1
|
Tammam MA, Pereira F, Skellam E, Bidula S, Ganesan A, El-Demerdash A. The cytochalasans: potent fungal natural products with application from bench to bedside. Nat Prod Rep 2025; 42:788-841. [PMID: 39989362 DOI: 10.1039/d4np00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Covering: 2000-2023Cytochalasans are a fascinating class of natural products that possess an intricate chemical structure with a diverse range of biological activities. They are known for their complex chemical architectures and are often isolated from various fungi. These compounds have attracted attention due to their potential pharmacological properties, including antimicrobial, antiviral, and anticancer effects. For decades, researchers have studied these molecules to better understand their mechanisms of action and to explore their potential applications in medicine and other fields. This review article aims to shed light over the period 2000-2023 on the structural diversities of 424 fungal derived cytochalasans, insights into their biosynthetic origins, pharmacokinetics and their promising therapeutic potential in drug discovery and development.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Florbela Pereira
- LAQV REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829516 Caparica, Portugal
| | - Elizabeth Skellam
- Department of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76201, USA
| | - Stefan Bidula
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - A Ganesan
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Amr El-Demerdash
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Baptista RM, Rodrigues MA, Roselet F, Costa CSB, da Silva PEA, Ramos DF. Coastal natural products: a review applied to antimycobacterial activity. Nat Prod Res 2025; 39:1607-1621. [PMID: 38832530 DOI: 10.1080/14786419.2024.2361333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Despite the many advances in drug research, natural products are still being explored as a promising source for discovering new bioactive compounds to treat global diseases such as tuberculosis. However, there is a lack of studies and information about coastal natural products, which thrive in the transitional environment between two different ecosystems and produce unique secondary metabolites. Mangroves, estuaries, and mudflats make up areas for coastal species and have shown promising results in antituberculosis research, some of them are present in hotspot areas. This review focuses on research conducted in coastal environments and explores the reasons why these natural products tend to outperform non-coastal ones against the causative agent of tuberculosis, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Rodolfo Moreira Baptista
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Marcos Alaniz Rodrigues
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Fabio Roselet
- Instituto de Oceanologia, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | | | | | - Daniela Fernandes Ramos
- Laboratório de Bioprospecção de Produtos Naturais Costeiros, Universidade Federal do Rio Grande, Rio Grande, Brasil
| |
Collapse
|
3
|
Delgado Gómez LM, Torres-Mendoza D, Hernández-Torres K, Ortega HE, Cubilla-Rios L. Identification of Secondary Metabolites from the Mangrove-Endophyte Lasiodiplodia iranensis F0619 by UPLC-ESI-MS/MS. Metabolites 2023; 13:912. [PMID: 37623856 PMCID: PMC10456654 DOI: 10.3390/metabo13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Lasiodiplodia is a widely distributed fungal genus, frequently found in tropical and subtropical regions where it can cause disease in important crops. It represents a promising source of active secondary metabolites with uses in chemical, pharmaceutical, and agrochemical processes. In this study, the strain Lasiodiplodia iranensis F0619 was isolated from the mangrove Avicennia ger-minans, collected from Sarigua National Park in the Republic of Panama. Fractions of crude extract were analyzed by UPLC-ESI-MS/MS, and five compounds, previously reported from Lasiodiplodia genus were identified, including 11,12-didehydro-7-iso-jasmonic acid (1), 4,5-didehydro-7-iso-jasmonic acid (2), cyclo-(L-Leu-L-Pro) (3), jasmonate-threonine (4), and abscisic acid (5). We describe and analyze their MS/MS fragmentation patterns to confirm the compounds 'chemical structures.
Collapse
Affiliation(s)
- Lizbeth M. Delgado Gómez
- Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama; (L.M.D.G.); (D.T.-M.); (K.H.-T.); (H.E.O.)
| | - Daniel Torres-Mendoza
- Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama; (L.M.D.G.); (D.T.-M.); (K.H.-T.); (H.E.O.)
- Departamento de Química Orgánica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama
- Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panamá 0824, Panama
| | - Kathleen Hernández-Torres
- Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama; (L.M.D.G.); (D.T.-M.); (K.H.-T.); (H.E.O.)
- Programa de Maestría en Microbiología Ambiental, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panamá 0824, Panama
| | - Humberto E. Ortega
- Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama; (L.M.D.G.); (D.T.-M.); (K.H.-T.); (H.E.O.)
- Departamento de Química Orgánica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama
| | - Luis Cubilla-Rios
- Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama; (L.M.D.G.); (D.T.-M.); (K.H.-T.); (H.E.O.)
- Departamento de Química Orgánica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama
| |
Collapse
|
4
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
5
|
Epigenetic Manipulation Induced Production of Immunosuppressive Chromones and Cytochalasins from the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48. Mar Drugs 2022; 20:md20100616. [PMID: 36286441 PMCID: PMC9605342 DOI: 10.3390/md20100616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A mangrove endophytic fungus Phomopsis asparagi DHS-48 was found to be particularly productive with regard to the accumulation of substantial new compounds in our previous study. In order to explore its potential to produce more unobserved secondary metabolites, epigenetic manipulation was used on this fungus to activate cryptic or silent genes by using the histone deacetylase (HDAC) inhibitor sodium butyrate and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-Aza). Based on colony growth, dry biomass, HPLC, and 1H NMR analyses, the fungal chemical diversity profile was significantly changed compared with the control. Two new compounds, named phaseolorin J (1) and phomoparagin D (5), along with three known chromones (2–4) and six known cytochalasins (6–11), were isolated from the culture treated with sodium butyrate. Their structures, including their absolute configurations, were elucidated using a combination of detailed HRESIMS, NMR, and ECD and 13C NMR calculations. The immunosuppressive and cytotoxic activities of all isolated compounds were evaluated. Compounds 1 and 8 moderately inhibited the proliferation of ConA (concanavalin A)-induced T and LPS (lipopolysaccharide)-induced B murine spleen lymphocytes. Compound 5 exhibited significant in vitro cytotoxicity against the tested human cancer cell lines Hela and HepG2, which was comparative to the positive control adriamycin and fluorouracil. Our finding demonstrated that epigenetic manipulation should be an efficient strategy for the induction of new metabolites from mangrove endophytic fungi.
Collapse
|
6
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
7
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
8
|
Differential Growth Rates and In Vitro Drug Susceptibility to Currently Used Drugs for Multiple Isolates of Naegleria fowleri. Microbiol Spectr 2022; 10:e0189921. [PMID: 35138140 PMCID: PMC8826828 DOI: 10.1128/spectrum.01899-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The free-living amoeba Naegleria fowleri, which typically dwells within warm, freshwater environments, can opportunistically cause primary amoebic meningoencephalitis (PAM), a disease with a mortality rate of >97%. The lack of positive treatment outcomes for PAM has prompted the discovery and development of more effective therapeutics, yet most studies utilize only one or two clinical isolates. The inability to assess possible heterogenic responses to drugs among isolates from various geographical regions hinders progress in the discovery of more effective drugs. Here, we conducted drug efficacy and growth rate determinations for 11 different clinical isolates by applying a previously developed CellTiter-Glo 2.0 screening technique and flow cytometry. We found significant differences in the susceptibilities of these isolates to 7 of 8 drugs tested, all of which make up the cocktail that is recommended to physicians by the U.S. Centers for Disease Control and Prevention. We also discovered significant variances in growth rates among isolates, which draws attention to the differences among the amoeba isolates collected from different patients. Our results demonstrate the need for additional clinical isolates of various genotypes in drug assays and highlight the necessity for more targeted therapeutics with universal efficacy across N. fowleri isolates. Our data establish a needed baseline for drug susceptibility among clinical isolates and provide a segue for future combination therapy studies as well as research related to phenotypic or genetic differences that could shed light on mechanisms of action or predispositions to specific drugs. IMPORTANCENaegleria fowleri, also known as the brain-eating amoeba, is ubiquitous in warm freshwater and is an opportunistic pathogen that causes primary amoebic meningoencephalitis. Although few cases are described each year, the disease has a case fatality rate of >97%. In most laboratory studies of this organism, only one or two well-adapted lab strains are used; therefore, there is a lack of data to discern if there are major differences in potency of currently used drugs for multiple strains and genotypes of the amoeba. In this study, we found significant differences in the susceptibilities of 11 N. fowleri isolates to 7 of the 8 drugs currently used to treat the disease. The data from this study provide a baseline of drug susceptibility among clinical isolates and suggest that new drugs should be tested on a larger number of isolates in the future.
Collapse
|
9
|
Gakuubi MM, Munusamy M, Liang ZX, Ng SB. Fungal Endophytes: A Promising Frontier for Discovery of Novel Bioactive Compounds. J Fungi (Basel) 2021; 7:786. [PMID: 34682208 PMCID: PMC8538612 DOI: 10.3390/jof7100786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.
Collapse
Affiliation(s)
- Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| |
Collapse
|
10
|
Marchese P, Young R, O’Connell E, Afoullouss S, Baker BJ, Allcock AL, Barry F, Murphy JM. Deep-Sea Coral Garden Invertebrates and Their Associated Fungi Are Genetic Resources for Chronic Disease Drug Discovery. Mar Drugs 2021; 19:md19070390. [PMID: 34356815 PMCID: PMC8303266 DOI: 10.3390/md19070390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic diseases characterized by bone and cartilage loss are associated with a reduced ability of progenitor cells to regenerate new tissues in an inflammatory environment. A promising strategy to treat such diseases is based on tissue repair mediated by human mesenchymal stem cells (hMSCs), but therapeutic outcomes are hindered by the absence of small molecules to efficiently modulate cell behaviour. Here, we applied a high-throughput drug screening technology to bioprospect a large library of extracts from Irish deep-sea organisms to induce hMSC differentiation toward musculoskeletal lineages and reduce inflammation of activated macrophages. The library included extracts from deep-sea corals, sponges and filamentous fungi representing a novel source of compounds for the targeted bioactivity. A validated hit rate of 3.4% was recorded from the invertebrate library, with cold water sea pens (octocoral order Pennatulacea), such as Kophobelemnon sp. and Anthoptilum sp., showing the most promising results in influencing stem cell differentiation toward osteogenic and chondrogenic lineages. Extracts obtained from deep-sea fungi showed no effects on stem cell differentiation, but a 6.8% hit rate in reducing the inflammation of activated macrophages. Our results demonstrate the potential of deep-sea organisms to synthetize pro-differentiation and immunomodulatory compounds that may represent potential drug development candidates to treat chronic musculoskeletal diseases.
Collapse
Affiliation(s)
- Pietro Marchese
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
- Correspondence: (P.M.); (J.M.M.)
| | - Ryan Young
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Enda O’Connell
- Genomics and Screening Core, National University of Ireland Galway, H91W2TY Galway, Ireland;
| | - Sam Afoullouss
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - A. Louise Allcock
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
| | - J. Mary Murphy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
- Correspondence: (P.M.); (J.M.M.)
| |
Collapse
|
11
|
Cadamuro RD, da Silveira Bastos IMA, Silva IT, da Cruz ACC, Robl D, Sandjo LP, Alves S, Lorenzo JM, Rodríguez-Lázaro D, Treichel H, Steindel M, Fongaro G. Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. J Fungi (Basel) 2021; 7:455. [PMID: 34200444 PMCID: PMC8228968 DOI: 10.3390/jof7060455] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mangroves are ecosystems with unique characteristics due to the high salinity and amount of organic matter that house a rich biodiversity. Fungi have aroused much interest as they are an important natural source for the discovery of new bioactive compounds, with potential biotechnological and pharmacological interest. This review aims to highlight endophytic fungi isolated from mangrove plant species and the isolated bioactive compounds and their bioactivity against protozoa, bacteria and pathogenic viruses. Knowledge about this type of ecosystem is of great relevance for its preservation and as a source of new molecules for the control of pathogens that may be of importance for human, animal and environmental health.
Collapse
Affiliation(s)
- Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Isabela Maria Agustini da Silveira Bastos
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Izabella Thais Silva
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
- Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Sergio Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó 89802-112, SC, Brazil;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700-000, RS, Brazil;
| | - Mário Steindel
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Gislaine Fongaro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| |
Collapse
|
12
|
Shilling AJ, Witowski CG, Maschek JA, Azhari A, Vesely BA, Kyle DE, Amsler CD, McClintock JB, Baker BJ. Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. JOURNAL OF NATURAL PRODUCTS 2020; 83:1553-1562. [PMID: 32281798 PMCID: PMC8351534 DOI: 10.1021/acs.jnatprod.0c00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
From the CH2Cl2 extract of the Antarctic sponge Dendrilla antarctica we found spongian diterpenes, including previously reported aplysulphurin (1), tetrahydroaplysulphurin-1 (2), membranolide (3), and darwinolide (4), utilizing a CH2Cl2/MeOH extraction scheme. However, the extracts also yielded diterpenes bearing one or more methyl acetal functionalities (5-9), two of which are previously unreported, while others are revised here. Further investigation of diterpene reactivity led to additional new metabolites (10-12), which identified them as well as the methyl acetals as artifacts from methanolysis of aplysulphurin. The bioactivity of the methanolysis products, membranoids A-H (5-12), as well as natural products 1-4, were assessed for activity against Leishmania donovani-infected J774A.1 macrophages, revealing insights into their structure/activity relationships. Four diterpenes, tetrahydroaplysulphurin-1 (2) as well as membranoids B (6), D (8), and G (11), displayed low micromolar activity against L. donovani with no discernible cytotoxicity against uninfected J774A.1 cells. Leishmaniasis is a neglected tropical disease that affects one million people every year and can be fatal if left untreated.
Collapse
Affiliation(s)
- Andrew J Shilling
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| | - Christopher G Witowski
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| | - J Alan Maschek
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| | - Ala Azhari
- Department of Global Health, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
- Department of Microbiology and Medical Parasitology, King Abdulaziz University, 7393 Al-Murtada Street, Jeddah 22252, Saudi Arabia
| | - Brian A Vesely
- Department of Global Health, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Dennis E Kyle
- Department of Global Health, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Charles D Amsler
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - James B McClintock
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Bill J Baker
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| |
Collapse
|
13
|
Genilloud O. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 2019; 51:81-87. [PMID: 31739283 DOI: 10.1016/j.mib.2019.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
Microbial natural products have been one of the most important sources for the discovery of potential new antibiotics. However, the decline in the number of new chemical scaffolds discovered and the rediscovery problem of old known molecules has become a limitation for discovery programs developed by an industry confronted by a lack of incentives and a broken economic model. In contrast, the emergence of multidrug resistance in key pathogens has continued to progress and this issue is compounded by a lack of new antibiotics in development to address most of the difficult to treat infections. Advances in genome mining have confirmed the richness of biosynthetic gene clusters (BGCs) in the majority of microbial sources, and this suggests that an untapped chemical diversity is waiting to be discovered. The development of new genome engineering and synthetic biology tools, and the implementation of comparative omic approaches is fostering the development of new integrated culture-based strategies and genomic-driven approaches aimed at delivering new chemical classes of antibiotics.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
14
|
Almeida EL, Kaur N, Jennings LK, Carrillo Rincón AF, Jackson SA, Thomas OP, Dobson ADW. Genome Mining Coupled with OSMAC-Based Cultivation Reveal Differential Production of Surugamide A by the Marine Sponge Isolate Streptomyces sp. SM17 When Compared to Its Terrestrial Relative S. albidoflavus J1074. Microorganisms 2019; 7:microorganisms7100394. [PMID: 31561472 PMCID: PMC6843307 DOI: 10.3390/microorganisms7100394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Much recent interest has arisen in investigating Streptomyces isolates derived from the marine environment in the search for new bioactive compounds, particularly those found in association with marine invertebrates, such as sponges. Among these new compounds recently identified from marine Streptomyces isolates are the octapeptidic surugamides, which have been shown to possess anticancer and antifungal activities. By employing genome mining followed by an one strain many compounds (OSMAC)-based approach, we have identified the previously unreported capability of a marine sponge-derived isolate, namely Streptomyces sp. SM17, to produce surugamide A. Phylogenomics analyses provided novel insights on the distribution and conservation of the surugamides biosynthetic gene cluster (sur BGC) and suggested a closer relatedness between marine-derived sur BGCs than their terrestrially derived counterparts. Subsequent analysis showed differential production of surugamide A when comparing the closely related marine and terrestrial isolates, namely Streptomyces sp. SM17 and Streptomyces albidoflavus J1074. SM17 produced higher levels of surugamide A than S. albidoflavus J1074 under all conditions tested, and in particular producing >13-fold higher levels when grown in YD and 3-fold higher levels in SYP-NaCl medium. In addition, surugamide A production was repressed in TSB and YD medium, suggesting that carbon catabolite repression (CCR) may influence the production of surugamides in these strains.
Collapse
Affiliation(s)
- Eduardo L Almeida
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
| | - Navdeep Kaur
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Laurence K Jennings
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | | | - Stephen A Jackson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland.
- Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland.
| |
Collapse
|
15
|
Knestrick MA, Tawfik R, Shaw LN, Baker BJ. Chromatographic editing enhances natural product discovery. J Pharm Biomed Anal 2019; 176:112831. [PMID: 31470339 DOI: 10.1016/j.jpba.2019.112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Fungi are known for their diverse biologically active secondary metabolites, compounds that have provided the basis for many landmark therapeutics in the last century. Due to ease of collection and culturing, the existing fungal chemical literature is vast, and fungal natural product isolation can often be hindered by the numerous nuisance and pan-toxic compounds that many strains produce. Dereplication efforts, aimed at identifying such compounds early in the purification, are imperative to reduce time and expense of rediscovery of known metabolites. The common practice of dereplication then deprioritizes samples containing nuisance compounds and often excludes them from the drug discovery workflow. We have implemented a two-step dereplication protocol that uses tandem mass spectrometry to identify nuisance compounds, followed by mass-directed chromatographic editing to remove them while leaving the remaining 'edited extract' in the drug discovery workflow. This two-step strategy facilitates rapid and more accurate evaluation of the chemical potential of high-throughput extract screening campaigns by consideration of bioactivity beyond that triggered by known metabolites. We demonstrate the isolation of a new natural product antibiotic from an otherwise toxic extract using the technique.
Collapse
Affiliation(s)
- Matthew A Knestrick
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave., Tampa, FL, 33620, United States
| | - Rahmy Tawfik
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave., Tampa, FL, 33620, United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave., Tampa, FL, 33620, United States
| | - Bill J Baker
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave., Tampa, FL, 33620, United States.
| |
Collapse
|
16
|
Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037. Fitoterapia 2019; 136:104177. [DOI: 10.1016/j.fitote.2019.104177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
17
|
Collemare J, Seidl MF. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev 2019; 43:591-607. [PMID: 31301226 PMCID: PMC8038932 DOI: 10.1093/femsre/fuz018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Michael F Seidl
- Corresponding author: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. E-mail: ; Present address: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|