1
|
Tammam MA, Aouidate A, Mahmoud MM, Gamal El-Din MI, El-Demerdash A. Cortistatin and plakinamine steroidal alkaloids from the marine sponges of the genus Corticium: insights into their chemistry, pharmacology, pharmacokinetics and structure activity relationships (SARs). RSC Adv 2025; 15:9092-9107. [PMID: 40134679 PMCID: PMC11934034 DOI: 10.1039/d4ra08718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Cortistatins and plakinamines represent a unique class of marine-derived steroidal alkaloids, renowned for their structural diversity and potent pharmacological activities. This review provides a comprehensive overview of their chemical characteristics, pharmacological profiles, pharmacokinetics, and drug-likeness properties, with a particular focus on structure-activity relationships (SARs). Indeed, we explored their distinct molecular architectures and classification within the broader family of marine alkaloids, highlighting key subclasses and derivatives identified through advanced analytical techniques. Their broad-spectrum bioactivities, including anticancer, anti-inflammatory, antimicrobial, and antiviral effects, are discussed in detail, supported by insights into SARs and pharmacophore identification that illuminate the molecular basis of their bioactivity. Additionally, we evaluate their pharmacokinetic attributes, including absorption, distribution, metabolism, and elimination (ADME), alongside their compliance with drug-likeness criteria, offering a holistic perspective on their potential for drug development.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Adnane Aouidate
- School of Applied Sciences-Ait Melloul, Ibn Zohr University Agadir Morocco
| | - Manar M Mahmoud
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University Helwan City-Cairo 11884 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University 11566 Cairo Egypt
- Quadram Institute Bioscience, Norwich Research Park Norwich Norfolk NR4 7UQ UK
| | - Amr El-Demerdash
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park Norwich NR4 7UH UK
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
2
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
3
|
Zheng YY, Yao GS, Li JJ, Han N, Mao JQ, Zhang YH, Lv L, Liu Y, Wang CY. Undescribed alkaloids, peptides and polyketides from marine sediment-derived fungus Aspergillus terreus PPS1. PHYTOCHEMISTRY 2025; 234:114423. [PMID: 39922555 DOI: 10.1016/j.phytochem.2025.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
The chemical investigation of the marine sediment-derived fungus Aspergillus terreus PPS1 led to the isolation and identification of seven previously undescribed secondary metabolites, including three alkaloids, asperspiroids A, B (1, 2) and astepyrazinol C (3), two lumazine peptides, terrelumamides C, D (5, 6), and two polyketides, scytalols E, F (8, 9), together with two known compounds. The structures of these undescribed compounds were elucidated by comprehensive spectroscopic analysis of NMR and HRESIMS data, and the absolute configurations were determined using ECD calculations, modified Mosher's method, and Marfey's analysis. Notably, asperspiroids A, B (1, 2) were uncommon alkaloids characterized by a rare 6/5/6 indole spirocyclolactone structure found naturally. The isolated compounds were assessed for their potential antibacterial, cytotoxic and anti-inflammatory activities. Astepyrazinol C (3) and its analog astepyrazinol B (4) demonstrated significant inhibition activity against LPS-induced NO production in RAW264.7 macrophages, with inhibition rates of 37.4% and 64.6%, respectively, at a concentration of 20 μM.
Collapse
Affiliation(s)
- Yao-Yao Zheng
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Guang-Shan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiao-Jiao Li
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Na Han
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jun-Qiu Mao
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ya-Hui Zhang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ling Lv
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany; Department of Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392, Giessen, Germany.
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Khamis AA, Elkeiy MM, El-Gamal MM, Saad-Allah KM, Salem MM. Biological and Molecular Efficiency of Paracentrotus lividus Shell in vitro Study: Antioxidant and Angiogenesis Effects Against T47D Breast Cancer Cell Line Via Nrf2/HMOX-1/ and HIF-1α /VEGF Signaling Pathways. Cell Biochem Biophys 2025:10.1007/s12013-025-01678-6. [PMID: 39904870 DOI: 10.1007/s12013-025-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
The sea urchin (Paracentrotus lividus) shell investigation reveals a wealth of bioactive compounds. The bioactive ingredients were observed using UPLCMS/MS profiling. The anti-diabetic, antioxidant, antimicrobial, and anti-inflammatory qualities of P. lividus shell extract were assessed concerning NO, MDA, CAT, and SOD levels. Also, cytotoxic, and anti-angiogenic impact on colon (Caco-2) and breast (T47D) carcinoma cells and quantificated of Nrf2/HMOX-1 and HIF-1α/VEGF pathway expression were evaluated. Our findings indicate that the extract possesses remarkable antioxidant activity with IC50 equal to (0.1056 ± 0.083 and 30.42 ± 1.52 μg/mL; for DPPH and ABTS+ respectively), antidiabetic with IC50 (1.572 ± 0.13 μg/mL) and anti-inflammatory with IC50 (2.090 ± 0.49 μg/mL). Notably, it exhibits potent anticancer effects against human breast (T47D) and colon (Caco-2) cancer cell lines, (30.55 ± 1.19 and 31.34 ± 1.22 µg/mL respectively). The extract induces oxidative stress and apoptosis, as evidenced by elevated NO and MDA levels, alongside reduced SOD and CAT activities. Moreover, the downregulation of Nrf2/HMOX-1 and HIF-1α/VEGF pathways expression suggests intricate molecular mechanisms underlying its anticancer properties, potentially involving the modulation of oxidative stress and angiogenesis. These findings underscore the sea urchin (P. lividus) shell as a potent reservoir of bioactive constituents with promising applications in pharmaceutical research and offering new avenues for drug discovery.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mai M Elkeiy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mona M El-Gamal
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Singh S, Kumar S, Singh AK, Varshney M, Roy S. Exploring Marine Alkaloids: A Natural Approach to Cancer Treatment. Curr Pharm Biotechnol 2025; 26:63-79. [PMID: 38918975 DOI: 10.2174/0113892010316791240611093022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Surendra Kumar
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Amit Kumar Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Mayuri Varshney
- Maya Institute of Pharmacy, Hathras, Uttar Pradesh, 204101, India
| | - Suchismita Roy
- Disto Pharmaceuticals Pvt Ltd Unit 2, 209/A, Phase-3 IDA, Pashamaylaram Patancheru, Sangareddy, district, Hyderabad, Telangana, 502307, India
| |
Collapse
|
6
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Piskorz WM, Krętowski R, Cechowska-Pasko M. Marizomib (Salinosporamide A) Promotes Apoptosis in A375 and G361 Melanoma Cancer Cells. Mar Drugs 2024; 22:315. [PMID: 39057424 PMCID: PMC11278368 DOI: 10.3390/md22070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant melanoma-a tumor originating from melanocytes-is characterized by dynamic growth and frequent metastases in the early stage of development. Current therapy methods are still insufficient, and there is a need to search for new ways of treating this malady. The induction of apoptosis-physiological cell death-by proteasome inhibitors is recognized as an effective method of non-invasive elimination of cancer cells. In our research, we wanted to check the potential of marizomib (MZB, salinosporamide A, NPI-0052)-an irreversible proteasome inhibitor derived from the marine actinomycete Salinispora tropica-to induce apoptosis in A375 and G361 malignant melanoma cells. We determined the cytotoxic activity of marizomib by performing an MTT test. Ethidium bromide and acridine orange staining demonstrated the disruption of membrane integrity in the examined cell lines. We confirmed the proapoptotic activity of marizomib by flow cytometry with the use of an FITC-Annexin V assay. A Western blot analysis presented an increase in the expression of proteins related to endoplasmic reticulum (ER) stress as well as markers of the apoptosis. The gathered findings suggest that marizomib induced the ER stress in the examined melanoma cancer cells and directed them towards the apoptosis pathway.
Collapse
Affiliation(s)
| | | | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
8
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
9
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
10
|
Jiang M, Wu Q, Guo H, Lu X, Chen S, Liu L, Chen S. Shikimate-Derived Meroterpenoids from the Ascidian-Derived Fungus Amphichorda felina SYSU-MS7908 and Their Anti-Glioma Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2651-2660. [PMID: 37967166 DOI: 10.1021/acs.jnatprod.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Glioma is a clinically heterogeneous type of brain tumor with a poor prognosis. Current treatment approaches have limited effectiveness in treating glioma, highlighting the need for novel drugs. One approach is to explore marine natural products for their therapeutic potential. In this study, we isolated nine shikimate-derived diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9), including four new ones, amphicordins A-D (1-4) from the ascidian-derived fungus Amphichorda felina SYSU-MS7908, and further semisynthesized four derivatives (10-13). Their structures were extensively characterized using 1D and 2D NMR, modified Mosher's method, HR-ESIMS, NMR and ECD calculations, and X-ray crystallography. Notably, amphicordin C (3) possesses a unique benzo[g]chromene (6/6/6) skeleton in this meroterpenoid family. In an anti-glioma assay, oxirapentyn A (7) effectively inhibited the proliferation, migration, and invasion of glioma cells and induced their apoptosis. Furthermore, an in silico analysis suggested that oxirapentyn A has the potential to penetrate the blood-brain barrier. These findings highlight the potential of oxirapentyn A as a candidate for the development of novel anti-glioma drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Xin Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Shuihao Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
11
|
Yuan A, Fong H, Nguyen JV, Nguyen S, Norman P, Cullum R, Fenical W, Debnath A. High-Throughput Screen of Microbial Metabolites Identifies F 1F O ATP Synthase Inhibitors as New Leads for Naegleria fowleri Infection. ACS Infect Dis 2023; 9:2622-2631. [PMID: 37943251 DOI: 10.1021/acsinfecdis.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Primary amebic meningoencephalitis (PAM), a brain infection caused by a free-living ameba Naegleria fowleri, leads to an extensive inflammation of the brain and death within 1-18 (median 5) days after symptoms begin. Although natural products have played a significant role in the development of drugs for over a century, research focusing on identifying new natural product-based anti-N. fowleri agents is limited. We undertook a large-scale ATP bioluminescence-based screen of about 10,000 unique marine microbial metabolite mixtures against the trophozoites of N. fowleri. Our screen identified about 100 test materials with >90% inhibition at 50 μg/mL and a dose-response study found 20 of these active test materials exhibiting an EC50 ranging from 0.2 to 2 μg/mL. Examination of four of these potent metabolite mixtures, derived from our actinomycete strains CNT671, CNT756, and CNH301, resulted in the isolation of a pure metabolite identified as oligomycin D. Oligomycin D exhibited nanomolar potency on multiple genotypes of N. fowleri, and it was five- or 850-times more potent than the recommended drugs amphotericin B or miltefosine. Oligomycin D is fast-acting and reached its EC50 in 10 h, and it was also able to inhibit the invasiveness of N. fowleri significantly when tested on a matrigel invasion assay. Since oligomycin is known to manifest inhibitory activity against F1FO ATP synthase, we tested different F1FO ATP synthase inhibitors and identified a natural peptide leucinostatin as a fast-acting amebicidal compound with nanomolar potency on multiple strains.
Collapse
Affiliation(s)
- Alice Yuan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Hayley Fong
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jennifer V Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sophia Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Payton Norman
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Eze OC, Berebon DP, Emencheta SC, Evurani SA, Okorie CN, Balcão VM, Vila MMDC. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals (Basel) 2023; 16:1091. [PMID: 37631006 PMCID: PMC10458718 DOI: 10.3390/ph16081091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the increasing limitations and negative impacts of the current options for preventing and managing diseases, including chemotherapeutic drugs and radiation, alternative therapies are needed, especially ones utilizing and maximizing natural products (NPs). NPs abound with diverse bioactive primary and secondary metabolites and compounds with therapeutic properties. Marine probiotics are beneficial microorganisms that inhabit marine environments and can benefit their hosts by improving health, growth, and disease resistance. Several studies have shown they possess potential bioactive and therapeutic actions against diverse disease conditions, thus opening the way for possible exploitation of their benefits through their application. Pseudoalteromonas spp. are a widely distributed heterotrophic, flagellated, non-spore-forming, rod-shaped, and gram-negative marine probiotic bacteria species with reported therapeutic capabilities, including anti-cancer and -bacterial effects. This review discusses the basic concepts of marine probiotics and their therapeutic effects. Additionally, a survey of the anticancer and antibacterial effects of Pseudoalteromonas spp. is presented. Finally, marine probiotic production, advances, prospects, and future perspectives is presented.
Collapse
Affiliation(s)
- Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| | - Somtochukwu A. Evurani
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Chibundo N. Okorie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Victor M. Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M. D. C. Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| |
Collapse
|
13
|
Dehghani R, Amrooni A, Hosseinpour-Soleimani F, Mohebbi G, Obeidi N. The Effect of the Persian Gulf Jellyfish (Cassiopea andromeda) Venom on the Expression of P15, P21, P53, DNMT1, and Bcl-2 in Acute Lymphoblastic Leukemia Jurkat Cells. Int J Hematol Oncol Stem Cell Res 2023; 17:177-185. [PMID: 37817966 PMCID: PMC10560648 DOI: 10.18502/ijhoscr.v17i3.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 10/12/2023] Open
Abstract
Background: One of the acute hematologic malignancies is acute lymphoblastic leukemia (ALL), which is formed in B or T lymphocyte stem cells. Regarding the increasing tendency to herbal and marine studies and unclear characteristics of Cassiopea andromeda Venom, this study was performed to determine its effects on Jurkat cells as a model for T-ALL. Materials and Methods: In this experimental study, the cells were treated with a variety of concentrations of Cassiopea andromeda venom at different periods and times. Growth inhibition and toxic effects of Cassiopea andromeda Venom were evaluated by methyl thiazole tetrazolium salt reduction (MTT test). The flow cytometry analysis was carried out using 7-aminoactinomycin D (7AAD) and Annexin V stains to evaluate the venom's effect on apoptotic pathways. Besides, Real-Time PCR was performed to evaluate the relative gene expression. Results: Cassiopea andromeda venom inhibited the growth of Jurkat cells in a concentration and time manner. Jurkat cell growth was inhibited by 48.9% after 72 hours of treatment with 250µg/mL Cassiopea andromeda venom. The venom increased the apoptotic process through the upregulation of p15INK4b and P53 proteins and downregulation of Bcl-2, p21 WAF1/CIP1, and DNMT1 in the Jurkat cell line. Conclusion: Considering the growth inhibitory property of Cassiopea andromeda Venom, we recommend it as a part of combinational medication for treating ALL in animal trials and for other leukemias in vitro studies.
Collapse
Affiliation(s)
- Reza Dehghani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Amrooni
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Obeidi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
15
|
Singh U, Gandhi HA, Bhattacharya J, Tandon R, Tiwari GL, Tandon R. Cyanometabolites: molecules with immense antiviral potential. Arch Microbiol 2023; 205:164. [PMID: 37012452 PMCID: PMC10069739 DOI: 10.1007/s00203-023-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Cyanometabolites are active compounds derived from cyanobacteria that include small low molecular weight peptides, oligosaccharides, lectins, phenols, fatty acids, and alkaloids. Some of these compounds may pose a threat to human and environment. However, majority of them are known to have various health benefits with antiviral properties against pathogenic viruses including Human immunodeficiency virus (HIV), Ebola virus (EBOV), Herpes simplex virus (HSV), Influenza A virus (IAV) etc. Cyanometabolites classified as lectins include scytovirin (SVN), Oscillatoria agardhii agglutinin (OAAH), cyanovirin-N (CV-N), Microcystis viridis lectin (MVL), and microvirin (MVN) also possess a potent antiviral activity against viral diseases with unique properties to recognize different viral epitopes. Studies showed that a small linear peptide, microginin FR1, isolated from a water bloom of Microcystis species, inhibits angiotensin-converting enzyme (ACE), making it useful for the treatment of coronavirus disease 2019 (COVID-19). Our review provides an overview of the antiviral properties of cyanobacteria from the late 90s till now and emphasizes the significance of their metabolites in combating viral diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has received limited attention in previous publications. The enormous medicinal potential of cyanobacteria is also emphasized in this review, which justifies their use as a dietary supplement to fend off pandemics in future.
Collapse
Affiliation(s)
- Uma Singh
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Harsh A Gandhi
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jaydeep Bhattacharya
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G L Tiwari
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Richa Tandon
- Department of Botany, S. S. Khanna Girls Degree College, University of Allahabad, Prayagraj, 211003, India.
| |
Collapse
|
16
|
Zare A, Afshar A, Khoradmehr A, Baghban N, Mohebbi G, Barmak A, Daneshi A, Bargahi A, Nabipour I, Almasi-Turk S, Arandian A, Zibaii MI, Latifi H, Tamadon A. Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells. Mar Drugs 2023; 21:md21030168. [PMID: 36976217 PMCID: PMC10057638 DOI: 10.3390/md21030168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
- PerciaVista R&D Co., Shiraz 73, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Alireza Barmak
- Food Lab, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Adel Daneshi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Afshar Bargahi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Sahar Almasi-Turk
- Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
| | | | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
- Department of Physics, Shahid Beheshti University, Tehran 11, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| |
Collapse
|
17
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
18
|
Turrini E, Maffei F, Fimognari C. Effect of the Marine Polyketide Plocabulin on Tumor Progression. Mar Drugs 2022; 21:md21010038. [PMID: 36662211 PMCID: PMC9860935 DOI: 10.3390/md21010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Marine sponges represent one of the richest sources of natural marine compounds with anticancer potential. Plocabulin (PM060184), a polyketide originally isolated from the sponge Lithoplocamia lithistoides, elicits its main anticancer properties binding tubulin, which still represents one of the most important targets for anticancer drugs. Plocabulin showed potent antitumor activity, in both in vitro and in vivo models of different types of cancers, mediated not only by its antitubulin activity, but also by its ability to block endothelial cell migration and invasion. The objective of this review is to offer a description of plocabulin's mechanisms of action, with special emphasis on the antiangiogenic signals and the latest progress on its development as an anticancer agent.
Collapse
|
19
|
Anwar S, Malik JA, Ahmed S, Kameshwar VA, Alanazi J, Alamri A, Ahemad N. Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227668. [PMID: 36431766 PMCID: PMC9698579 DOI: 10.3390/molecules27227668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms.
Collapse
Affiliation(s)
- Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
- Correspondence:
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, Gujarat, India
| | - Verma Abhishek Kameshwar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 641112, Kerala, India
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Selangor DE, Malaysia
| |
Collapse
|
20
|
The Chemotherapeutic Potentials of Compounds Isolated from the Plant, Marine, Fungus, and Microorganism: Their Mechanism of Action and Prospects. J Trop Med 2022; 2022:5919453. [PMID: 36263439 PMCID: PMC9576449 DOI: 10.1155/2022/5919453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022] Open
Abstract
Research on natural products mainly focuses on developing a suitable drug to treat human disease. There has been a sharp increase in the development of drugs from natural products. Most of the drugs that are available are from the terrestrial origin. Marine natural products are less explored. Oceans are considered as a vast ecosystem with a wide variety of living organisms and natural products that are unexplored. Large numbers of antitumor drugs are from natural sources such as plants, marine, and microorganisms. 80% new chemical entities that were launched over the past 60 decades were from a natural source. In this article, the anticancer potential from the natural source such as plants, fungi, microorganisms, marine, and endophytes has been reviewed. Emphasis is given on the compound from the marine, plant, and of bacterial origin. Finally, we consider the future and how we might achieve better sustainability to alleviate human cancer suffering while having fewer side effects, more efficacies, and causing less harm than the present treatments.
Collapse
|
21
|
Püsküllüoğlu M, Michalak I. An ocean of possibilities: a review of marine organisms as sources of nanoparticles for cancer care. Nanomedicine (Lond) 2022; 17:1695-1719. [PMID: 36562416 DOI: 10.2217/nnm-2022-0206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seas and oceans have been explored for the last 70 years in search of new compounds that can support the battle against cancer. Marine polysaccharides can act as nanomaterials for medical applications and marine-derived bioactive compounds can be applied for the biosynthesis of metallic and nonmetallic nanoparticles. Nanooncology can be used in numerous fields including diagnostics, serving as drug carriers or acting as drugs. This review focuses on marine-derived nanoparticles with potential oncological applications. It classifies organisms used for nanoparticle production, explains the production process, presents different types of nanoparticles with prospective applications in oncology, describes the molecular pathways responsible for numerous nanomedicine applications, tags areas of nanoparticle implementation in oncology and speculates about future directions.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, Kraków, 31-115, Poland
| | - Izabela Michalak
- Wrocław University of Science & Technology, Department of Advanced Material Technologies, Smoluchowskiego 25, Wrocław, 50-370, Poland
| |
Collapse
|
22
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Romanelli M, Amaral M, Thevenard F, Santa Cruz LM, Regasini LO, Migotto AE, Lago JHG, Tempone AG. Mitochondrial Imbalance of Trypanosoma cruzi Induced by the Marine Alkaloid 6-Bromo-2'-de- N-Methylaplysinopsin. ACS OMEGA 2022; 7:28561-28570. [PMID: 35990437 PMCID: PMC9387129 DOI: 10.1021/acsomega.2c03395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/09/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects seven million people worldwide and lacks effective treatments. Using bioactivity-guided fractionation, NMR, and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) spectral analysis, the indole alkaloid 6-bromo-2'-de-N-methylaplysinopsin (BMA) was isolated and chemically characterized from the marine coral Tubastraea tagusensis. BMA was tested against trypomastigotes and intracellular amastigotes of T. cruzi, resulting in IC50 values of 62 and 5.7 μM, respectively, with no mammalian cytotoxicity. The mechanism of action studies showed that BMA induced no alterations in the plasma membrane permeability but caused depolarization of the mitochondrial membrane potential, reducing ATP levels. Intracellular calcium levels were also reduced after the treatment, which was associated with pH alteration of acidocalcisomes. Using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)/MS analysis, alterations of mass spectral signals were observed after treatment with BMA, suggesting a different mechanism from benznidazole. In silico pharmacokinetic-pharmacodynamic (PKPD) parameters suggested a drug-likeness property, supporting the promising usefulness of this compound as a new hit for optimizations.
Collapse
Affiliation(s)
- Maiara
M. Romanelli
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Maiara Amaral
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Fernanda Thevenard
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Lucas M. Santa Cruz
- Department
of Organic Contaminants, Instituto Adolfo
Lutz, Av Dr Arnaldo 355, São Paulo, SP 01246-000, Brazil
| | - Luis O. Regasini
- Department
of Chemistry and Environmental Sciences, Institute of Biosciences,
Humanities and Exact Sciences, Universidade
Estadual Paulista, R. Cristóvão Colombo 2265, São
Jose do Rio Preto, SP 15054-000, Brazil
| | - Alvaro E. Migotto
- Centre
for Marine Biology, Universidade de São
Paulo, Rodovia Manoel Hypólito do Rego, Km 131, São Sebastião, São Paulo, SP 11600-000, Brazil
| | - João Henrique G. Lago
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Andre G. Tempone
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
24
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2022; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
25
|
From the North Sea to Drug Repurposing, the Antiseizure Activity of Halimide and Plinabulin. Pharmaceuticals (Basel) 2022; 15:ph15020247. [PMID: 35215359 PMCID: PMC8878679 DOI: 10.3390/ph15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin’s antiseizure action.
Collapse
|
26
|
Bursatella leachii Purple Ink Secretion Concentrate Exerts Cytotoxic Properties against Human Hepatocarcinoma Cell Line (HepG2): In Vitro and In Silico Studies. Molecules 2022; 27:molecules27030826. [PMID: 35164089 PMCID: PMC8839718 DOI: 10.3390/molecules27030826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Liver cancer is a leading cause of cancer death globally. Marine mollusc-derived drugs have gained attention as potential natural-based anti-cancer agents to overcome the side effects caused by conventional chemotherapeutic drugs during cancer therapy. Using liquid chromatography-mass spectrometry, the main biomolecules in the purple ink secretion released by the sea hare, named Bursatella leachii (B. leachii), were identified as hectochlorin, malyngamide X, malyngolide S, bursatellin and lyngbyatoxin A. The cytotoxic effects of B. leachii ink concentrate against human hepatocarcinoma (HepG2) cells were determined to be dose- and time-dependent, and further exploration of the underlying mechanisms causing the programmed cell death (apoptosis) were performed. The expression of cleaved-caspase-8 and cleaved-caspase-3, key cysteine-aspartic proteases involved in the initiation and completion of the apoptosis process, appeared after HepG2 cell exposure to the B. leachii ink concentrate. The gene expression levels of pro-apoptotic BAX, TP53 and Cyclin D1 were increased after treatment with the B. leachii ink concentrate. Applying in silico approaches, the high scores predicted that bioactivities for the five compounds were protease and kinase inhibitors. The ADME and cytochrome profiles for the compounds were also predicted. Altogether, the B. leachii ink concentrate has high pro-apoptotic potentials, suggesting it as a promising safe natural product-based drug for the treatment of liver cancer.
Collapse
|
27
|
Miri MR, Zare A, Saberzadeh J, Baghban N, Nabipour I, Tamadon A. Anti-lung Cancer Marine Compounds: A Review. Ther Innov Regul Sci 2022; 56:191-205. [PMID: 35025082 DOI: 10.1007/s43441-022-00375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most common and lethal cancers in human beings. Lung cancer has been divided into two major types: small cell lung cancer (SCLC) and non-small cell lung carcinoma (NSCLC). Current drugs suffer from various side effects, and the insufficient efficacy of present treatments creates a desire for better more efficient new drugs. This review compares the diversity of marine-derived bioactive compounds from different marine species. Some of the natural products from marine resources are in different stages of clinical trials. By the way, most of them have been studied in vitro and in vivo. Additionally, in this review, the mechanisms of action of marine-derived anti-lung cancer components on lung cancer cell lines have been reviewed. In addition, considering growing rate and the high costs of cancer research, attention must be paid to some aspects of targeting and developing anti-lung cancer drug. In better words, like the other therapeutic strategies that have their particular challenges and weak points, several challenges about marine-derived anti-lung cancer components which exist for scientists for doing research are explained. Moreover, as the attentions in the field of cancer therapy are focused on designing and developing new anticancer strategies for the treatment of cancer in the future, the application of marine-derived anti-lung cancer components in the field of future cancer therapy and their role in future anticancer strategies are briefly discussed.
Collapse
Affiliation(s)
- Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamileh Saberzadeh
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | |
Collapse
|
28
|
Chen S, Guo H, Jiang M, Wu Q, Li J, Shen H, Liu L. Mono- and Dimeric Xanthones with Anti-Glioma and Anti-Inflammatory Activities from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722. Mar Drugs 2022; 20:51. [PMID: 35049907 PMCID: PMC8780748 DOI: 10.3390/md20010051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023] Open
Abstract
Seven new xanthones, diaporthones A-G (1-7), together with 13 known analogues, including five mono- (8-14) and six dimeric xanthones (15-20), were obtained from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were established by extensive spectroscopic analyses, including 1D and 2D NMR and high-resolution mass spectrometry (HR-ESIMS). The absolute configurations of 1-7 were clearly identified by X-ray crystallographic analysis and calculation of the ECD Spectra. Compounds 15-20 showed significant anti-inflammatory activity with IC50 values between 6.3 and 8.0 μM. In addition, dimeric xanthones (15-20) showed selective cytotoxicity against T98G cell lines with IC50 values ranging from 19.5 to 78.0 μM.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.C.); (H.G.); (M.J.); (Q.W.); (J.L.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
29
|
Mostafa O, Al-Shehri M, Moustafa M. Promising antiparasitic agents from marine sponges. Saudi J Biol Sci 2022; 29:217-227. [PMID: 35002412 PMCID: PMC8716901 DOI: 10.1016/j.sjbs.2021.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
30
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
31
|
Shahid A, Khurshid M, Aslam B, Muzammil S, Mehwish HM, Rajoka MSR, Hayat HF, Sarfraz MH, Razzaq MK, Nisar MA, Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J Basic Microbiol 2021; 62:1125-1142. [PMID: 34747529 DOI: 10.1002/jobm.202100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
The wide diversity of cyanobacterial species and their role in a variety of biological activities have been reported in the previous few years. Cyanobacteria, especially from marine sources, constitutes a major source of biologically active metabolites that have gained great attention especially due to their anticancer potential. Numerous chemically diverse metabolites from various cyanobacterial species have been recognized to inhibit the growth and progression of tumor cells through the induction of apoptosis in many different types of cancers. These metabolites activate the apoptosis in the cancer cells by different molecular mechanisms, however, the dysregulation of the mitochondrial pathway, death receptors signaling pathways, and the activation of several caspases are the crucial mechanisms that got considerable interest. The array of metabolites and the range of mechanisms involved may also help to overcome the resistance acquired by the different tumor types against the ongoing therapeutic agents. Therefore, the primary or secondary metabolites from the cyanobacteria as well as their synthetic derivates could be used to develop novel anticancer drugs alone or in combination with other chemotherapeutic agents. In this study, we have discussed the role of cyanobacterial metabolites in the induction of cytotoxicity and the potential to inhibit the growth of cancer cells through the induction of apoptosis, cell signaling alteration, oxidative damage, and mitochondrial dysfunctions. Moreover, the various metabolites produced by cyanobacteria have been summarized with their anticancer mechanisms. Furthermore, the ongoing trials and future developments for the therapeutic implications of these compounds in cancer therapy have been discussed.
Collapse
Affiliation(s)
- Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, China.,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hafiz Fakhar Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
32
|
Ni J, Feng H, Xu X, Liu T, Ye T, Chen K, Li G. Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Cervical Cancer Cells Hela S3. Mar Drugs 2021; 19:md19100532. [PMID: 34677432 PMCID: PMC8537278 DOI: 10.3390/md19100532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further investigation revealed that AVL increased the virus replication, promote the expression of OASL protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a novel way for the utilization of lection AVL.
Collapse
|
33
|
Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep 2021; 37:752-762. [PMID: 32428051 DOI: 10.1039/d0np00011f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P- or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation.
Collapse
Affiliation(s)
- Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. and Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany and German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
34
|
Zhang Z, Zhang Y, Yang C, Wang Q, Wang H, Zhang Y, Deng W, Nie Y, Liu Y, Luo X, Huang J, Wang J. Antitumor effects of 3-bromoascochlorin on small cell lung cancer via inhibiting MAPK pathway. Cell Biol Int 2021; 45:2380-2390. [PMID: 34288235 DOI: 10.1002/cbin.11674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
Small cell lung cancer (SCLC) was defined as a recalcitrant cancer, and novel therapies are urgently needed. Marine natural products (MNPs) may bring continuing hope for treatment of SCLC. In this study, 3-bromoascochlorin (BAS), an MNP isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501, was primarily screened out with antiproliferative activity towards SCLC cell lines. Then western blot analysis (WB) and flow cytometry were conducted, and we found BAS could induce the apoptosis of H446 and H69AR cells. Besides, BAS could suppress the invasion and migration of H446. In an SCLC xenograft mice model, BAS inhibited the growth of tumor without affecting the body weight of mice. Finally, the underlying mechanisms were preliminarily explored. According to the results of RNA-seq, reverse transcription-quantitative polymerase chain reaction, and WB, our results revealed that BAS exerted antitumor activity via inhibiting mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) pathway. Collectively, these results indicated that BAS can be used as a promising compound for the treatment of human SCLC.
Collapse
Affiliation(s)
- Zhenhua Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yidi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chunju Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianyu Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanting Zhang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yichu Nie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Rajput PS, Khan SR, Singh P, Chawla PA. Treatment of Small Cell Lung Cancer with Lurbinectedin: A Review. Anticancer Agents Med Chem 2021; 22:812-820. [PMID: 34229593 DOI: 10.2174/1871520621666210706150057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lurbinectedin was approved on June 15, 2020 by Food and Drug Administration with a brand name ZEPZELCA as the first systematic approved therapy for patients having Small Cell Lung Cancer (SCLC). OBJECTIVES In this review, an attempt is made to summarize different aspects of Lurbinectedin, including the pathophysiology, chemistry, chemical synthesis, mechanism of action, adverse reactions, including pharmacokinetics of lurbinectedin. Special attention is given to various reported clinical trials of lurbinectedin. METHODS A comprehensive literature search was conducted in the relevant databases like ScienceDirect, PubMed, ResearchGate and Google Scholar to identify studies. Further upon a thorough study of these reports, significant findings/data were collected and compiled under suitable headings. Important findings related to clinical trials have been tabulated. CONCLUSION Lurbinectedin is known to act by inhibiting the active transcription of encoding genes, thereby bringing about the suppression of tumour related macrophages with an impact on tumour atmosphere. Lurbinectedin has emerged as a potential drug candidate for the treatment of small cell lung cancer (SCLC).
Collapse
Affiliation(s)
- Prince Singh Rajput
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Sharib Raza Khan
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Preeti Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| |
Collapse
|
36
|
Ren X, Xie X, Chen B, Liu L, Jiang C, Qian Q. Marine Natural Products: A Potential Source of Anti-hepatocellular Carcinoma Drugs. J Med Chem 2021; 64:7879-7899. [PMID: 34128674 DOI: 10.1021/acs.jmedchem.0c02026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) has high associated morbidity and mortality rates. Although chemical medication represents a primary HCC treatment strategy, low response rates and therapeutic resistance serve to reduce its efficacy. Hence, identifying novel effective drugs is urgently needed, and many researchers have sought to identify new anti-cancer drugs from marine organisms. The marine population is considered a "blue drug bank" of unique anti-cancer compounds with diverse groups of chemical structures. Here, we discuss marine-derived compounds, including PM060184 and bryostatin-1, with demonstrated anti-cancer activity in vitro or in vivo. Based on the marine source (sponges, algae, coral, bacteria, and fungi), we introduce pharmacological parameters, compound-induced cytotoxicity, effects on apoptosis and metastasis, and potential molecular mechanisms. Cumulatively, this review provides insights into anti-HCC research conducted to date in the field of marine natural products and marine-derived compounds, as well as the potential pharmacological mechanisms of these compounds and their status in drug development.
Collapse
Affiliation(s)
- Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| |
Collapse
|
37
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
38
|
Bocharova EA, Kopytina NI, Slynko ЕЕ. Anti-tumour drugs of marine origin currently at various stages of clinical trials (review). REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncological diseases for a long time have remained one of the most significant health problems of modern society, which causes great losses in its labour and vital potential. Contemporary oncology still faces unsolved issues as insufficient efficacy of treatment of progressing and metastatic cancer, chemoresistance, and side-effects of the traditional therapy which lead to disabilities among or death of a high number of patients. Development of new anti-tumour preparations with a broad range of pharmaceutical properties and low toxicity is becoming increasingly relevant every year. The objective of the study was to provide a review of the recent data about anti-tumour preparations of marine origin currently being at various phases of clinical trials in order to present the biological value of marine organisms – producers of cytotoxic compounds, and the perspectives of their use in modern biomedical technologies. Unlike the synthetic oncological preparations, natural compounds are safer, have broader range of cytotoxic activity, can inhibit the processes of tumour development and metastasis, and at the same time have effects on several etiopathogenic links of carcinogenesis. Currently, practical oncology uses 12 anti-tumour preparations of marine origin (Fludarabine, Cytarabine, Midostaurin, Nelarabine, Eribulin mesylate, Brentuximab vedotin, Trabectedin, Plitidepsin, Enfortumab vedotin, Polatuzumab vedotin, Belantamab mafodotin, Lurbinectedin), 27 substances are at different stages of clinical trials. Contemporary approaches to the treatment of oncological diseases are based on targeted methods such as immune and genetic therapies, antibody-drug conjugates, nanoparticles of biopolymers, and metals. All those methods employ bioactive compounds of marine origin. Numerous literature data from recent years indicate heightened attention to the marine pharmacology and the high potential of marine organisms for the biomedicinal and pharmaceutic industries.
Collapse
|
39
|
Ge H, Shi M, Ma M, Lian XY, Zhang Z. Evaluation of the antiproliferative activity of 106 marine microbial metabolites against human lung cancer cells and potential antiproliferative mechanism of purpuride G. Bioorg Med Chem Lett 2021; 39:127915. [PMID: 33691166 DOI: 10.1016/j.bmcl.2021.127915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
A total of 106 marine microbial metabolites were evaluated for their antiproliferative activity against human lung cancer cells. Results showed that 23 compounds exhibited activity in inhibiting the proliferation of A549 and H157 cells with IC50 values ranging from 1.5 to 48.2 μM. Pyrrospirone F, chrysophanol, physcion, and purpuride G are the four most active compounds with IC50 values of 1.5-7.3 μM. Further investigation of purpuride G (a newly discovered sesquiterpene lactone) demonstrated its potent antiproliferative activity against six different lung cancer cells of A549, H157, H460, H1299, H1703, and PC9 with IC50 values of 2.1-3.3 μM. The antiproliferative activity of purpuride G against cancer cells is related to block cell cycle, induce apoptosis through regulating the apoptotic proteins Bcl-2 and Bax, and inhibit glycolysis by downregulating two key glycolytic enzymes of hexokinase 2 and pyruvate kinase M2.
Collapse
Affiliation(s)
- Hengju Ge
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Muran Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingzhu Ma
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
40
|
Chamika WAS, Ho TC, Roy VC, Kiddane AT, Park JS, Kim GD, Chun BS. In vitro characterization of bioactive compounds extracted from sea urchin (Stomopneustes variolaris) using green and conventional techniques. Food Chem 2021; 361:129866. [PMID: 34091399 DOI: 10.1016/j.foodchem.2021.129866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the in vitro bioactivities of extracts obtained from viscera, spines, shells, and gonads of Stomopneustes variolaris using subcritical water extraction (SWE) at 110 °C, 150 °C, 190 °C, and 230 °C and Soxhlet extraction. The highest amounts of phenolics (22.68 ± 0.05 mg GAE/g), flavonoids (27.11 ± 0.10 mg RE/g), and proteins (40.25 ± 0.84 mg BSA/g) were recorded from gonads at 230 °C, whereas maximum sugar content (23.38 ± 1.30 mg glucose/g) was in viscera at 150 °C. Gonads at 230 °C exhibited the highest DPPH activity (78.68 ± 0.18%), whereas viscera at 150 °C exhibited the highest ABTS+ (98.92 ± 1.27%) and protein denaturation inhibition activity (37.13 ± 9.94%). Viscera at 110 °C claimed the highest amylase inhibition (42.46 ± 0.83%), and spines at 150 °C had the highest anticancer activity (IC50 = 767.47 μg/mL). SWE achieved superior results in bioactive compound recovery and detected higher levels of bioactivities (p < 0.05). Results suggest processing sea urchin extracts via SWE has potential application to the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Weerathunga Arachchige Shiran Chamika
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Science, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Mahawela Road, Tangalle 82200, Sri Lanka
| | - Truc Cong Ho
- Institute of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Vikash Chandra Roy
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | - Anley Teferra Kiddane
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
41
|
Antiproliferative Activity and Potential Mechanism of Marine-Sourced Streptoglutarimide H against Lung Cancer Cells. Mar Drugs 2021; 19:md19020079. [PMID: 33572615 PMCID: PMC7911229 DOI: 10.3390/md19020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
In 2019, streptoglutarimide H (SGH) was characterized as a new glutarimide from the secondary metabolites produced by a marine-derived actinomycete Streptomyces sp. ZZ741 and shown to have in vitro antiglioma activity. However, the antiproliferative activity and potential mechanism of SGH against lung cancer cells have not yet been characterized. This study demonstrated that SGH significantly inhibited the proliferation of different lung cancer cells. In terms of mechanism of action, SGH downregulated cell cycle- and nucleotide synthesis-related proteins to block cell cycle at G0/G1 phase, reduced the expression levels of glycolytic metabolic enzymes to inhibit glycolysis, and downregulated the important cancer transcription factor c-Myc and the therapeutic target deubiquitinase USP28. Potent anticancer activity and multiple mechanisms indicated SGH to be a novel antitumor compound against lung cancer cells.
Collapse
|
42
|
Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar Drugs 2021; 19:md19020052. [PMID: 33499163 PMCID: PMC7912590 DOI: 10.3390/md19020052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 μg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.
Collapse
|
43
|
Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed Pharmacother 2020; 134:111091. [PMID: 33341044 DOI: 10.1016/j.biopha.2020.111091] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
The marine environment is an enormous source of marine-derived natural products (MNPs), and future investigation into anticancer drug discovery. Current progress in anticancer drugs offers a rise in isolation and clinical validation of numerous innovative developments and advances in anticancer therapy. However, only a limited number of FDA-approved marine-derived anticancer drugs are available due to several challenges and limitations highlighted here. The use of chitosan in developing marine-derived drugs is promising in the nanotech sector projected for a prolific anticancer drug delivery system (DDS). The cGAS-STING-mediated immune signaling pathway is crucial, which has not been significantly investigated in anticancer therapy and needs further attention. Additionally, a small range of anticancer mediators is currently involved in regulating various JAK/STAT signaling pathways, such as immunity, cell death, and tumor formation. This review addressed critical features associated with MNPs, origin, and development of anticancer drugs. Moreover, recent advances in the nanotech delivery of anticancer drugs and understanding into cancer immunity are detailed for improved human health.
Collapse
|
44
|
Zhao K, Xing R, Yan X. Cyclic dipeptides: Biological activities and self‐assembled materials. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kaili Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences Beijing China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
45
|
Mondal A, Bose S, Banerjee S, Patra JK, Malik J, Mandal SK, Kilpatrick KL, Das G, Kerry RG, Fimognari C, Bishayee A. Marine Cyanobacteria and Microalgae Metabolites-A Rich Source of Potential Anticancer Drugs. Mar Drugs 2020; 18:476. [PMID: 32961827 PMCID: PMC7551136 DOI: 10.3390/md18090476] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, West Bengal, India
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, West Bengal, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Jai Malik
- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160 014, Punjab, India;
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713 206, West Bengal, India;
| | | | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751 004, Odisha, India;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
46
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
47
|
Luan X, Wu Y, Shen YW, Zhang H, Zhou YD, Chen HZ, Nagle DG, Zhang WD. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat Prod Rep 2020; 38:7-17. [PMID: 32776055 DOI: 10.1039/d0np00019a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2020Treatment resistance and drug-induced refractory malignancies pose significant challenges for current chemotherapy drugs. There have been increasing research efforts aimed at developing novel chemotherapeutics, especially from natural products and related derivatives. Natural cytotoxic peptides, an emerging source of chemotherapeutics, have exhibited the advantage of overcoming drug resistance and displayed broad-spectrum antitumor activities in the clinic. This highlight examines the increasingly popular cytotoxic peptides from isolated natural products. In-depth review of several peptides provides examples for how this novel strategy can lead to the improved anti-tumor effects. The mechanisms and current application of representative natural cytotoxic peptides (NCPs) have also been discussed, with a particular focus on future directions for interdisciplinary research.
Collapse
Affiliation(s)
- Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Al-Awadhi FH, Luesch H. Targeting eukaryotic proteases for natural products-based drug development. Nat Prod Rep 2020; 37:827-860. [PMID: 32519686 PMCID: PMC7406119 DOI: 10.1039/c9np00060g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to April 2020 Proteases are involved in the regulation of many physiological processes. Their overexpression and dysregulated activity are linked to diseases such as hypertension, diabetes, viral infections, blood clotting disorders, respiratory diseases, and cancer. Therefore, they represent an important class of therapeutic targets. Several protease inhibitors have reached the market and >60% of them are directly related to natural products, even when excluding synthetic natural product mimics. Historically, natural products have been a valuable and validated source of therapeutic agents, as over half of the marketed drugs across targets and diseases are inspired by natural product structures. In the past two decades the number of new protease inhibitors discovered from nature has sharply increased. Additionally, the availability of 3D structural information for proteases has permitted structure-based design and accelerated the synthesis of optimized lead structures with improved potency and selectivity profiles, resulting in some of the most-potent-in-class inhibitors. These discoveries were oftentimes maximized by in-depth biological assessments of lead inhibitors, linking them to a relevant disease state. This review will discuss some of the current and emerging drug targets and their involvement in various disease processes, highlighting selected success stories behind several FDA-approved protease inhibitors that have natural products scaffolds as well as recent selected pharmacologically well-characterized inhibitors derived from marine or terrestrial sources.
Collapse
Affiliation(s)
- Fatma H Al-Awadhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
49
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
50
|
Bioactive Metabolites from the Mariana Trench Sediment-Derived Fungus Penicillium sp. SY2107. Mar Drugs 2020; 18:md18050258. [PMID: 32423167 PMCID: PMC7281598 DOI: 10.3390/md18050258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
Mariana Trench sediments are enriched in microorganisms, however, the structures and bioactivities of their secondary metabolites are not very known. In this study, a fungus Penicillium sp. SY2107 was isolated from a sample of Mariana Trench sediment collected at a depth of 11000 m and an extract prepared from the culture of this fungus in rice medium showed antimicrobial activities. Chemical investigation on this active extract led to the isolation of 16 compounds, including one novel meroterpenoid, named andrastone C. Structure of the new compound was elucidated based on high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, extensive nuclear magnetic resonance (NMR) spectroscopic analyses and a single crystal X-ray diffraction. The crystal structure of a known meroterpenoid andrastone B was also reported in this study. Both andrastones B and C exhibited antimicrobial activities against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans with minimum inhibitory concentration (MIC) values in a range from 6 to 13 g/mL.
Collapse
|