1
|
Jarczewska K, Kopeć M, Surmacki JM. Monitoring cellular human breast adenocarcinoma cells' response to xanthophylls by label-free Raman spectroscopy and imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126263. [PMID: 40267576 DOI: 10.1016/j.saa.2025.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
For years, xanthophylls have been recognized for their potential in medicine. Evidence supports the role of diets rich in algae, fruits, and vegetables in preventing cancer. Due to the complexity of the human body, numerous mechanisms could explain the health benefits of xanthophylls. Various studies have explored their effects on specific diseases. However, the impact of certain xanthophylls, such as crocetin, crocin, and fucoxanthin, on aggressive breast cancer remains unclear. To address this, we examined their effects on human breast adenocarcinoma (MDA-MB-231 cells) using Raman spectroscopy and imaging. Our findings revealed that crocetin enhances cancer cell viability by increasing lipid and protein levels, suggesting it does not directly inhibit tumour growth. Crocin redirected cellular metabolism towards lipid accumulation, shown by increased Raman signals at 1444 cm-1 in lipid droplets/endoplasmic reticulum. Fucoxanthin demonstrated the greatest potential, reducing lipid and protein levels (Raman bands at 1254, 1444, 1654 cm-1), thereby inhibiting adenocarcinoma progression.
Collapse
Affiliation(s)
- Karolina Jarczewska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Monika Kopeć
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Maciej Surmacki
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
2
|
Yang Y, Yang M, Zhou Y, Chen X, Huang B. Effect of RNA Demethylase FTO Overexpression on Biomass and Bioactive Substances in Diatom Phaeodactylum tricornutum. BIOLOGY 2025; 14:414. [PMID: 40282280 PMCID: PMC12024952 DOI: 10.3390/biology14040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Phaeodactylum tricornutum is rich in bioactive substances, rendering it valuable in nutrition and medicine. Epigenetic editing mediated by human RNA demethylase FTO can significantly increase the yields of rice and potato and offers significant potential for the genetic breeding of microalgae. This study aimed to enhance the production of certain metabolites in P. tricornutum via FTO-mediated epigenetic editing. Phenotypic analysis revealed that transgenic P. tricornutum exhibits significantly reduced RNA m6A modification levels and faster growth, producing markedly higher levels of lipids, proteins, and carotenoids than the wild type. Transcriptome analysis revealed 1009 upregulated genes and 378 downregulated genes. KEGG analysis demonstrated the upregulated expression of multiple key enzymes involved in long-chain fatty acid synthesis (e.g., ACSL, fabF, and fabG), carotenoid synthesis (e.g., crtQ, PDS, and PSY1), and amino acid synthesis (e.g., dapF, glyA, and aroK) in transgenic P. tricornutum, consistent with our phenotypic results. These results indicate that FTO can promote growth and increase the bioactive compound content in P. tricornutum by regulating the m6A modification of RNA, and further suggest that FTO has the potential to serve as a new tool for the epigenetic editing of microalgae.
Collapse
Affiliation(s)
- Yanan Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (M.Y.); (Y.Z.)
- University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Nanning 530200, China
| | - Min Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (M.Y.); (Y.Z.)
- University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Nanning 530200, China
| | - Yihang Zhou
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (M.Y.); (Y.Z.)
- University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Nanning 530200, China
| | - Xiaoqian Chen
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (M.Y.); (Y.Z.)
- University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Nanning 530200, China
| | - Bingyao Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (M.Y.); (Y.Z.)
- University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Nanning 530200, China
| |
Collapse
|
3
|
Elmorsy EM, Al Doghaither HA, Al-Ghafari AB, Amer S, Fawzy MS, Toraih EA. Fucoxanthin mitigates mercury-induced mitochondrial toxicity in the human ovarian granulosa cell line. Reprod Toxicol 2025; 132:108855. [PMID: 39947444 DOI: 10.1016/j.reprotox.2025.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025]
Abstract
Mercury (Hg) is known to be a hazardous toxin with a significant negative impact on female reproduction through mechanisms that remain unclear. The carotenoid fucoxanthin (FX) is an antioxidant with several positive effects on human health. This study aimed to examine the potential protective role of FX in reducing the Hg-induced bioenergetic disturbances in a human ovarian granulosa cell line model. (methods briefly) Hg was found to reduce the viability of granulosa cells in a concentration-dependent manner, with an estimated 72-hour EC50 of 10 µM. In contrast, FX (10 and 20 µM) improved cell viability. Hg (1 and 10 µM) significantly reduced cellular ATP levels, mitochondrial membrane potential, oxygen consumption rates, and lactate production. Additionally, Hg impaired the activities and kinetics of mitochondrial complexes I and III and reduced the expression of mitochondrial genes ND1, ND5, cytochrome B, cytochrome C oxidase, and ATP synthase subunits 6 and 8. According to tests on mitochondrial membranes, Hg increased membrane fluidity by reducing saturated fatty acid levels and increasing those of unsaturated fatty acids. Hg also promoted mitochondrial swelling and enhanced the inner mitochondrial membrane permeability to hydrogen and potassium ions. FX (10 µM) was shown to mitigate the negative effects of Hg on the viability of treated granulosa cells, bioenergetics parameters, and mitochondrial membrane integrity in a concentration-dependent manner. Based on these findings, bioenergetic disruption may be a key underlying cause of Hg-induced ovarian dysfunction. Furthermore, FX may have a potential therapeutic role in treating ovarian disorders caused by Hg-induced disruption of granulosa cell bioenergetics.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia.
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Saad Amer
- Translational Medical Sciences, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK.
| | - Manal S Fawzy
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia.
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; Department of Cardiovascular Perfusion, Interprofessional Research, College of Health Professions, Upstate Medical University, New York 13210, USA; Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
4
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA. Fucoxanthin alleviates the cytotoxic effects of cadmium and lead on a human osteoblast cell line. Toxicol Res (Camb) 2024; 13:tfae218. [PMID: 39712643 PMCID: PMC11655842 DOI: 10.1093/toxres/tfae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays. METHODS The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production. Also, the effect of metals on oxidative stress was assessed by reactive oxygen species, lipid peroxidation and antioxidant enzymes assays. Also the effect of FX and metals on apoptosis caspases and related genes was assessed. RESULTS When Cd and Pb were added to human osteoblast cultures at concentrations ranging from 1-20 μM for 72 h, they significantly reduced osteoblast viability in a time and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was greater than that of Pb, with estimated EC50 of 8 and 12 μM, respectively, after 72 h of exposure. FX (10 and 20 μM) alleviated the cytotoxicity of the metals. Bioenergetics assays, including ATP, MMP, and mitochondrial complexes I and III activities, revealed that HMs at 1 and 10 μM concentrations inhibited cellular bioenergetics after 72 h of exposure. Cd and Pb also increased lipid peroxidation and reactive oxygen species while reducing catalase and superoxide dismutase antioxidant activities and oxidative stress-related genes. This was accompanied by increased caspases -3, -8, and - 9 and Bax/bCl-2 ratio. Co-treatment with FX (10 and 20 μM) mitigated the disruption of bioenergetics, oxidative damage, and apoptosis induced by the metals, showing a concentration-dependent pattern to varying extents. CONCLUSION These findings strongly support the role of FX in managing toxicities induced by environmental pollutants in bones and in addressing bone diseases associated with molecular bases of oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Guo B, Zhang W, Zhou Y, Zhang J, Zeng C, Sun P, Liu B. Fucoxanthin restructures the gut microbiota and metabolic functions of non-obese individuals in an in vitro fermentation model. Food Funct 2024; 15:4805-4817. [PMID: 38563411 DOI: 10.1039/d3fo05671f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.
Collapse
Affiliation(s)
- Bingbing Guo
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Weihao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Yonghui Zhou
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Jingyi Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Teng C, Wu J, Zhang Z, Wang J, Yang Y, Dong C, Wu L, Lin Z, Hu Y, Wang J, Zhang X, Lin Z. Fucoxanthin ameliorates endoplasmic reticulum stress and inhibits apoptosis and alleviates intervertebral disc degeneration in rats by upregulating Sirt1. Phytother Res 2024; 38:2114-2127. [PMID: 37918392 DOI: 10.1002/ptr.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) and apoptosis of nucleus pulposus (NP) cells are considered to be the main pathological factors of intervertebral disc degeneration (IDD). Fucoxanthin (FX), a marine carotenoid extracted from microalgae, has antioxidant, anti-inflammatory, and anticancer properties. The aim of this study was to investigate the effect of FX on NP cells induced by oxidative stress and its molecular mechanism. Primary NP cells of the lumbar vertebrae of rats were extracted and tested in vitro. qRT-PCR, western blot, immunofluorescence, and TUNEL staining were used to detect apoptosis, ERS, extracellular matrix (ECM), and Sirt1-related pathways. In vivo experiments, the recovery of IDD rats was determined by X-ray, hematoxylin and eosin, Safranin-O/Fast Green, Alcian staining, and immunohistochemistry. Our study showed that oxidative stress induced ERS, apoptosis, and ECM degradation in NP cells. After the use of FX, the expression of Sirt1 was up-regulated, the activation of PERK-eIF2α-ATF4-CHOP was decreased, and apoptosis and ECM degradation were decreased. At the same time, FX improved the degree of disc degeneration in rats in vivo. Our study demonstrates the effect of FX on improving IDD in vivo and in vitro, suggesting that FX may be a potential drug for the treatment of IDD.
Collapse
Affiliation(s)
- Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuezheng Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Ahmed SA, Mendonca P, Messeha SS, Oriaku ET, Soliman KFA. The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules 2023; 29:61. [PMID: 38202644 PMCID: PMC10779870 DOI: 10.3390/molecules29010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ebenezer T. Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| |
Collapse
|
8
|
Fernandes V, Mamatha BS. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 2023; 12:567-580. [PMID: 37642932 DOI: 10.1007/s13668-023-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation. RECENT FINDINGS Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability. This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Collapse
Affiliation(s)
- Vanessa Fernandes
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
9
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Xin Z, Zhang M, Cui H, Ding X, Zhang T, Wu L, Cui H, Xue Q, Chen C, Gao J. Algae: A Robust Living Material Against Cancer. Int J Nanomedicine 2023; 18:5243-5264. [PMID: 37727650 PMCID: PMC10506609 DOI: 10.2147/ijn.s423412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy. Therefore, better development and utilization of biomaterials can improve the specificity and efficacy of tumor therapy. Algae, as a novel living material, possesses good biocompatibility. Although some reviews have elucidated several algae-based biomaterials for cancer treatment, the majority of the literature has focused on a limited number of algae. As a result, there is currently a lack of comprehensive reviews on the subject of anticancer algae. This review aims to address this gap by conducting a thorough examination of algal species that show potential for anticancer activity. Furthermore, our review will also elucidate the engineering strategies of algae and discuss the challenges and prospects associated with their implementation.
Collapse
Affiliation(s)
- Zhongyuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiuwen Ding
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Qian Xue
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Ahmed SA, Mendonca P, Messeha SS, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, and Angiogenesis Inhibition in Triple-Negative Breast Cancer Cells. Molecules 2023; 28:6536. [PMID: 37764312 PMCID: PMC10535858 DOI: 10.3390/molecules28186536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor-2 restricts the therapy choices for treating triple-negative breast cancer (TNBC). Moreover, conventional medication is not highly effective in treating TNBC, and developing effective therapeutic agents from natural bioactive compounds is a viable option. In this study, the anticancer effects of the natural compound fucoxanthin were investigated in two genetically different models of TNBC cells: MDA-MB-231 and MDA-MB-468 cells. Fucoxanthin had a significant anticancer effect in both cell lines at a concentration range of 1.56-300 µM. The compound decreased cell viability in both cell lines with higher potency in MDA-MB-468 cells. Meanwhile, proliferation assays showed similar antiproliferative effects in both cell lines after 48 h and 72 h treatment periods. Flow cytometry and Annexin V-FITC apoptosis assay revealed the ability of fucoxanthin to induce apoptosis in MDA-MB-231 only. Cell cycle arrest analysis showed that the compound also induced cell cycle arrest at the G1 phase in both cell lines, accompanied by more cell cycle arrest in MDA-MB-231 cells at S-phase and a higher cell cycle arrest in the MDA-MB-468 cells at G2-phase. Wound healing and migration assay showed that in both cell lines, fucoxanthin prevented migration, but was more effective in MDA-MB-231 cells in a shorter time. In both angiogenic cytokine array and RT-PCR studies, fucoxanthin (6.25 µM) downregulated VEGF-A and -C expression in TNF-α-stimulated (50 ng/mL) MDA-MB-231, but not in MDA-MB-468 cells on the transcription and protein levels. In conclusion, this study shows that fucoxanthin was more effective in MDA-MB-231 TNBC cells, where it can target VEGF-A and VEGF-C, inhibit cell proliferation and cell migration, and induce cell cycle arrest and apoptosis-the most crucial cellular processes involved in breast cancer development and progression.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
12
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
13
|
Ben Ammar R, Zahra HA, Abu Zahra AM, Alfwuaires M, Abdulaziz Alamer S, Metwally AM, Althnaian TA, Al-Ramadan SY. Protective Effect of Fucoxanthin on Zearalenone-Induced Hepatic Damage through Nrf2 Mediated by PI3K/AKT Signaling. Mar Drugs 2023; 21:391. [PMID: 37504922 PMCID: PMC10381773 DOI: 10.3390/md21070391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) is a brown-algae-derived dietary compound that is reported to prevent hepatotoxicity caused by ZEA. This compound has multiple biological functions, including anti-diabetic, anti-obesity, anti-microbial, and anti-cancer properties. Furthermore, FXN is a powerful antioxidant. In this study, we examined the effects of FXN on ZEA-induced stress and inflammation in HepG2 cells. MTT assays, ROS generation assays, Western blots, and apoptosis analysis were used to evaluate the effects of FXN on ZEA-induced HepG2 cell inflammation. Pre-incubation with FXN reduced the cytotoxicity of ZEA toward HepG2 cells. FXN inhibited the ZEA-induced production of pro-inflammatory cytokines, including IL-1 β, IL-6, and TNF-α. Moreover, FXN increased HO-1 expression in HepG2 by activating the PI3K/AKT/NRF2 signaling pathway. In conclusion, FXN inhibits ZEA-induced inflammation and oxidative stress in hepatocytes by targeting Nrf2 via activating PI3K/AKT signaling.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Center of Biotechnology of Borj-Cedria, Laboratory of Aromatic and Medicinal Plants, Technopole of Borj-Cedria, Hammam-Lif 2050, Tunisia
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ashraf M Metwally
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Thnaian A Althnaian
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Saeed Y Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
15
|
Shirouchi B, Kawahara Y, Kutsuna Y, Higuchi M, Okumura M, Mitsuta S, Nagao N, Tanaka K. Oral Administration of Chaetoceros gracilis—A Marine Microalga—Alleviates Hepatic Lipid Accumulation in Rats Fed a High-Sucrose and Cholesterol-Containing Diet. Metabolites 2023; 13:metabo13030436. [PMID: 36984876 PMCID: PMC10051878 DOI: 10.3390/metabo13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microalgae are attracting attention as a next-generation alternative source of protein and essential fatty acids that do not consume large amounts of water or land. Chaetoceros gracilis (C. gracilis)—a marine microalga—is rich in proteins, fucoxanthin, and eicosapentaenoic acid (EPA). Growing evidence indicates that dietary fucoxanthin and EPA have beneficial effects in humans. However, none of these studies have shown that dietary C. gracilis has beneficial effects in mammals. In this study, we investigated the effects of dietary C. gracilis on lipid abnormalities in Sprague-Dawley rats fed a high-sucrose cholesterol-containing diet. Dried C. gracilis was added to the control diet at a final dose of 2 or 5% (w/w). After four weeks, the soleus muscle weights were found to be dose-responsive to C. gracilis and showed a tendency to increase. The hepatic triglyceride and total cholesterol levels were significantly reduced by C. gracilis feeding compared to those in the control group. The activities of FAS and G6PDH, which are related to fatty acid de novo synthesis, were found to be dose-responsive to C. gracilis and tended to decrease. The hepatic glycerol content was also significantly decreased by C. gracilis feeding, and the serum HDL cholesterol levels were significantly increased, whereas the serum levels of cholesterol absorption markers (i.e., campesterol and β-sitosterol) and the hepatic mRNA levels of Scarb1 were significantly decreased. Water-soluble metabolite analysis showed that the muscular contents of several amino acids, including leucine, were significantly increased by C. gracilis feeding. The tendency toward an increase in the weight of the soleus muscle as a result of C. gracilis feeding may be due to the enhancement of muscle protein synthesis centered on leucine. Collectively, these results show that the oral administration of C. gracilis alleviates hepatic lipid accumulation in rats fed a high-sucrose and cholesterol-containing diet, indicating the potential use of C. gracilis as a food resource.
Collapse
Affiliation(s)
- Bungo Shirouchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
- Correspondence: ; Tel.: +81-95-813-5734
| | - Yuri Kawahara
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Yuka Kutsuna
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mina Higuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mai Okumura
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Sarasa Mitsuta
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Norio Nagao
- Blue Scientific Shinkamigoto Co., Ltd., 770 Kogushi, Shin-Kamigoto, Minami-Matsuura, Nagasaki 857-4601, Japan
| | - Kazunari Tanaka
- Regional Partnership Center, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
16
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:1-27. [DOI: 10.1007/978-3-030-81404-5_55-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/01/2022] [Indexed: 09/01/2023]
|
17
|
Jiang EY, Fan Y, Phung NV, Xia WY, Hu GR, Li FL. Overexpression of plastid lipid-associated protein in marine diatom enhances the xanthophyll synthesis and storage. Front Microbiol 2023; 14:1143017. [PMID: 37152729 PMCID: PMC10160619 DOI: 10.3389/fmicb.2023.1143017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Plastoglobules, which are lipoprotein structures surrounded by a single hydrophobic phospholipid membrane, are subcellular organelles in plant chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic studies indicated that plastoglobules are involved in carotenoid metabolism and storage. In this study, one of the plastid lipid-associated proteins (PAP), the major protein in plastoglobules, was selected and overexpressed in Phaeodactylum tricornutum. The diameter of the plastoglobules in mutants was decreased by a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased by a mean of 51.2%. All mutants exhibited morphological differences from the wild-type, including a prominent increase in the transverse diameter. Moreover, the unsaturated fatty acid levels were increased in different mutants, including an 18.9-59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis revealed that PAP expression and the morphological changes altered xanthophyll synthesis and storage, which affected the assembly of the fucoxanthin chlorophyll a/c-binding protein and expression of antenna proteins as well as reduced the non-photochemical quenching activity of diatom cells. Therefore, metabolic regulation at the suborganelle level can be achieved by modulating PAP expression. These findings provide a subcellular structural site and target for synthetic biology to modify pigment and lipid metabolism in microalgae chassis cells.
Collapse
Affiliation(s)
- Er-Ying Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Yong Fan,
| | - Nghi-Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wan-Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang-Rong Hu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Fu-Li Li,
| |
Collapse
|
18
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:729-755. [DOI: 10.1007/978-3-031-28109-9_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
20
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
21
|
Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. Int J Mol Sci 2022; 23:ijms231810680. [PMID: 36142592 PMCID: PMC9502410 DOI: 10.3390/ijms231810680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new “omic” technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.
Collapse
|
22
|
Fu Y, Xie D, Zhu Y, Zhang X, Yue H, Zhu K, Pi Z, Dai Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front Med (Lausanne) 2022; 9:988507. [PMID: 36059851 PMCID: PMC9437318 DOI: 10.3389/fmed.2022.988507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They constitute a number of the most significant repositories of new therapeutic compounds for human use. Seaweed has been proven to possess diverse bioactive properties, which include anticancer properties. The present review focuses on colorectal cancer, which is a primary cause of cancer-related mortality in humans. In addition, it discusses various compounds derived from a series of seaweeds that have been shown to eradicate or slow the progression of cancer. Therapeutic compounds extracted from seaweed have shown activity against colorectal cancer. Furthermore, the mechanisms through which these compounds can induce apoptosis in vitro and in vivo were reviewed. This review emphasizes the potential utility of seaweeds as anticancer agents through the consideration of the capability of compounds present in seaweeds to fight against colorectal cancer.
Collapse
Affiliation(s)
- Yunhua Fu
- Changchun University of Chinese Medicine, Changchun, China
| | - Dong Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinghao Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Zhang
- Jilin Academy of Agricultural Machinery, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| | - Kai Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
- Zifeng Pi
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yulin Dai
| |
Collapse
|
23
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
24
|
Fang X, Zhu Y, Zhang T, Li Q, Fan L, Li X, Jiang D, Lin J, Zou L, Ren J, Huang Z, Ye H, Liu Y. Fucoxanthin Inactivates the PI3K/Akt Signaling Pathway to Mediate Malignant Biological Behaviors of Non-Small Cell Lung Cancer. Nutr Cancer 2022; 74:3747-3760. [PMID: 35838029 DOI: 10.1080/01635581.2022.2091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although lung cancer treatment strategies have improved in recent years, the 5-year overall survival of non-small cell lung cancer (NSCLC) remains less than 15%. Chemotherapy is considered the most promising option in the comprehensive treatment of NSCLC. Fucoxanthin (FX) is a natural product derived from brown algae and has extensive applications in medicine. Previous studies reported that FX effectively inhibits the growth of NSCLC cells in vitro and in vivo. However, the mechanism underlying the anti-NSCLC effect of FX remains unknown. In this study, NSCLC cell lines and a xenograft nude mouse model were used to examine the anti-NSCLC activities of FX in vitro and in vivo. Network pharmacology analysis and inhibitors or activators of the PI3K/Akt signaling pathway were used to explore the anti-NSCLC mechanisms of FX. The results indicated that FX could inhibit proliferation, migration, and invasion, arrest cell cycle at the G0/G1 phase, and induce apoptosis of NSCLC cells in vitro. Additionally, FX suppressed tumor growth in vivo. The PI3K/Akt signaling pathway was found to be involved in the anti-NSCLC activity of FX. In conclusion, FX inhibits malignant biological behaviors of NSCLC by suppressing the phosphorylation of both PI3K and AKT, and subsequently inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuehong Fang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Taomin Zhang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Lvhua Fan
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Xiaodan Li
- People's Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Daishun Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Jie Lin
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianwei Ren
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, China
| | - Zunnan Huang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China
| |
Collapse
|
25
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
26
|
Alateyah N, Ahmad SMS, Gupta I, Fouzat A, Thaher MI, Das P, Al Moustafa AE, Ouhtit A. Haematococcus pluvialis Microalgae Extract Inhibits Proliferation, Invasion, and Induces Apoptosis in Breast Cancer Cells. Front Nutr 2022; 9:882956. [PMID: 35634400 PMCID: PMC9130701 DOI: 10.3389/fnut.2022.882956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignant cancer in females worldwide. Drug resistance, toxicity, and the failure of current therapies to completely cure BC has challenged conventional medicine. Consequently, complementary alternative medicine has become popular due to its safety and efficacy. Haematococcus pluvialis (H. pulvialis) is a green microalga living in fresh water, and its crude extract is rich of bioactives, including carotenoids, known to inhibit cancer cell growth. In the present study, we investigated the effects of a methanol crude extract called “T1” of H. pulvialis on cell growth and migration/invasion of the BC cell line MDA-MB-231 in comparison to the fibroblast control cells. TI significantly suppressed BC cell growth, inhibited migration and invasion and induced apoptosis. Interestingly, apoptosis was mediated by a significant loss of mutant p53 protein, and increased Bax/Bcl2 ratio. Our findings support our hypothesis that T1 exerts its anti-cancer effects by inhibiting BC invasion and inducing apoptosis mediated, at least, via the p53/Bax/Bcl2 pathway. Ongoing experiments aim to identify the molecular mechanisms underpinning T1-inhibited BC cell invasion using pre-designed metastasis gene-based array method.
Collapse
Affiliation(s)
- Nouralhuda Alateyah
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Salma M. S. Ahmad
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University, Doha, Qatar
| | - Arij Fouzat
- College of Pharmacy, Qatar University, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- *Correspondence: Allal Ouhtit,
| |
Collapse
|
27
|
Hussein HA, Kassim MNI, Maulidiani M, Abas F, Abdullah MA. Cytotoxicity and 1H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells. Heliyon 2022; 8:e09192. [PMID: 35846482 PMCID: PMC9280575 DOI: 10.1016/j.heliyon.2022.e09192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the cytotoxic activity of Tamoxifen (TMX), an anti-estrogen drug, with microalgal crude extracts (MCEs) in single and synergistic application (TMX-MCEs) on MCF-7 and 4T1 breast cancer cells, and non-cancerous Vero cells. The MCEs of Nannochloropsis oculata, Tetraselmis suecica and Chlorella sp. from five different solvents (methanol, MET; ethanol, ETH; water, W; chloroform, CHL; and hexane, HEX) were developed. The TMX-MCEs-ETH and W at the 1:2 and 1:3 ratios, attained IC50 of 15.84-29.51 μg/mL against MCF-7; 13.8-31.62 μg/mL against 4T1; and 24.54-85.11 μg/mL against Vero cells. Higher late apoptosis was exhibited against MCF-7 by the TMX-N. oculata-ETH (41.15 %); and by the TMX-T. suecica-ETH (65.69 %) against 4T1 cells. The TMX-T. suecica-ETH also showed higher ADP/ATP ratios, but comparable Caspase activities to control. For Vero cells, overall apoptotic effects were lowered with synergistic application, and only early apoptosis was higher with TMX-T. suecica-ETH but at lower levels (29.84 %). The MCEs-W showed the presence of alanine, oleic acid, linoleic acid, lactic acid, and fumaric acid. Based on Principal Component Analysis (PCA), the spectral signals for polar solvents such as MET and ETH, were found in the same cluster, while the non-polar solvent CHL was with HEX, suggesting similar chemical profiles clustered for the same polarity. The CHL and HEX were more effective with N. oculata and T. suecica which were of the marine origin, while the ETH and MET were more effective with Chlorella sp., which was of the freshwater origin. The synergistic application of microalgal bioactive compounds with TMX can maintain the cytotoxicity against breast cancer cells whilst reducing the toxicity against non-cancerous Vero cells. These findings will benefit the biopharmaceutical, and functional and healthy food industries.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - Murni Nur Islamiah Kassim
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia
| |
Collapse
|
28
|
Rajendran P, AlZahrani A. Fucoxanthin suppresses OxLDL-induced inflammation via activation of Nrf2 and inhibition of NF-κB signaling. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Ren Y, Sun H, Deng J, Huang J, Chen F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar Drugs 2021; 19:713. [PMID: 34940712 PMCID: PMC8708220 DOI: 10.3390/md19120713] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
Microalgae are excellent biological factories for high-value products and contain biofunctional carotenoids. Carotenoids are a group of natural pigments with high value in social production and human health. They have been widely used in food additives, pharmaceutics and cosmetics. Astaxanthin, β-carotene and lutein are currently the three carotenoids with the largest market share. Meanwhile, other less studied pigments, such as fucoxanthin and zeaxanthin, also exist in microalgae and have great biofunctional potentials. Since carotenoid accumulation is related to environments and cultivation of microalgae in seawater is a difficult biotechnological problem, the contributions of salt stress on carotenoid accumulation in microalgae need to be revealed for large-scale production. This review comprehensively summarizes the carotenoid biosynthesis and salinity responses of microalgae. Applications of salt stress to induce carotenoid accumulation, potentials of the Internet of Things in microalgae cultivation and future aspects for seawater cultivation are also discussed. As the global market share of carotenoids is still ascending, large-scale, economical and intelligent biotechnologies for carotenoid production play vital roles in the future microalgal economy.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.S.); (J.D.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
31
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
32
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
33
|
Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients 2021; 13:nu13082613. [PMID: 34444774 PMCID: PMC8398742 DOI: 10.3390/nu13082613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple health benefits have been ascribed to brown seaweeds that are used traditionally as dietary component mostly in Asia. This systematic review summarizes information on the impact of brown seaweeds or components on inflammation, and inflammation-related pathologies, such as allergies, diabetes mellitus and obesity. We focus on oral supplementation thus intending the use of brown seaweeds as food additives. Despite the great diversity of experimental systems in which distinct species and compounds were tested for their effects on inflammation and immunity, a remarkably homogeneous picture arises. The predominant effects of consumption of brown seaweeds or compounds can be classified into three categories: (1) inhibition of reactive oxygen species, known to be important drivers of inflammation; (2) regulation, i.e., in most cases inhibition of proinflammatory NF-κB signaling; (3) modulation of adaptive immune responses, in particular by interfering with T-helper cell polarization. Over the last decades, several inflammation-related diseases have increased substantially. These include allergies and autoimmune diseases as well as morbidities associated with lifestyle and aging. In this light, further development of brown seaweeds and seaweed compounds as functional foods and nutriceuticals might contribute to combat these challenges.
Collapse
|
34
|
Malhão F, Macedo AC, Costa C, Rocha E, Ramos AA. Fucoxanthin Holds Potential to Become a Drug Adjuvant in Breast Cancer Treatment: Evidence from 2D and 3D Cell Cultures. Molecules 2021; 26:molecules26144288. [PMID: 34299562 PMCID: PMC8304772 DOI: 10.3390/molecules26144288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.
Collapse
Affiliation(s)
- Fernanda Malhão
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Ana Catarina Macedo
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Carla Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal;
- EPIUnit—Instituto de Saúde Pública, University of Porto (U.Porto), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Eduardo Rocha
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Alice Abreu Ramos
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (F.M.); (A.C.M.); (A.A.R.)
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| |
Collapse
|
35
|
Oliyaei N, Moosavi‐Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr 2021; 9:3521-3529. [PMID: 34262712 PMCID: PMC8269564 DOI: 10.1002/fsn3.2301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/30/2022] Open
Abstract
This work aimed to study the antidiabetic effect of encapsulated fucoxanthin with porous starch (PS) in streptozotocin and nicotinamide-induced type 2 diabetic mice. Fucoxanthin was extracted and purified from Sargassum angustifolium and encapsulated in porous starch (PS). Diabetic mice groups were gavaged daily with fucoxanthin (400 mg/kg), either free or encapsulated into PS, and metformin (50 mg/kg) for three weeks. The results exhibited that the fucoxanthin and fucoxanthin-loaded PS markedly prevented the weight gain in treated groups (p < .05). Moreover, both free and encapsulated fucoxanthin could decrease the fasting blood glucose and increase the plasma insulin level similar to metformin (p < .05). In addition, total cholesterol, triglyceride, and low-density lipoprotein were lower in the treated groups. These results confirm antiobesity effect of fucoxanthin by regulating lipid profile parameters. Moreover, the histopathology evaluation of pancreatic tissue in diabetic mice exhibited that oral administration of metformin and fucoxanthin caused regeneration of pancreatic beta cells. This study revealed the healthy effect of seaweed pigment as a suitable bioactive compound which can be used in functional foods for natural diabetes therapy.
Collapse
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Marzieh Moosavi‐Nasab
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug DeliverySchool of PharmacyShiraz University of Medical ScienceShirazIran
| | - Nader Tanideh
- Stem Cells Technology Research CenterDepartment of PharmacologySchool of MedicinShiraz University of Medical SciencesShirazIran
| |
Collapse
|
36
|
Gammone MA, Danese A, D'Orazio N. Anti-Angiogenetic Agents from the Sea: A New Potential Preventive and Therapeutic Wave? Anticancer Agents Med Chem 2021; 20:2005-2011. [PMID: 32628594 DOI: 10.2174/1871520620666200705215226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
Angiogenesis, generation of novel blood vessels from pre-existing ones, is a prerequisite for the physiological expansion, reparation, and functioning of body tissues and systems. However, it is also involved in some pathological inflammatory situations, such as oncologic and chronic degenerative disorders. The correct angiogenesis and neo-vascular response also accompanies wound healing, interaction with biocompatible materials, and tissue regeneration. In this respect, natural products deriving from terrestrial and marine plants/organisms may prevent and even cure various angiogenesis-dependent disorders. Bioactive natural compounds with antioxidant and anti-inflammatory activities could concur to maintain adequate vascularization and endothelial functions and inhibit angiogenesis, thus controlling tumor development. This review aims to illustrate the role of some marine-derived compounds as anti-angiogenetic agents.
Collapse
Affiliation(s)
- Maria A Gammone
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella Danese
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Nicolantonio D'Orazio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
37
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
38
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|
39
|
Ming JX, Wang ZC, Huang Y, Ohishi H, Wu RJ, Shao Y, Wang H, Qin MY, Wu ZL, Li YY, Chang Zhou S, Chen H, Liu H, Xu R. Fucoxanthin extracted from Laminaria Japonica inhibits metastasis and enhances the sensitivity of lung cancer to Gefitinib. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113302. [PMID: 32860893 DOI: 10.1016/j.jep.2020.113302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laminaria japonica, a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including lung cancer. AIM OF THE STUDY To demonstrate the effects of Fucoxanthin (FX), a major active component extracted from Laminaria japonica on metastasis and Gefitinib (Gef) sensitivity in human lung cancer cells both in vitro and in vivo. MATERIALS AND METHODS Invasion and migration of lung cancer cells were detected using the wound healing assay and transwell assay. Epithelial-to-mesenchymal transition (EMT) factors and PI3K/AKT/NF-κB pathways were analyzed by western blotting. RNA interference (RNAi) technology was used to silence TIMP-2 gene expression in A549 cells. The anti-metastatic effect of FX was evaluated in vivo in an experimental lung metastatic tumor model. On the other hand, cell counting kit-8 assay was used to study the cell viability of human lung cancer PC9 cells and Gef resistant PC9 cells (PC9/G) after Gef, FX or FX combined with Gef treatment. PC9 xenograft model was established to explore the anti-tumor effect of FX or combined with Gef. Immunohistochemistry staining assay and immunofluorescence staining assay were used to reveal the effects of FX on lung cancer cell proliferation and apoptosis. RESULTS FX was able to significantly inhibit lung cancer cells migration and invasion in vitro. FX suppressed the expressions of Snail, Twist, Fibronectin, N-cadherin, MMP-2, PI3K, p-AKT and NF-κB, and increased the expression of TIMP-2. Furthermore, knockdown of TIMP-2 attenuated FX-mediated invasion inhibition. Additionally, we demonstrated that FX inhibited lung cancer cells metastasis in vivo. The anti-metastatic effects of FX on lung cancer cells might be attributed to inhibition of EMT and PI3K/AKT/NF-κB pathway. We further demonstrated that the anti-tumor activity of FX was not only limited to the drug sensitive cell lines, but also prominent on lung cancer cells with Gef resistant phenotype. Furthermore, in vivo xenograft assay confirmed that FX inhibited tumor growth and enhanced the sensitivity of lung cancer cells to Gef and this effect may be due to inhibition of tumor cell proliferation and activation of apoptosis. CONCLUSION Collectively, our findings suggested that FX suppresses metastasis of lung cancer cells and overcomes EGFR TKIs resistance. Thus, FX is worthy of further investigation as a drug candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jia Xiong Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhao Cong Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | | | - Rong Ji Wu
- Eiho Technology (WUHAN) Co., Ltd., Wuhan, 430030, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yang Qin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze Liang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Yong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shun Chang Zhou
- Center of Experimental Animals, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
40
|
Wei J, Liu R, Hu X, Liang T, Zhou Z, Huang Z. MAPK signaling pathway-targeted marine compounds in cancer therapy. J Cancer Res Clin Oncol 2021; 147:3-22. [PMID: 33389079 DOI: 10.1007/s00432-020-03460-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This paper reviews marine compounds that target the mitogen-activated protein kinase (MAPK) signaling pathway and their main sources, chemical structures, major targeted cancers and possible mechanisms to provide comprehensive and basic information for the development of marine compound-based antitumor drugs in clinical cancer therapy research. METHODS This paper searched the PubMed database using the keywords "cancer", "marine*" and "MAPK signaling pathway"; this search was supplemented by the literature-tracing method. The marine compounds screened for review in this paper are pure compounds with a chemical structure and have antitumor effects on more than one tumor cell line by targeting the MAPK signaling pathway. The PubChem database was used to search for the PubMed CID and draw the chemical structures of the marine compounds. RESULTS A total of 128 studies were searched, and 32 marine compounds with unique structures from extensive sources were collected for this review. These compounds are cytotoxic to cancer cell lines, although their targets are still unclear. This paper describes their anticancer effect mechanisms and the protein expression changes in the MAPK pathway induced by these marine compound treatments. This review is the first to highlight MAPK signaling pathway-targeted marine compounds and their use in cancer therapy. CONCLUSION The MAPK signaling pathway is a promising potential target for cancer therapy. Searching for marine compounds that exert anticancer effects by targeting the MAPK signaling pathway and developing them into new marine anticancer drugs will be beneficial for cancer treatment.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Xiyun Hu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Tingen Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zhiran Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China. .,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
41
|
Wang C, Chen X, Nakamura Y, Yu C, Qi H. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food Funct 2020; 11:9338-9358. [PMID: 33151231 DOI: 10.1039/d0fo02176h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in marine brown algae. The potential therapeutic effects of fucoxanthin on tumor intervention have been well documented, which have aroused great interests in utilizing fucoxanthin in functional foods and nutraceuticals. However, the utilization of fucoxanthin as a nutraceutical in food and nutrient supplements is currently limited due to its low water solubility, poor stability, and limited bioaccessibility. Nano/micro-encapsulation is a technology that can overcome these challenges. A systematic review on the recent progresses in nano/micro-delivery systems to encapsulate fucoxanthin in foods or nutraceuticals is warranted. This article starts with a brief introduction of fucoxanthin and the challenges of oral delivery of fucoxanthin. Nano/micro-encapsulation technology is then covered, including materials and strategies for constructing the delivery system. Finally, future prospective has been discussed on properly designed oral delivery systems of fucoxanthin for managing cancer. Natural edible materials such as whey protein, casein, zein, gelatin, and starch have been successfully utilized to fabricate lipid-based, gel-based, or emulsion-based delivery systems, molecular nanocomplexes, and biopolymer nanoparticles with the aid of advanced processing techniques, such as freeze-drying, high pressure homogenization, sonication, anti-solvent precipitation, coacervation, ion crosslinking, ionic gelation, emulsification, and enzymatic conjugation. These formulated nano/micro-capsules have proven to be effective in stabilizing and enhancing the bioaccessibility of fucoxanthin. This review will inspire a surge of multidisciplinary research in a broader community of foods and motivate material scientists and researchers to focus on nano/micro-encapsulated fucoxanthin in order to facilitate the commercialization of orally-deliverable tumor intervention products.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020; 12:E3085. [PMID: 33050561 PMCID: PMC7601163 DOI: 10.3390/nu12103085] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, one of the most important research directions that concerns the scientific world is to exploit the earth's resources in a sustainable way. Considering the increasing interest in finding new sources of bioactive molecules and functional products, many research studies focused their interest on demonstrating the sustainability of exploiting marine macroalgal biomass as feedstock for wastewater treatment and natural fertilizer, conversion into green biofuels, active ingredients in pharmaceutical and nutraceutical products, or even for the production of functional ingredients and integration in the human food chain. The objective of the present paper was to provide an overview on the recent progress in the exploitation of different macroalgae species as a source of bioactive compounds, mainly emphasizing the latter published data regarding their potential bioactivities, health benefits, and industrial applications.
Collapse
Affiliation(s)
- Elena-Suzana Biris-Dorhoi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Delia Michiu
- Department of Food Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Ancuta M. Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Maria Tofana
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Anca C. Farcas
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| |
Collapse
|
43
|
Hussein HA, Maulidiani M, Abdullah MA. Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon 2020; 6:e05263. [PMID: 33102866 PMCID: PMC7578694 DOI: 10.1016/j.heliyon.2020.e05263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Heavy metal pollution has become a major concern globally as it contaminates eco-system, water networks and as finely suspended particles in air. In this study, the effects of elevated silver nanoparticle (AgNPs) levels as a model system of heavy metals, in the presence of microalgal crude extracts (MCEs) at different ratios, were evaluated against the non-cancerous Vero cells, and the cancerous MCF-7 and 4T1 cells. The MCEs were developed from water (W) and ethanol (ETH) as green solvents. The AgNPs-MCEs-W at the 4:1 and 5:1 ratios (v/v) after 48 and 72 h treatment, respectively, showed the IC50 values of 83.17-95.49 and 70.79-91.20 μg/ml on Vero cells, 13.18-28.18 and 12.58-25.7 μg/ml on MCF-7; and 16.21-33.88 and 14.79-26.91 μg/ml on 4T1 cells. In comparison, the AgNPs-MCEs-ETH formulation achieved the IC50 values of 56.23-89.12 and 63.09-91.2 μg/ml on Vero cells, 10.47-19.95 and 13.48-26.61 μg/ml on MCF-7; 14.12-50.11 and 15.13-58.88 μg/ml on 4T1 cells, respectively. After 48 and 72 h treatment, the AgNPs-MCE-CHL at the 4:1 and 5:1 ratios exhibited the IC50 of 51.28-75.85 and 48.97-69.18 μg/ml on Vero cells, and higher cytotoxicity at 10.47-16.98 and 6.19-14.45 μg/ml against MCF-7 cells, and 15.84-31.62 and 12.58-24.54 μg/ml on 4T1 cells, respectively. The AgNPs-MCEs-W and ETH resulted in low apoptotic events in the Vero cells after 24 h, but very high early and late apoptotic events in the cancerous cells. The Liquid Chromatography-Mass Spectrometry-Electrospray Ionization (LC-MS-ESI) metabolite profiling of the MCEs exhibited 64 metabolites in negative ion and 56 metabolites in positive ion mode, belonging to different classes. The microalgal metabolites, principally the anti-oxidative components, could have reduced the toxicity of the AgNPs against Vero cells, whilst retaining the cytotoxicity against the cancerous cells.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
44
|
Eid SY, Althubiti MA, Abdallah ME, Wink M, El-Readi MZ. The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153280. [PMID: 32712543 DOI: 10.1016/j.phymed.2020.153280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) causes failure of doxorubicin therapy of cancer cells, which develops after or during doxorubicin treatment resulting in cross-resistance to structurally and functionally-unrelated other anticancer drugs. MDR is multifactorial phenomenon associated with overexpression of ATP-binding cassette (ABC) transporters, metabolic enzymes, impairment of apoptosis, and alteration of cell cycle checkpoints. The cancer-prevention of the dietary carotenoid; fucoxanthin (FUC) has been extensively explored. Nevertheless, the underlying mechanism of its action is not full elucidated. HYPOTHESIS/PURPOSE Investigation of the underlying mechanism of MDR reversal by the dietary carotenoid fucoxanthin (FUC) and its ability to enhance the doxorubicin (DOX) cytotoxicity in resistant breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) cell lines. METHODS The synergistic interaction of FUC and DOX was evaluated using several techniques, viz.; MTT assay, ABC transporter function assays using FACS and fluorimetry, enzyme activity via spectroscopy and luminescence assays, and apoptosis assay using FACS, and gene expression using RTPCR. RESULTS FUC (20 µM) synergistically enhanced the cytotoxicity of DOX and significantly reduced the dose of DOX (FR) in DOX resistant cells (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) to 8.42-(CI= 0.25), 6.28-(CI= 0.32), and 4.56-fold (CI=0.37) (P<0.001). FUC significantly increased the accumulation of DOX more than verapamil in resistant cells by 2.70, 2.67, and 3.95-fold of untreated cells (p<0.001), respectively. A FUC and DOX combination significantly increased the Rho123 accumulation higher than individual drugs by 2.36-, 2.38-, 1.89-fold verapamil effects in tested cells (p<0.001), respectively. The combination of the FUC and DOX decreased ABCC1, ABCG2, and ABCB1 expression. The FUC and DOX combination increased the levels and activity of caspases (CASP3, CASP8) and p53, while decreased the levels and activity of CYP3A4, GST, and PXR in resistant cancer cells. The combination induced early/late apoptosis to 91.9/5.4% compared with 0.0/0.7% of untreated control. CONCLUSION Our data suggests a new dietary and therapeutic approach of combining the FUC with DOX to overcome multidrug resistance in cancer cells. However, animal experiments should be conducted to confirm the findings before applying the results into clinical trials.
Collapse
Affiliation(s)
- Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A
| | | | - Mohamed E Abdallah
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A
| | - Michael Wink
- Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt.
| |
Collapse
|
45
|
Long Y, Cao X, Zhao R, Gong S, Jin L, Feng C. Fucoxanthin treatment inhibits nasopharyngeal carcinoma cell proliferation through induction of autophagy mechanism. ENVIRONMENTAL TOXICOLOGY 2020; 35:1082-1090. [PMID: 32449842 DOI: 10.1002/tox.22944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelium of the nasopharyngeal mucosa. Elderly people above the age of 65 years are more susceptible to NPC. Nasopharyngectomy is the renowned treatment procedure to NPC; however, it is too risky due to its complicated surgical procedure. Other treatment methods also reported with serious side effects such brain injury; hence, the alternative anticancer drug without any side effects was needed. Fucoxanthin is a carotenoid derived from marine algae with the numerous pharmacological functions. This study aims to examine the inhibitory potential in NPC cell proliferation via apoptosis and autophagy. The cytotoxicity of fucoxanthin on C666-1 cells was observed by the MTT assay. The expression of autophagy-linked proteins was assessed with immunoblotting analysis. The expression of autophagy protein LC3 was estimated using immunocytochemical analysis in C666-1 and GFP-LC3 transfected cells. Furthermore, the fucoxanthin-treated C666-1 cells were analyzed with TUNEL assay. The apoptotic level in the fucoxanthin-treated C666-1 cells was evaluated using acridine orange staining. Fucoxanthin significantly increased the expression of autophagy-linked proteins which is clearly depicted in the immunoblotting analysis and immunocytochemical analysis of GFP-tagged LC3 protein. The results of TUNEL assay of fucoxanthin-treated C666-1 in the presence autophagy inhibitors demonstrated the induction of autophagy by fucoxanthin. Acridine orange staining results of C666-1 confirmed fucoxanthin decreases the expression of autophagy-linked proteins during stressed condition thereby causes apoptosis. Our overall results authentically conclude that fucoxanthin induces autophagy and apoptosis in NPC cell line, and it can be ideal agent to treat nasopharyngeal cancer in future with further investigations.
Collapse
Affiliation(s)
- Yun Long
- Department of General Medicine, Kunming Yuanan Hospital, Kunming, Yunnan, China
| | - Xianbao Cao
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Ruiquan Zhao
- Otolaryngology Head and Neck Surgery, 920 Hospital of PLA Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sunmin Gong
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Lijuan Jin
- Otolaryngology Head and Neck Surgery, Kunming Tongren Hospital, Kunming, Yunnan, China
| | - Chun Feng
- Otolaryngology Head and Neck Surgery, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
46
|
Pruteanu LL, Kopanitsa L, Módos D, Kletnieks E, Samarova E, Bender A, Gomez LD, Bailey DS. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells. PLoS One 2020; 15:e0239551. [PMID: 32946518 PMCID: PMC7500592 DOI: 10.1371/journal.pone.0239551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Pathway analysis is an informative method for comparing and contrasting drug-induced gene expression in cellular systems. Here, we define the effects of the marine natural product fucoxanthin, separately and in combination with the prototypic phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, on gene expression in a well-established human glioblastoma cell system, U87MG. Under conditions which inhibit cell proliferation, LY-294002 and fucoxanthin modulate many pathways in common, including the retinoblastoma, DNA damage, DNA replication and cell cycle pathways. In sharp contrast, we see profound differences in the expression of genes characteristic of pathways such as apoptosis and lipid metabolism, contributing to the development of a differentiated and distinctive drug-induced gene expression signature for each compound. Furthermore, in combination, fucoxanthin synergizes with LY-294002 in inhibiting the growth of U87MG cells, suggesting complementarity in their molecular modes of action and pointing to further treatment combinations. The synergy we observe between the dietary nutraceutical fucoxanthin and the synthetic chemical LY-294002 in producing growth arrest in glioblastoma, illustrates the potential of nutri-pharmaceutical combinations in targeting this challenging disease.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| | - Liliya Kopanitsa
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Dezső Módos
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Edgars Kletnieks
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Elena Samarova
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Dario Gomez
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| |
Collapse
|
47
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Bioactive significance of fucoxanthin and its effective extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. SEPARATIONS 2020. [DOI: 10.3390/separations7020033] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Algae are a complex, polyphyletic group of organisms, affordable and naturally rich in nutrients, but also valuable sources of structurally diverse bioactive substances such as natural pigments. The aim of this work was to evaluate the polar and non-polar pigment contents of different commercial dried algae (brown: Himanthalia elongata, Undaria pinnatifida, Laminaria ochroleuca; red: Porphyra spp.; and a blue-green microalga: Spirulina spp.). The pigment extraction was carried out using different solvents (100% methanol, 100% methanol acid free, 100% ethanol, 90% acetone, N,N-dimethylformamide, dimethyl sulfoxide-water (4:1, v/v) and pH 6.8 phosphate buffer), selected according to their affinity for each class of pigments. Acetone proved to be an efficient solvent to extract chlorophylls from brown and red algae, but not from Spirulina spp. Porphyra spp. presented considerably higher levels of all pigments compared to brown algae, although Spirulina spp. presented significantly higher (p < 0.05) levels of chlorophylls, carotenoids and phycobiliproteins, compared to all macroalgae. The content of fucoxanthin extracted from the three brown algae was highly correlated to the carotenoid content. Within this group, Himanthalia elongata presented the highest fucoxanthin/total carotenoids ratio. Although the yield of extraction depended on the solvent used, the algae studied herein are an interesting source of pigments of great value for a wide range of applications.
Collapse
|
49
|
Zurina IM, Gorkun AA, Dzhussoeva EV, Kolokoltsova TD, Markov DD, Kosheleva NV, Morozov SG, Saburina IN. Human Melanocyte-Derived Spheroids: A Precise Test System for Drug Screening and a Multicellular Unit for Tissue Engineering. Front Bioeng Biotechnol 2020; 8:540. [PMID: 32582665 PMCID: PMC7287162 DOI: 10.3389/fbioe.2020.00540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Pigmentation is the result of melanin synthesis, which takes place in melanocytes, and its further distribution. A dysregulation in melanocytes' functionality can result in the loss of pigmentation, the appearance of pigment spots and melanoma development. Tissue engineering and the screening of new skin-lightening drugs require the development of simple and reproducible in vitro models with maintained functional activity. The aim of the study was to obtain and characterize spheroids from normal human melanocytes as a three-dimensional multicellular structure and as a test system for skin-lightening drug screening. Melanocytes are known to lose their ability to synthesize melanin in monolayer culture. When transferred under non-adhesive conditions in agarose multi-well plates, melanocytes aggregated and formed spheroids. As a result, the amount of melanin elevated almost two times within seven days. MelanoDerm™ (MatTek) skin equivalents were used as a comparison system. Cells in spheroids expressed transcription factors that regulate melanogenesis: MITF and Sox10, the marker of developed melanosomes-gp100, as well as tyrosinase (TYR)-the melanogenesis enzyme and melanocortin receptor 1 (MC1R)-the main receptor regulating melanin synthesis. Expression was maintained during 3D culturing. Thus, it can be stated that spheroids maintain melanocytes' functional activity compared to that in the multi-layered MelanoDerm™ skin equivalents. Culturing both spheroids and MelanoDerm™ for seven days in the presence of the skin-lightening agent fucoxanthin resulted in a more significant lowering of melanin levels in spheroids. Significant down-regulation of gp100, MITF, and Sox10 transcription factors, as well as 10-fold down-regulation of TYR expression, was observed in spheroids by day 7 in the presence of fucoxanthin, thus inhibiting the maturation of melanosomes and the synthesis of melanin. MelanoDerm™ samples were characterized by significant down-regulation of only MITF, Sox10 indicating that spheroids formed a more sensitive system allowed for quantitative assays. Collectively, these data illustrate that normal melanocytes can assemble themselves into spheroids-the viable structures that are able to accumulate melanin and maintain the initial functional activity of melanocytes. These spheroids can be used as a more affordable and easy-to-use test system than commercial skin equivalents for drug screening.
Collapse
Affiliation(s)
- Irina M Zurina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,Department of Modern Biomaterials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Anastasiya A Gorkun
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,Department of Modern Biomaterials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Ekaterina V Dzhussoeva
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Tamara D Kolokoltsova
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Nastasia V Kosheleva
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey G Morozov
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Irina N Saburina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| |
Collapse
|
50
|
Anti-Inflammatory Effects of Fucoxanthinol in LPS-Induced RAW264.7 Cells through the NAAA-PEA Pathway. Mar Drugs 2020; 18:md18040222. [PMID: 32326173 PMCID: PMC7230820 DOI: 10.3390/md18040222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.
Collapse
|