1
|
Fernández-Herrera LJ, Núñez-Vázquez EJ, Hernández-Sandoval FE, Ceseña-Ojeda DO, García-Davis S, Teles A, Virgen-Félix M, Tovar-Ramírez D. Morphological, Toxicological, and Biochemical Characterization of Two Species of Gambierdiscus from Bahía de La Paz, Gulf of California. Mar Drugs 2024; 22:422. [PMID: 39330303 PMCID: PMC11433345 DOI: 10.3390/md22090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.
Collapse
Affiliation(s)
- Leyberth José Fernández-Herrera
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Erick Julián Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Francisco E Hernández-Sandoval
- Laboratorio de Microalgas Nocivas, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Daniel Octavio Ceseña-Ojeda
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Sara García-Davis
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Andressa Teles
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Marte Virgen-Félix
- Laboratorio de Colección de Microalgas, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| | - Dariel Tovar-Ramírez
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz CP 23096, Mexico
| |
Collapse
|
2
|
Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. HARMFUL ALGAE 2023; 129:102525. [PMID: 37951623 DOI: 10.1016/j.hal.2023.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.
Collapse
Affiliation(s)
- M Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia.
| | - C Gatti Howell
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - M Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 6570, Faa'a, Tahiti 98702, French Polynesia
| | - A Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - K Henry
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - T Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - P Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - J Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - H T Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| |
Collapse
|
3
|
Núñez-Vázquez EJ, Poot-Delgado CA, Turner AD, Hernández-Sandoval FE, Okolodkov YB, Fernández-Herrera LJ, Bustillos-Guzmán JJ. Paralytic Shellfish Toxins of Pyrodinium bahamense (Dinophyceae) in the Southeastern Gulf of Mexico. Toxins (Basel) 2022; 14:760. [PMID: 36356010 PMCID: PMC9694361 DOI: 10.3390/toxins14110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L-1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell-1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico.
Collapse
Affiliation(s)
- Erick J. Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Apdo. Postal 128, La Paz 23000, Mexico
- Investigación para la Conservación y el Desarrollo (INCODE), Nayarit 1325 A. Col. Las Garzas, La Paz 23079, Mexico
| | - Carlos A. Poot-Delgado
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Champotón, Campeche (TECNM-ITESCHAM), Carretera Champotón, Isla Aguada Km 2, Col. El Arenal, Champotón 4400, Mexico
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth DT4 8UB, UK
| | | | - Yuri B. Okolodkov
- Instituto de Ciencias Marinas y Pesquerías (ICIMAP-UV), Universidad Veracruzana, Calle Mar Mediterráneo Núm. 314, Fracc. Costa Verde, Boca del Río 9429, Mexico
| | | | - José J. Bustillos-Guzmán
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Apdo. Postal 128, La Paz 23000, Mexico
| |
Collapse
|
4
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
5
|
Xu Y, He X, Lee WH, Chan LL, Lu D, Wang P, Tao X, Li H, Yu K. Ciguatoxin-Producing Dinoflagellate Gambierdiscus in the Beibu Gulf: First Report of Toxic Gambierdiscus in Chinese Waters. Toxins (Basel) 2021; 13:toxins13090643. [PMID: 34564646 PMCID: PMC8473099 DOI: 10.3390/toxins13090643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ciguatera poisoning is mainly caused by the consumption of reef fish that have accumulated ciguatoxins (CTXs) produced by the benthic dinoflagellates Gambierdiscus and Fukuyoa. China has a long history of problems with ciguatera, but research on ciguatera causative organisms is very limited, especially in the Beibu Gulf, where coral reefs have been degraded significantly and CTXs in reef fish have exceeded food safety guidelines. Here, five strains of Gambierdiscus spp. were collected from Weizhou Island, a ciguatera hotspot in the Beibu Gulf, and identified by light and scanning electron microscopy and phylogenetic analyses based on large and small subunit rDNA sequences. Strains showed typical morphological characteristics of Gambierdiscus caribaeus, exhibiting a smooth thecal surface, rectangular-shaped 2′, almost symmetric 4″, and a large and broad posterior intercalary plate. They clustered in the phylogenetic tree with G. caribaeus from other locations. Therefore, these five strains belonged to G. caribaeus, a globally distributed Gambierdiscus species. Toxicity was determined through the mouse neuroblastoma assay and ranged from 0 to 5.40 fg CTX3C eq cell−1. The low level of toxicity of G. caribaeus in Weizhou Island, with CTX-contaminated fish above the regulatory level in the previous study, suggests that the long-term presence of low toxicity G. caribaeus might lead to the bioaccumulation of CTXs in fish, which can reach dangerous CTX levels. Alternatively, other highly-toxic, non-sampled strains could be present in these waters. This is the first report on toxic Gambierdiscus from the Beibu Gulf and Chinese waters and will provide a basis for further research determining effective strategies for ciguatera management in the area.
Collapse
Affiliation(s)
- Yixiao Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xilin He
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Wai Hin Lee
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Leo Lai Chan
- The State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; (W.H.L.); (L.L.C.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; (D.L.); (P.W.)
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xiaoping Tao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Huiling Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; (Y.X.); (X.H.); (X.T.); (H.L.)
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
6
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
7
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
8
|
Gray MJ, Gates MC. A descriptive study of ciguatera fish poisoning in Cook Islands dogs and cats: Treatment and outcome. Vet World 2020; 13:1269-1279. [PMID: 32848300 PMCID: PMC7429383 DOI: 10.14202/vetworld.2020.1269-1279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Ciguatera fish poisoning (CFP) is an illness caused by the ingestion of fish containing ciguatoxins. Dogs and cats are susceptible to CFP, but there is little published and much unknown about the condition in these species. This study aimed to document the treatment and outcome of canine and feline cases of CFP, and to look for prognostic indicators. MATERIALS AND METHODS Six years of medical records from the Esther Honey Foundation Animal Clinic (the only veterinary clinic in the Cook Islands during the study period) were reviewed to identify cases of CFP. Data relating to treatment and outcome were collected. RESULTS Two hundred and forty-six cases of CFP were identified, comprising 165 dogs and 81 cats. The treatments most commonly administered to cases were fluid therapy and muscle relaxants. Mannitol was only given to five animals. The survival rate was >90% and almost all mortalities occurred in the first week of hospitalization. Recovery was slow, with hospitalization averaging 12.9 days. There was no significant difference in recovery times between dogs and cats. Prolonged periods of anorexia and recumbency were common in both species. Factors associated with prolonged recovery times included case severity, anorexia, and age (in dogs). CONCLUSION This article documented the treatment and outcome of animals afflicted by CFP in the Cook Islands. Therapy for CFP was primarily symptomatic and supportive. The survival rate was high, but recovery was often prolonged. The findings will assist veterinarians in giving prognoses and managing owner expectations.
Collapse
Affiliation(s)
- Michelle J. Gray
- Master of Veterinary Medicine Program, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M. Carolyn Gates
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Accoroni S, Totti C, Romagnoli T, Giulietti S, Glibert PM. Distribution and potential toxicity of benthic harmful dinoflagellates in waters of Florida Bay and the Florida Keys. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104891. [PMID: 32072980 DOI: 10.1016/j.marenvres.2020.104891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Few studies have been carried out on benthic dinoflagellates along the Florida Keys, and little is known about their distribution or toxicity in Florida Bay. Here, the distribution and abundance of benthic dinoflagellates was explored in northern and eastern Florida Bay and along the bay and ocean sides of the Florida Keys. Isolates were brought into culture and their toxicity was tested with oyster larvae bioassays. Seven genera were detected, including Prorocentrum, Coolia, Ostreopsis, Amphidinium, Gambierdiscus, Fukuyoa (all included potentially toxic species) and Sinophysis. In general, distribution increased with water temperature and nutrient availability, especially that of phosphate. This study documented the first record of Coolia santacroce in the Florida Keys. Potential toxic effects of Gambierdiscus caribaeus, the abundance of which exceeded 1000 cells g-1 fw at some sites, were established using oyster larvae as a bioassay organism. These findings suggest a potential risk of ciguatera fish poisoning in this area.
Collapse
Affiliation(s)
- Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy.
| | - Cecilia Totti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Tiziana Romagnoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Sonia Giulietti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Patricia M Glibert
- University of Maryland Center for Environmental Science, Horn Point Laboratory, P.O. Box 775, Cambridge, MD, 21613, USA
| |
Collapse
|
10
|
de Haro L, Schmitt C, Glaizal M, Domangé B, Torrents R, Simon N. La ciguatéra : 25 ans d’expérience du Centre Antipoison de Marseille. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|