylococcus aureus and Pseudomonas aeruginosa were investigated, and these were found to be about 128 μg/mL and 512 μg/mL, respectively. Polyvinyl alcohol hydrogels loaded with different concentrations of DPHC were then produced for the dressing of wounds to assist in the healing process and to provide an antibacterial effect. To investigate the characteristics of the proposed PVA/DPHC hydrogels, we conducted SEM analysis, rheological analysis, thermogravimetric analysis, water swelling analysis, drug release testing, and gel fraction assessment. The antibacterial activity of the PVA/DPHC hydrogels was also tested against the gram-positive bacterium S. aureus and the gram-negative bacterium P. aeruginosa using ASTM E2149 tests. The biocompatibility of the PVA/DPHC hydrogels was assessed using in vitro indirect and direct contact tests and in vivo tests on ICR mice. The PVA/DPHC hydrogels exhibited the ability to reduce the viability of S. aureus and P. aeruginosa by about 99% in ASTM E2149 testing, while not producing any toxic effect on NHDF-Neo or HaCaT cells as shown in MTT assays and in vitro FDA fluorescence analysis. In addition, the PVA/DPHC hydrogels had a strong wound healing effect when compared to non-treated groups of ICR mice in vivo. Based on the characterization of the PVA/DPHC hydrogels in vitro and in vivo, this study suggests that the proposed hydrogel has significant potential for use in wound dressing.
Collapse
Affiliation(s)
- Min-Sung Kim
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yu-Mi Jang
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seok-Chun Ko
- Team of Marine Bio-resources, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Mog Kim
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Kim HS, Wang L, Jayawardena TU, Kim EA, Heo SJ, Shanura Fernando I, Lee JH, Jeon YJ. High-performance centrifugal partition chromatography (HPCPC) for efficient isolation of diphlorethohydroxycarmalol (DPHC) and screening of its antioxidant activity in a zebrafish model. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Sun S, Du Y, Yin C, Suo X, Wang R, Xia R, Zhang X. Water-separated part of Chloranthus serratus alleviates lipopolysaccharide- induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways. Altern Ther Health Med 2019; 19:343. [PMID: 31791318 PMCID: PMC6888926 DOI: 10.1186/s12906-019-2755-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Background Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated. The present study aimed to explore the anti-inflammatory activity and potential mechanisms of C. serratus’s separated part of water (CSSPW) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Methods The concentrations of CSSPW were optimized by CCK-8 method. Nitric oxide (NO) content was detected by one-step method. The levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by real-time quantitative PCR (qPCR). Immunofluorescence and DCFH-DA fluorescent probes were used to detect p65 nuclear translocation and reactive oxygen species (ROS) content, respectively. Western blotting was used to assay the protein expression of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB) and nuclear transcription factor E2 related factor 2/haem oxygenase-1 (Nrf2/HO-1) pathways. Results The final concentrations of 15 ng/mL, 1.5 μg/mL and 150 μg/mL were selected as low, medium and high doses of CSSPW, respectively. CSSPW treatment significantly reduced the generation of NO, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), iNOS mRNA and COX-2 mRNA in response to LPS stimulation. Furthermore, the protein expression of the MAPK and NF-κB pathways was suppressed by CSSPW treatment, as well as p65 nuclear translocation and ROS production. In contrast, the protein expression of the Nrf2/HO-1 pathway was markedly upregulated. Conclusions CSSPW exerts its anti-inflammatory effect via downregulating the production of pro-inflammatory mediators, inhibiting the activation of NF-κB and MAPK pathways, as well as activating Nrf2/HO-1 pathway in LPS-induced RAW264.7 cells.
Collapse
|
20
|
Li H, Chen Z, Zhong X, Li J, Li W. Mangiferin alleviates experimental peri-implantitis via suppressing interleukin-6 production and Toll-like receptor 2 signaling pathway. J Orthop Surg Res 2019; 14:325. [PMID: 31623650 PMCID: PMC6798411 DOI: 10.1186/s13018-019-1387-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND TLR2 (Toll-like receptor 2) signaling and its downstream proinflammatory cytokines are considered to be important in the progression of peri-implantitis. A natural medicine, mangiferin has exhibited modulatory effect on TLR2 signaling and anti-inflammatory effects on different diseases. The objective of the present study is to investigate the effect of mangiferin on peri-implantitis and the potential mechanisms by administering this drug to an experimental peri-implantitis mouse model. METHODS Maxillary left first, second, and third molars of mice were extracted, and dental implants were placed in the region of the maxillary left second molars. Then, peri-implantitis was induced by tying ligatures around implants, and mangiferin was given orally to the mice. After 6-week mangiferin treatment, bone loss around the implants was detected using micro-computerized tomography (micro-CT). Alveolar bone and inflammatory infiltrate in peri-implant tissues were examined using hematoxylin and eosin (H&E) staining. Production of interleukin-6 (IL6), a TLR2 downstream proinflammatory cytokine, in the tissue surrounding implants was measured using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis. IL6 protein expression and TLR2 signaling pathway activation in peri-implant tissues were detected using western blot analysis. RESULTS Micro-CT demonstrated reduced bone loss in peri-implantitis upon mangiferin administration. Additionally, H&E staining showed more alveolar bone and less inflammatory infiltrate in peri-implant tissues after mangiferin application. Moreover, qRT-PCR analysis demonstrated lower levels of IL6 gene expression, and western blot analysis showed decreased protein expression of IL6 and TLR2, and suppressed phosphorylation of TLR2 downstream nuclear factor-κB, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase after mangiferin treatment. CONCLUSIONS These results suggest the suppressive effect of mangiferin on bone damage and inflammatory infiltrate in peri-implantitis. These therapeutic effects may be associated with inhibited IL6 production and reduced TLR2 signaling activation in peri-implant tissues.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China. .,Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA. .,Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, 188 Longwood Avenue, Boston, 02115, USA.
| | - Zhiyong Chen
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Xinghua Zhong
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Jiaquan Li
- Medical Scientific Research Center, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
21
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
22
|
Diphlorethohydroxycarmalol Attenuates Fine Particulate Matter-Induced Subcellular Skin Dysfunction. Mar Drugs 2019; 17:md17020095. [PMID: 30717280 PMCID: PMC6410332 DOI: 10.3390/md17020095] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
The skin, the largest organ in humans, is exposed to major sources of outdoor air pollution, such as fine particulate matter with a diameter ≤ 2.5 µm (PM2.5). Diphlorethohydroxycarmalol (DPHC), a marine-based compound, possesses multiple activities including antioxidant effect. In the present study, we evaluated the protective effect of DPHC on PM2.5-induced skin cell damage and elucidated the underlying mechanisms in vitro and in vivo. The results showed that DPHC blocked PM2.5-induced reactive oxygen species generation in human keratinocytes. In addition, DPHC protected cells against PM2.5-induced DNA damage, endoplasmic reticulum stress, and autophagy. HR-1 hairless mice exposed to PM2.5 showed lipid peroxidation, protein carbonylation, and increased epidermal height, which were inhibited by DPHC. Moreover, PM2.5 induced apoptosis and mitogen-activated protein kinase (MAPK) protein expression; however, these changes were attenuated by DPHC. MAPK inhibitors were used to elucidate the molecular mechanisms underlying these actions, and the results demonstrated that MAPK signaling pathway may play a key role in PM2.5-induced skin damage.
Collapse
|
23
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
24
|
Murray M, Dordevic AL, Cox KHM, Scholey A, Ryan L, Bonham MP. Study protocol for a double-blind randomised controlled trial investigating the impact of 12 weeks supplementation with a Fucus vesiculosus extract on cholesterol levels in adults with elevated fasting LDL cholesterol who are overweight or have obesity. BMJ Open 2018; 8:e022195. [PMID: 30552248 PMCID: PMC6303689 DOI: 10.1136/bmjopen-2018-022195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/29/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Hyperlipidaemia, hyperglycaemia and chronic inflammation are risk factors for chronic diseases cardiovascular disease and type 2 diabetes. Polyphenols are bioactive compounds found in marine algae with potential antihyperlipidaemic, antihyperglycaemic and anti-inflammatory effects. The modulation of these risk factors using bioactive polyphenols may represent a useful strategy for disease prevention and management; research in humans, however, remains limited. This trial aims to determine the impact of a polyphenol-rich brown seaweed extract on fasting hyperlipidaemia, hyperglycaemia and inflammation. Effects on mood and cognition will also be evaluated. METHODS AND ANALYSIS Fifty-eight hypercholesterolaemic participants who are overweight or have obesity will be randomised to receive either a polyphenol-rich brown seaweed extract (2000 mg dose containing 600 mg polyphenols) or placebo (2000 mg rice flour) daily for 12 weeks. Fasting venous blood samples will be taken at baseline, week 6 and week 12 of the intervention to assess serum cholesterol (total, low-density lipoprotein and high-density lipoprotein) and triglyceride concentrations, plasma glucose and insulin concentrations and markers of inflammation. Mood and cognitive function will be evaluated as exploratory outcomes. Independent t-tests or equivalent will be used to determine differences between the two groups in changes from baseline to week 12. Analysis of variance will be used to assess differences between the groups across the three time points (baseline, week 6 and week 12). ETHICS AND DISSEMINATION Ethics approval has been granted by the Monash University Human Research Ethics Committee (2017-8689-10379). Results from this trial will be disseminated through publication in peer-reviewed journals, national and international presentations, and a PhD thesis. These results are essential to inform the use of polyphenol-rich brown seaweeds as a functional food or nutritional supplement ingredients for health promotion and disease prevention and management in humans. TRIAL REGISTRATION NUMBER ACTRN12617001039370; Pre-results.
Collapse
Affiliation(s)
- Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Katherine H M Cox
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Lisa Ryan
- Department of Natural Sciences, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
25
|
Artichoke Polyphenols Produce Skin Anti-Age Effects by Improving Endothelial Cell Integrity and Functionality. Molecules 2018; 23:molecules23112729. [PMID: 30360471 PMCID: PMC6278506 DOI: 10.3390/molecules23112729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022] Open
Abstract
Artichoke is a characteristic crop of the Mediterranean area, recognized for its nutritional value and therapeutic properties due to the presence of bioactive components such as polyphenols, inulin, vitamins and minerals. Artichoke is mainly consumed after home and/or industrial processing, and the undersized heads, not suitable for the market, can be used for the recovery of bioactive compounds, such as polyphenols, for cosmetic applications. In this paper, the potential skin anti-age effect of a polyphenolic artichoke extract on endothelial cells was investigated. The methodology used was addressed to evaluate the antioxidant and anti-inflammatory activities and the improvement of gene expression of some youth markers. The results showed that the artichoke extract was constituted by 87% of chlorogenic, 3,5-O-dicaffeoylquinic, and 1,5-O-dicaffeoylquinic acids. The extract induced important molecular markers responsible for the microcirculation and vasodilatation of endothelial cells, acted as a potential anti-inflammatory agent, protected the lymphatic vessels from oxidative damage by ROS formation, and enhanced the cellular cohesion by reinforcing the tight junction complex. In addition, the artichoke extract, through the modulation of molecular pathways, improved the expression of genes involved in anti-ageing mechanisms. Finally, clinical testing on human subjects highlighted the enhancement by 19.74% of roughness and 11.45% of elasticity from using an artichoke extract cosmetic formulation compared to placebo cream.
Collapse
|
26
|
Fernando KHN, Yang HW, Jiang Y, Jeon YJ, Ryu B. Diphlorethohydroxycarmalol Isolated from Ishige okamurae Represses High Glucose-Induced Angiogenesis In Vitro and In Vivo. Mar Drugs 2018; 16:E375. [PMID: 30308943 PMCID: PMC6215322 DOI: 10.3390/md16100375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus causes abnormalities of angiogenesis leading to vascular dysfunction and serious pathologies. Diphlorethohydroxycarmalol (DPHC), which is isolated from Ishige okamurae, is well known for its bioactivities, including antihyperglycemic and protective functions against diabetes-related pathologies. In the present study, the inhibitory effect of DPHC on high glucose-induced angiogenesis was investigated on the human vascular endothelial cell line EA.hy926. DPHC inhibited the cell proliferation, cell migration, and tube formation in cells exposed to 30 mM of glucose to induce angiogenesis. Furthermore, the effect of DPHC against high glucose-induced angiogenesis was evaluated in zebrafish embryos. The treatment of embryos with DPHC suppressed high glucose-induced dilation in the retinal vessel diameter and vessel formation. Moreover, DPHC could inhibit high glucose-induced vascular endothelial growth factor receptor 2 (VEGFR-2) expression and its downstream signaling cascade. Overall, these findings suggest that DPHC is actively involved in the suppression of high glucose-induced angiogenesis. Hence, DPHC is a potential agent for the development of therapeutics against angiogenesis induced by diabetes.
Collapse
Affiliation(s)
- K H N Fernando
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
27
|
Lee JE, Lee EH, Park HJ, Kim YJ, Jung HY, Ahn DH, Cho YJ. Inhibition of inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells byPinus densifloraroot extract. ACTA ACUST UNITED AC 2018. [DOI: 10.3839/jabc.2018.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Ho Lee
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Jin Park
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Jin Kim
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyun Ahn
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Je Cho
- School of Food Science and Biotechnology/Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
28
|
Catarino MD, Silva AMS, Cardoso SM. Phycochemical Constituents and Biological Activities of Fucus spp. Mar Drugs 2018; 16:E249. [PMID: 30060505 PMCID: PMC6117670 DOI: 10.3390/md16080249] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
Abstract
Seaweeds are known to be a good supply of key nutrients including carbohydrates, protein, minerals, polyunsaturated lipids, as well as several other health-promoting compounds capable of acting on a wide spectrum of disorders and/or diseases. While these marine macroalgae are deeply rooted in the East Asian culture and dietary habits, their major application in Western countries has been in the phycocolloid industry. This scenario has however been gradually changing, since seaweed consumption is becoming more common worldwide. Among the numerous edible seaweeds, members of the genus Fucus have a high nutritional value and are considered good sources of dietary fibers and minerals, especially iodine. Additionally, their wealth of bioactive compounds such as fucoidan, phlorotannins, fucoxanthin and others make them strong candidates for multiple therapeutic applications (e.g., antioxidant, anti-inflammatory, anti-tumor, anti-obesity, anti-coagulant, anti-diabetes and others). This review presents an overview of the nutritional and phytochemical composition of Fucus spp., and their claimed biological activities, as well as the beneficial effects associated to their consumption. Furthermore, the use of Fucus seaweeds and/or their components as functional ingredients for formulation of novel and enhanced foods is also discussed.
Collapse
Affiliation(s)
- Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
29
|
Murray M, Dordevic AL, Ryan L, Bonham MP. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Crit Rev Food Sci Nutr 2018; 58:1342-1358. [PMID: 27834493 DOI: 10.1080/10408398.2016.1259209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Marine macroalgae are gaining recognition among the scientific community as a significant source of functional food ingredients. Due to the harsh environments in which macroalgae survive, they produce unique bioactive compounds that are not found in terrestrial plants. Polyphenols are the predominant bioactive compound in brown algae and are accountable for the majority of its biological activity. Phlorotannins are a type of polyphenol that are unique to marine sources and have exhibited protective effects against hyperglycemia, hyperlipidemia, inflammation and oxidative stress, known risk factors for cardiovascular disease and diabetic complications, in cell culture, animal studies and some human studies. This review updates the information on marine polyphenols, with a particular focus on phlorotannins and their potential health benefits in relation to the prevention and treatment of risk factors for type 2 diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Margaret Murray
- a Department of Nutrition, Dietetics and Food , Monash University , Victoria , Australia
| | - Aimee L Dordevic
- b Department of Natural Sciences , Galway-Mayo Institute of Technology , Galway , Ireland
| | - Lisa Ryan
- b Department of Natural Sciences , Galway-Mayo Institute of Technology , Galway , Ireland
| | - Maxine P Bonham
- a Department of Nutrition, Dietetics and Food , Monash University , Victoria , Australia
| |
Collapse
|
30
|
Lee HR, Kim TH, Oh SH, Lee JH. Prednisolone-loaded coatable polyvinyl alcohol/alginate hydrogel for the treatment of atopic dermatitis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1612-1624. [DOI: 10.1080/09205063.2018.1477317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Hye Ri Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, Republic of Korea
| | - Tae Ho Kim
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, Republic of Korea
| |
Collapse
|
31
|
Ihn HJ, Kim JA, Cho HS, Shin HI, Kim GY, Choi YH, Jeon YJ, Park EK. Diphlorethohydroxycarmalol from Ishige okamurae Suppresses Osteoclast Differentiation by Downregulating the NF-κB Signaling Pathway. Int J Mol Sci 2017; 18:E2635. [PMID: 29211036 PMCID: PMC5751238 DOI: 10.3390/ijms18122635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022] Open
Abstract
Marine algae possess a variety of beneficial effects on human health. In this study, we investigated whether diphlorethohydroxycarmalol (DPHC), isolated from Ishige okamurae, a brown alga, suppresses receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. DPHC significantly suppressed RANKL-induced osteoclast differentiation and macrophage-colony stimulating factor (M-CSF) expression in a dose-dependent manner. In addition, it significantly inhibited actin ring formation, the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1), cathepsin K (Ctsk), and dendritic cell-specific transmembrane protein (Dcstamp), and osteoclast-induced bone resorption. Analysis of the RANKL-mediated signaling pathway showed that the phosphorylation of both IκB and p65 was specifically inhibited by DPHC. These results suggest that DPHC substantially suppresses osteoclastogenesis by downregulating the RANK-NF-κB signaling pathway. Thus, it holds significant potential for the treatment of skeletal diseases associated with an enhanced osteoclast activity.
Collapse
Affiliation(s)
- Hye Jung Ihn
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - Hye Sung Cho
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| |
Collapse
|
32
|
Lee HN, Shin SA, Choo GS, Kim HJ, Park YS, Kim BS, Kim SK, Cho SD, Nam JS, Choi CS, Che JH, Park BK, Jung JY. Anti‑inflammatory effect of quercetin and galangin in LPS‑stimulated RAW264.7 macrophages and DNCB‑induced atopic dermatitis animal models. Int J Mol Med 2017; 41:888-898. [PMID: 29207037 PMCID: PMC5752163 DOI: 10.3892/ijmm.2017.3296] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Flavonols are compounds that have been shown to possess potent anti-inflammatory effects in cellular and animal models of inflammation. In the present study, the anti-inflammatory effects and mechanisms of two natural flavonols, quercetin and galangin, in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were investigated. It was identified that quercetin and galangin markedly reduced the production of nitric oxide (NO), inducible NO synthase and interleukin-6, and the nuclear translocation of nuclear factor-κB (NF-κB). In addition, LPS-induced activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun N-terminal kinase (JNK) was suppressed by quercetin and galangin. Taken together, these data implied that NF-κB, Erk1/2 and JNK may be potential molecular targets of quercetin and galangin in an LPS-induced inflammatory response. Subsequently, the effects of oral administration of quercetin or galangin, either alone or in combination, in a 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD) mouse model were investigated. As a result, measurements of ear thickness and the levels of serum immunoglobulin E, and histological analysis revealed that the two flavonols led to a decrease in inflammation, whereas, in combination, they were even more effective. These results suggested that quercetin and galangin may be promising therapeutic agents for AD. Additionally, their combination may be a novel therapeutic strategy for the prevention of AD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Seong Ah Shin
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Gang Sik Choo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Hyeong Jin Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Young Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Sang Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Sung Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Seok Nam
- Gwangju Institute of Science and Technology, School of Life Sciences, Gwangju 500712, Republic of Korea
| | - Chang Sun Choi
- School of Food Science and Technology, Chung‑Ang University, Ansung 456756, Republic of Korea
| | - Jeong Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byung Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| | - Ji Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340702, Republic of Korea
| |
Collapse
|
33
|
Noh K, Kim M, Kim Y, Kim H, Kim H, Byun J, Park Y, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions. Oncotarget 2017; 8:63155-63176. [PMID: 28968979 PMCID: PMC5609911 DOI: 10.18632/oncotarget.19149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs.
Collapse
Affiliation(s)
- Kyeonga Noh
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Hanearl Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Hyuna Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Jaehwan Byun
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Yeongseo Park
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| | - Hansoo Lee
- Department of Biological Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Yun Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
34
|
Murray M, Dordevic AL, Bonham MP, Ryan L. Do marine algal polyphenols have antidiabetic, antihyperlipidemic or anti-inflammatory effects in humans? A systematic review. Crit Rev Food Sci Nutr 2017; 58:2039-2054. [PMID: 28414549 DOI: 10.1080/10408398.2017.1301876] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cardiovascular disease and type 2 diabetes are leading causes of morbidity and mortality globally. Marine algal polyphenols have potential to reduce the risk of these conditions, however, little is known about their impact in humans. This systematic review investigates the antidiabetic, antihyperlipidemic and anti-inflammatory effects of marine polyphenols in humans. Scopus, Medline, PsychInfo, Embase and Cochrane Library databases were searched in November 2016. Eligible studies included (1) human adults, (2) marine polyphenol intervention, (3) blood lipid, glucose, insulin or inflammatory marker outcomes, and (4) were a randomized-controlled trial. One postprandial cross-over trial and four parallel design trials were included involving 271 adults. Analysis across studies was performed using Cohen's d effect sizes. Supplementation with polyphenol-rich extracts had small-to-medium positive effects on fasting blood glucose, total cholesterol and LDL-cholesterol; however, there is inadequate evidence as yet to confirm if these are consistent effects. Further randomized-controlled trials should investigate polyphenols from Ecklonia cava and other macroalgal sources, to determine if there is a role for marine polyphenols in reducing the risk factors of chronic disease in humans. (PROSPERO registration number CRD42015016890).
Collapse
Affiliation(s)
- Margaret Murray
- a Department of Nutrition, Dietetics and Food , Monash University , Victoria , Australia
| | - Aimee L Dordevic
- a Department of Nutrition, Dietetics and Food , Monash University , Victoria , Australia
| | - Maxine P Bonham
- a Department of Nutrition, Dietetics and Food , Monash University , Victoria , Australia
| | - Lisa Ryan
- b Department of Natural Sciences , Galway-Mayo Institute of Technology , Galway , Ireland
| |
Collapse
|
35
|
Mineral-balanced deep sea water enhances the inhibitory effects of chitosan oligosaccharide on atopic dermatitis-like inflammatory response. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Lin HW, Liu CW, Yang DJ, Chen CC, Chen SY, Tseng JK, Chang TJ, Chang YY. Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells. J Food Drug Anal 2017; 25:908-918. [PMID: 28987368 PMCID: PMC9328861 DOI: 10.1016/j.jfda.2016.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Recent investigations have demonstrated that carotenoid extract of Dunaliella salina alga (Alga) contains abundant β-carotene and has good anti-inflammatory activities. Murine macrophage (RAW264.7 cells) was used to establish as an in vitro model of pseudorabies virus-induced reactive oxygen species (ROS) response. In this study, antioxidant activities of Alga were measured based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity assays, reducing power, and virus-induced ROS formation in RAW264.7 cells. Anti-inflammatory activities of Alga were assessed by its ability to inhibit the production of interleukin-6 and nitric oxide (NO) using enzyme-linked immunosorbent assay, then the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was investigated by measuring the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (p50 and p65), JAK, STAT-1/3, and suppressor of cytokine signaling 3 (SOCS3) by Western blotting. In addition, Alga inhibited virus replication by plaque assay. Our results showed that the Alga had high antioxidant activity, significantly reduced the virus-induced accumulation of ROS, and inhibited the levels of nitric oxide and interleukin-6. Further studies revealed that Alga also downregulated the gene and protein expressions of iNOS, COX-2, nuclear factor-κB (p50 and p65), and the JAK/STAT pathway. The inhibitory effects of Alga were similar to pre-treatment with specific inhibitors of JAK and STAT-3 in pseudorabies virus-infected RAW264.7 cells. Alga enhanced the expression of SOCS3 to suppress the activity of the JAK/ STAT signaling pathway in pseudorabies virus-infected RAW264.7 cells. In addition, Alga has decreased viral replication (p < 0.005) at an early stage. Therefore, our results demonstrate that Alga inhibits ROS, interleukin6, and nitric oxide production via suppression of the JAK/STAT pathways and enhanced the expression of SOCS3 in virus-infected RAW264.7 cells.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Wei Liu
- Department of Post-Modern Agriculture, Ming Dao University, ChangHua, Taiwan
| | - Deng-Jye Yang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Tien-Jye Chang
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
37
|
Ryu HW, Lee SU, Lee S, Song HH, Son TH, Kim YU, Yuk HJ, Ro H, Lee CK, Hong ST, Oh SR. 3-Methoxy-catalposide inhibits inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Cytokine 2016; 91:57-64. [PMID: 28011397 DOI: 10.1016/j.cyto.2016.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 01/18/2023]
Abstract
Pseudolysimachion rotundum var. subintegrum is utilized as a traditional herbal remedy to treat cough, bronchitis, and asthma in Korea, Russia, China, and Europe. Here, we show that 3-methoxy-catalposide, a novel iridoide glycoside isolated from P. rotundum var. subintegrum has the anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophages. The chemical structure of 3-methoxy-catalposide was determined by NMR, optical rotation and HRESIMS. In in vitro experiment, RAW264.7 cells were treated with 3-methoxy-catalposide for 2h before exposure to LPS for different times. Inflammatory gene and protein expressions were assayed using RT-PCR and ELISA. Activities of signal proteins were examined using western analysis. Our results demonstrated that 3-methoxy-catalposide significantly inhibits the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated by LPS, thereby suppressing the release of prostaglandin E2 (PGE2) and nitric oxide (NO). Moreover, 3-methoxy-catalposide markedly reduced the LPS-induced expression of pro-inflammatory genes, such as interleukin (IL)-6, IL-1β, and TNF-α. Further, 3-methoxy-catalposide inhibited both LPS-induced activation of three MAP kinases (ERK 1/2, JNK, and p38) and the nuclear translocation of NF-κB and AP-1. These results support that 3-methoxy-catalposide may be a promising candidate for inflammation treatment.
Collapse
Affiliation(s)
- Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Seoghyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk-Hwan Song
- R&D Team, Agency for Korea National Food Cluster (AnFC), 460 Iksan-daero, Iksan, Jeonbuk 507-749, Republic of Korea
| | - Tae Hyun Son
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yeah-Un Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung-Tae Hong
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong, Daejeon 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
38
|
Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling. Arch Oral Biol 2016; 71:155-161. [PMID: 27517515 DOI: 10.1016/j.archoralbio.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. DESIGN The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. RESULTS We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. CONCLUSIONS Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis.
Collapse
|
39
|
Cho BO, Yin HH, Park SH, Byun EB, Ha HY, Jang SI. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci Biotechnol Biochem 2016; 80:1520-30. [PMID: 27068250 DOI: 10.1080/09168451.2016.1171697] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.
Collapse
Affiliation(s)
- Byoung Ok Cho
- a Ato Q&A Corporation , Jeonju , Republic of Korea.,b Department of Health Care & Science , Jeonju University , Jeonju , Republic of Korea
| | - Hong Hua Yin
- a Ato Q&A Corporation , Jeonju , Republic of Korea
| | - Sang Hyun Park
- c Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Eui Baek Byun
- c Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Hun Yong Ha
- d Department of Pharmaceutical Science & Engineering , Seowon University , Cheongju , Republic of Korea
| | - Seon Il Jang
- a Ato Q&A Corporation , Jeonju , Republic of Korea.,b Department of Health Care & Science , Jeonju University , Jeonju , Republic of Korea
| |
Collapse
|
40
|
Kang NJ, Han SC, Kang HJ, Ko G, Yoon WJ, Kang HK, Yoo ES. Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, In Vivo and In Vitro. Toxicol Res 2015; 33:325-332. [PMID: 29071017 PMCID: PMC5654201 DOI: 10.5487/tr.2017.33.4.325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and 100 μM) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.
Collapse
Affiliation(s)
- Na-Jin Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Sang-Chul Han
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Hyun-Jae Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Geum Ko
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|