1
|
Kulathunga DP, Potoyan DA. Thermal Adaptation of Extremozymes: Temperature-Sensitive Contact Analysis of Serine Proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641325. [PMID: 40093064 PMCID: PMC11908217 DOI: 10.1101/2025.03.03.641325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Enzyme thermal adaptation reflects a delicate interplay between sequence, structure, and dynamics of proteins, fine-tuning the catalytic activity to environmental demands. Understanding these evolutionary relationships can drive bioengineering advances, including industrial enzyme design, biocatalysts for extreme conditions, and novel therapeutics. This work explores sequence-dynamics connections in subtilisin-like serine protease homologs using a recently developed computational methodology that uses expanded ensemble simulations and temperature-sensitive contact analysis. We reveal that thermophilic enzymes achieve thermal stability through extensive salt bridges and hydrophobic networks, while psychrophilic enzymes rely on targeted interaction stability for cold adaptation. An unsupervised cluster analysis of residue conservation, flexibility, and hydrophobic interactions provides a comprehensive view of residue-specific contributions to thermal adaptation. These findings underscore the coordinated roles of conserved and variable regions in enzyme stability and offer a framework for tailoring enzymes to specific thermal properties for biotechnological applications.
Collapse
Affiliation(s)
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
| |
Collapse
|
2
|
Wang W, Sun P, Li J, Chen M, Guo J, Lin Z, Chen J. Simultaneous Removal of Ammonium and Cr(VI) by the Newly Isolated Marine Bacterium Sulfitobacter dubius PT04 in Tannery Wastewater. Curr Microbiol 2025; 82:165. [PMID: 40029392 DOI: 10.1007/s00284-025-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Biological ammonium nitrogen removal in tannery wastewater is significantly hindered by hexavalent chromium (Cr(VI)) and high salinity. In this study, Sulfitobacter dubius PT04, a newly isolated, salt-tolerant marine bacterium from deep-sea hydrothermal vent sediment in the South Atlantic Ocean, was characterized for its ability to simultaneously remove total ammonia nitrogen (TAN) and Cr(VI). This strain demonstrated effective removal across a pH range of 6-8, temperatures of 25-35 °C, and salinity levels of 0-6%.Optimal conditions identified using Response Surface Methodology (RSM) were pH 6.92, 27.69 °C, and 3.78% salinity. Most TAN was assimilated into biological nitrogen, effectively reducing inorganic nitrogen pollutants. Additionally, Cr(VI) removal was facilitated by enzymatic reactions with reduction activity predominantly in the cell membrane, followed by extracellular release of Cr(III) with minimal surface adsorption. After 7 days of treatment, strain PT04 achieved removal rates of 90.66% for TAN and 74.81% for Cr(VI), highlighting its bioremediation potential for TAN and Cr(VI) in tannery wastewater.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Pingyu Sun
- MCC Capital Engineering & Research Incorporation Limited, Beijing, 100176, China
| | - Jiankang Li
- MCC Capital Engineering & Research Incorporation Limited, Beijing, 100176, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, China
| | - Jiabao Guo
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Zhenyue Lin
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350028, Fujian, China.
| |
Collapse
|
3
|
Martinez Grundman JE, Schultz TD, Schlessman JL, Johnson EA, Gillilan RE, Lecomte JTJ. Extremophilic hemoglobins: The structure of Shewanella benthica truncated hemoglobin N. J Biol Chem 2025; 301:108223. [PMID: 39864624 PMCID: PMC11904497 DOI: 10.1016/j.jbc.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N). In the present work, we characterized the structure of this protein (SbHbN) with electronic absorption spectroscopy and X-ray crystallography and inspected its structural integrity under hydrostatic pressure with NMR spectroscopy and small-angle X-ray scattering. We found that SbHbN self-associates weakly in solution and contains an extensive network of hydrophobic tunnels connecting the active site to the surface. Amino acid replacements at the dimeric interface formed by helices G and H in the crystal confirmed this region to be the site of intermolecular interactions. High hydrostatic pressure dissociated the assemblies while the porous subunits resisted unfolding and heme loss. Preservation of structural integrity under pressure is also observed in nonpiezophilic TrHbs, which suggests that this ancient property is derived from functional requirements. Added to the inability of SbHbN to combine reversibly with dioxygen and a propensity to form heme d, the study broadens our perception of the TrHb lineage and the resistance of globins to extreme environmental conditions.
Collapse
Affiliation(s)
| | - Thomas D Schultz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Sultan M, Rahim A, Sarwar F. Recent trends in production and potential applications of microbial amylases: A comprehensive review. Protein Expr Purif 2025; 227:106640. [PMID: 39645158 DOI: 10.1016/j.pep.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
α-amylases are vital biocatalysts that constitute a billion-dollar industry with a substantial and enduring global demand. Amylases hydrolyze the α-1,4-glycosidic linkages in starch polymers to generate maltose and malto-oligosaccharides subunits. Amylases are key enzymes that have promising applications in various industrial processes ranging from pharmaceutical, pulp and paper, textile food industries to bioremediation and biofuel sectors. Microbial enzymes have been widely used in industrial applications owing to their ease of availability, cost-effectiveness and better stability at extreme temperatures and pH. α-amylases derived from distinct microbial origins exhibit diverse characteristics, which make them suitable for specific applications. The routine application of immobilized enzymes has become a standard practice in the production of numerous industrial products across the pharmaceutical, chemical, and food industries. This review details the structural makeup of microbial α-amylase to understand its thermodynamic characteristics, aiming to identify key areas that could be targeted for improving the thermostability, pH tolerance and catalytic activity of α-amylase through various immobilization techniques or specific enzyme engineering methods. Additionally, the review briefly explores the enzyme production strategies, potential sources of α-amylases, and use of cost-effective and sustainable raw materials for enzyme production to obtain α-amylases with unconventional applications in various industrial sectors. Major hurdles, challenges and future prospects involving microbial α-amylases has been briefly discussed by considering its diverse applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Industrial Biotechnology Devision, National Institute for Biotechnology and Genetics Engineering (NIBGE), 44000, Faisalabad, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Department of Biotechnology, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Mohsin Sultan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Aqdas Rahim
- Department of Biotechnology, Fatima Jinnah Women University, 46000, Rawalpindi, Pakistan.
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
5
|
Ashaolu TJ, Malik T, Soni R, Prieto MA, Jafari SM. Extremophilic Microorganisms as a Source of Emerging Enzymes for the Food Industry: A Review. Food Sci Nutr 2025; 13:e4540. [PMID: 39803234 PMCID: PMC11716999 DOI: 10.1002/fsn3.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 01/16/2025] Open
Abstract
Modern-day consumers are interested in highly nutritious and safe foods with corresponding organoleptic qualities. Such foods are increasingly subjected to various processing techniques which include the use of enzymes. These enzymes like amylases, lipases, proteases, xylanases, laccases, pullulanase, chitinases, pectinases, esterases, isomerases, and dehydrogenases could be derived from extremophilic organisms such as thermophiles, psychrophiles, acidophiles, alkaliphiles, and halophiles. As these organisms can grow under severe environmental conditions, they can produce functional enzymes (extremozymes) used in producing safe foods (such as gluten-free, lactose-free, lower acrylamide, or lower trans-fat products). The extremozymes also enhance nutrient bioavailability and bioaccessibility (e.g., predigested nourishments like baby formulae), and improve nourishment functionalities such as surface, sensory, and bioactive properties. Therefore, exploring alternative sources of enzymes for better compatibility and long-term adaptability in the processing stages is a promising approach for obtaining novel food products. This review will establish novel discovery methods of extremozymes from psychrophiles, thermophiles, acidophiles, alkaliphiles, and halophiles, the enzymes' types, mechanisms of action, and their food applications. It will also contribute to their commercial relevance and the furtherance of their discovery.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health InnovationsDuy Tan UniversityDa NangVietnam
- Faculty of MedicineDuy Tan UniversityDa NangVietnam
| | - Tanu Malik
- Centre of Food Science and TechnologyCCS Haryana Agricultural UniversityHisarHaryanaIndia
| | - Rakhi Soni
- Department of MicrobiologyCCS Haryana Agricultural UniversityHisarHaryanaIndia
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of ScienceUniversidade de VigoOurenseSpain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical EducationTehranIran
| |
Collapse
|
6
|
Mangoma N, Zhou N, Ncube T. Metagenomic insights into the microbial community of the Buhera soda pans, Zimbabwe. BMC Microbiol 2024; 24:510. [PMID: 39614167 DOI: 10.1186/s12866-024-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential. The application of modern "omics-based" techniques helps us better understand the ecology and true extend of the biotechnological potential of soda pan microbiomes. In this study, we used a shotgun metagenomic approach to determine the microbial diversity and functional profile of previously unexplored soda pans located in Buhera, Eastern Zimbabwe. A combination of titrimetry and inductively coupled plasma optical emission spectroscopy (ICP‒OES) was used to perform physico-chemical analysis of the soda pan water. RESULTS Physicochemical analysis revealed that the Buhera soda pans are highly alkaline, with a pH range of 8.74 to 11.03, moderately saline (2.94 - 7.55 g/L), and have high carbonate (3625 mg/L) and bicarbonate ion (1325 mg/L) alkalinity. High levels of sulphate, phosphate, chloride and fluoride ions were detected. Metagenomic analysis revealed that domain Bacteria dominated the soda pan microbial community, with Pseudomonadota and Bacillota being the dominant phyla. Vibrio was shown to be the predominant genus, followed by Clostridium, Candidatus Brevefilum, Acetoanaerobium, Thioalkalivibrio and Marinilactibacillus. Archaea were also detected, albeit at a low prevalence of 1%. Functional profiling revealed that the Buhera soda pan microbiome is functionally diverse, has hydrolytic-enzyme production potential and is capable of supporting a variety of geochemical cycles. CONCLUSIONS The results of this pioneering study showed that despite their extreme alkalinity and moderate salinity, the Buhera soda pans harbour a taxonomically and functionally diverse microbiome dominated by bacteria. Future work will aim towards establishing the full extent of the soda pan's biotechnological potential, with a particular emphasis on potential enzyme production.
Collapse
Affiliation(s)
- Ngonidzashe Mangoma
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe.
| | - Nerve Zhou
- Biological Sciences and Biotechnology Department, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
7
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
8
|
Zhuang Y, Zhang Y, Dai W, Liang Y, Yang X, Wang Y, Shi X, Zhang XH. Paralabilibaculum antarcticum gen. nov., sp. nov., an anaerobic marine bacterium of the family Marinifilaceae isolated from Antarctica sea ice. Antonie Van Leeuwenhoek 2024; 118:8. [PMID: 39305338 DOI: 10.1007/s10482-024-02022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/05/2024] [Indexed: 01/19/2025]
Abstract
A novel bacterial strain, designated DW002T, was isolated from the sea ice of Cape Evans, McMurdo Sound, Antarctica. Cells of the strain were Gram-negative, obligate anaerobic, motile, non-flagellated, and short rod-shaped. The strain DW002T grew at 4-32 ℃ (optimum at 22-28 ℃) and thrived best at pH 7.0, NaCl concentration of 2.5% (w/v). The predominant isoprenoid quinone of strain DW002T was menaquinone-7 (MK-7). The major fatty acids (> 10%) of DW002T were iso-C15:0, anteiso-C15:0 and iso-C17:1ω9c. The predominant polar lipids of strain DW002T contained two phosphatidylethanolamines, one unidentified glycolipid, one unidentified aminolipid and four unidentified lipids. The DNA G + C content of the strain DW002T was 34.8%. Strain DW002T encoded 237 carbohydrate-active enzymes. The strain DW002T had genes associated with dissimilatory nitrate reduction and assimilatory sulfate reduction metabolic pathways. Based on distinct physiological, chemotaxonomic, genome analysis and phylogenetic differences compared to other members of the phylogenetically related genera in the family Marinifilaceae, strain DW002T is proposed to represent a novel genus within the family. Therefore, the name Paralabilibaculum antarcticum gen. nov., sp. nov. is proposed. The type strain is DW002T (=KCTC 25274T=MCCC 1K06067T).
Collapse
Affiliation(s)
- Yifan Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Yunxiao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Wei Dai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Yantao Liang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Xiaoyu Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Yaru Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Xiaochong Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China.
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
9
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
10
|
Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, Huang L, Zhuang Y, Wang D, Xu D, Zhong Q, Guo Y, Li A, Seim I, Jiang L, Wang L, Lee SMY, Liu Y, Wang D, Zhang G, Liu S, Wei X, Yue Z, Zheng S, Shen X, Wang S, Qi C, Chen J, Ye C, Zhao F, Wang J, Fan J, Li B, Sun J, Jia X, Xia Z, Zhang H, Liu J, Zheng Y, Liu X, Wang J, Yang H, Kristiansen K, Xu X, Mock T, Li S, Zhang W, Fan G. Global marine microbial diversity and its potential in bioprospecting. Nature 2024; 633:371-379. [PMID: 39232160 PMCID: PMC11390488 DOI: 10.1038/s41586-024-07891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.
Collapse
Affiliation(s)
- Jianwei Chen
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ying Sun
- BGI Research, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Chuan Liu
- BGI Research, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Yunyun Zhuang
- Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Yang Guo
- BGI Research, Qingdao, China
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Simon Ming Yuen Lee
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yujing Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Shanmin Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chen Qi
- BGI Research, Shenzhen, China
| | - Jing Chen
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | - Chen Ye
- BGI Research, Shenzhen, China
| | | | | | - Jie Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - He Zhang
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Xin Liu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Karsten Kristiansen
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xun Xu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Wenwei Zhang
- BGI Research, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| | - Guangyi Fan
- BGI Research, Qingdao, China.
- BGI Research, Shenzhen, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| |
Collapse
|
11
|
Guo X, Zhao X, Li L, Jin H, Wang J. Development of a microbial dewaxing agent using three spore forming bacteria. BIORESOUR BIOPROCESS 2024; 11:80. [PMID: 39115754 PMCID: PMC11310373 DOI: 10.1186/s40643-024-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
Microbial enhanced oil recovery (MEOR) is a cost effective and efficient method for recovering residual oil. However, the presence of wax (paraffin) in residual oil can substantially reduce the efficiency of MEOR. Therefore, microbial dewaxing is a critical process in MEOR. In this study, a bacterial dewaxing agent of three spore-forming bacteria was developed. Among these bacteria, Bacillus subtilis GZ6 produced the biosurfactant surfactin. Replacing the promoter of the surfactin synthase gene cluster (srfA), increased the titer of surfactin in this strain from 0.33 g/L to 2.32 g/L. The genetically modified strain produced oil spreading rings with diameters increasing from 3.5 ± 0.1 to 4.1 ± 0.2 cm. The LadA F10L/N133R mutant was created by engineering an alkane monooxygenase (LadA) using site-directed mutagenesis in the Escherichia coli host. Compared to the wild-type enzyme, the resulting mutant exhibited an 11.7-fold increase in catalytic efficiency toward the substrate octadecane. When the mutant (pIMPpladA2mu) was expressed in Geobacillus stearothermophilus GZ178 cells, it exhibited a 2.0-fold increase in octadecane-degrading activity. Cultures of the two modified strains (B. subtilis GZ6 (pg3srfA) and G. stearothermophilus GZ178 (pIMPpladA2mu)) were mixed with the culture of Geobacillus thermodenitrificans GZ156 at a ratio of 5:80:15. The resulting composition increased the rate of wax removal by 35% compared to the composition composed of three native strains. This study successfully developed a multi-strain bacterial agent with enhanced oil wax removal capabilities by genetically engineering two bacterial strains.
Collapse
Affiliation(s)
- Xiaoyan Guo
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People's Republic of China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, People's Republic of China
| | - Xutao Zhao
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People's Republic of China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, People's Republic of China
| | - Lizhu Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People's Republic of China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People's Republic of China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, People's Republic of China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| |
Collapse
|
12
|
Gao M, Shu F, Zhou W, Li H, Wu Y, Wang Y, Zhao S, Song Z. A Rapid Nanofocusing Method for a Deep-Sea Gene Sequencing Microscope Based on Critical Illumination. SENSORS (BASEL, SWITZERLAND) 2024; 24:5010. [PMID: 39124058 PMCID: PMC11314998 DOI: 10.3390/s24155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
In the deep-sea environment, the volume available for an in-situ gene sequencer is severely limited. In addition, optical imaging systems are subject to real-time, large-scale defocusing problems caused by ambient temperature fluctuations and vibrational perturbations. To address these challenges, we propose an edge detection algorithm for defocused images based on grayscale gradients and establish a defocus state detection model with nanometer resolution capabilities by relying on the inherent critical illumination light field. The model has been applied to a prototype deep-sea gene sequencing microscope with a 20× objective. It has demonstrated the ability to focus within a dynamic range of ±40 μm with an accuracy of 200 nm by a single iteration within 160 ms. By increasing the number of iterations and exposures, the focusing accuracy can be refined to 78 nm within a dynamic range of ±100 μm within 1.2 s. Notably, unlike conventional photoelectric hill-climbing, this method requires no additional hardware and meets the wide dynamic range, speed, and high-accuracy autofocusing requirements of deep-sea gene sequencing in a compact form factor.
Collapse
Affiliation(s)
- Ming Gao
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Fengfeng Shu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Wenchao Zhou
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Huan Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Yihui Wu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Yue Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Shixun Zhao
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| | - Zihan Song
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Applied Optics, Changchun 130033, China
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
13
|
Lin Y, Yin Y, Oger P, Gong Y, Zhou X, Bai Y, Zhang L. New insights into thermostable iron-containing/activated alcohol dehydrogenases from hyperthermophiles. Int J Biol Macromol 2024; 275:133707. [PMID: 38972651 DOI: 10.1016/j.ijbiomac.2024.133707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Alcohol dehydrogenase (ADH) is an important enzyme that catalyzes alcohol oxidation and/or aldehyde reduction. As one of NAD+-dependent ADH types, iron-containing/activated ADH (Fe-ADH) is ubiquitous in Bacteria, Archaea, and Eukaryotes, possessing a similar "tunnel-like" structure that is composed of a domain A in its N-terminus and a domain B in its C-terminus. A conserved "GGGS" sequence in the domain A of Fe-ADH associates with NAD+, and one conserved Asp residue and three conserved His residues in the domain B are its catalytic active sites by surrounding with Fe atom, suggesting that it might employ similar catalytic mechanism. Notably, all the biochemically characterized Fe-ADHs from hyperthermophiles that thrive in above 80 °C possess two unique characteristics that are absent in other Fe-ADHs: thermophilicity and thermostability, thereby demonstrating that they can oxidize alcohol and reduce aldehyde at high temperature. Considering these two unique characteristics, Fe-ADHs from hyperthermophiles are potentially industrial biocatalysts for alcohol and aldehyde biotransformation at high temperature. Herein, we reviewed structural and biochemical characteristics of Fe-ADHs from hyperthermophiles, focusing on similarity and difference between Fe-ADHs from hyperthermophiles and their homologs from non-hyperthermophiles, and between hyperthermophilic archaeal Fe-ADHs and bacterial homologs. Furthermore, we proposed future directions of Fe-ADHs from hyperthermophiles.
Collapse
Affiliation(s)
- Yushan Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Philippe Oger
- Univ Lyon, INSA De Lyon, CNRS UMR 5240, Lyon, France
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Xiaojian Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
14
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
15
|
Zhang M, Tong X, Wang W, Wang J, Qu W. Agarose biodegradation by deep-sea bacterium Vibrio natriegens WPAGA4 with the agarases through horizontal gene transfer. J Basic Microbiol 2024; 64:e2300521. [PMID: 37988660 DOI: 10.1002/jobm.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
This study aimed to reveal the importance of horizontal gene transfer (HGT) for the agarose-degrading ability and the related degradation pathway of a deep-sea bacterium Vibrio natriegens WPAGA4, which was rarely reported in former works. A total of four agarases belonged to the GH50 family, including Aga3418, Aga3419, Aga3420, and Aga3472, were annotated and expressed in Escherichia coli cells. The agarose degradation products of Aga3418, Aga3420, and Aga3472 were neoagarobiose, while those of Aga3419 were neoagarobiose and neoagarotetraose. The RT-qPCR analysis showed that the expression level ratio of Aga3418, Aga3419, Aga3420, and Aga3472 was stable at about 1:1:1.5:2.5 during the degradation, which indicated the optimal expression level ratio of the agarases for agarose degradation by V. natriegens WPAGA4. Based on the genomic information, three of four agarases and other agarose-degrading related genes were in a genome island with a G + C content that was obviously lower than that of the whole genome of V. natriegens WPAGA4, indicating that these agarose-degrading genes were required through HGT. Our results demonstrated that the expression level ratio instead of the expression level itself of agarase genes was crucial for agarose degradation by V. natriegens WPAGA4, and HGT occurred in the deep-sea environment, thereby promoting the deep-sea carbon cycle and providing a reference for studying the evolution and transfer pathways of agar-related genes.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Xiufang Tong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wenxin Wang
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
16
|
El-Sayed MH, Elsayed DA, Gomaa AERF. Nocardiopsis synnemataformans NBRM9, an extremophilic actinomycete producing extremozyme cellulase, using lignocellulosic agro-wastes and its biotechnological applications. AIMS Microbiol 2024; 10:187-219. [PMID: 38525045 PMCID: PMC10955166 DOI: 10.3934/microbiol.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Actinomycetes are an attractive source of lignocellulose-degrading enzymes. The search for actinomycetes producing extremozyme cellulase using cheap lignocellulosic waste remains a priority goal of enzyme research. In this context, the extremophilic actinomycete NBRM9 showed promising cellulolytic activity in solid and liquid assays. This actinomycete was identified as Nocardiopsis synnemataformans based on its phenotypic characteristics alongside phylogenetic analyses of 16S rRNA gene sequencing (OQ380604.1). Using bean straw as the best agro-waste, the production of cellulase from this strain was statistically optimized using a response surface methodology, with the maximum activity (13.20 U/mL) achieved at an incubation temperature of 40 °C, a pH of 9, an incubation time of 7 days, and a 2% substrate concentration. The partially purified cellulase (PPC) showed promising activity and stability over a wide range of temperatures (20-90 °C), pH values (3-11), and NaCl concentrations (1-19%), with optimal activity at 50 °C, pH 9.0, and 10% salinity. Under these conditions, the enzyme retained >95% of its activity, thus indicating its extremozyme nature. The kinetics of cellulase showed that it has a Vmax of 20.19 ± 1.88 U/mL and a Km of 0.25 ± 0.07 mM. The immobilized PPC had a relative activity of 69.58 ± 0.13%. In the in vitro microtiter assay, the PPC was found to have a concentration-dependent anti-biofilm activity (up to 85.15 ± 1.60%). Additionally, the fermentative conversion of the hydrolyzed bean straw by Saccharomyces cerevisiae (KM504287.1) amounted to 65.80 ± 0.52% of the theoretical ethanol yield. Overall, for the first time, the present work reports the production of extremozymatic (thermo, alkali-, and halo-stable) cellulase from N. synnemataformans NBRM9. Therefore, this strain is recommended for use as a biotool in many lignocellulosic-based applications operating under harsh conditions.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Doaa A. Elsayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
| | - Abd El-Rahman F. Gomaa
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
17
|
Banerjee S, Cabrera-Barjas G, Tapia J, Fabi JP, Delattre C, Banerjee A. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:15. [PMID: 38310179 PMCID: PMC10838260 DOI: 10.1007/s13659-024-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Collapse
Affiliation(s)
- Srijan Banerjee
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile.
| |
Collapse
|
18
|
Zhang Z, Liu T, Li X, Ye Q, Bangash HI, Zheng J, Peng N. Metagenome-assembled genomes reveal carbohydrate degradation and element metabolism of microorganisms inhabiting Tengchong hot springs, China. ENVIRONMENTAL RESEARCH 2023; 238:117144. [PMID: 37716381 DOI: 10.1016/j.envres.2023.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.
Collapse
Affiliation(s)
- Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Yahiaoui B, Bounabi H, Boukerb AM, Gasmi M. Insights into Genomic Features and Potential Biotechnological Applications of Bacillus halotolerans Strain HGR5. Pol J Microbiol 2023; 72:477-490. [PMID: 38103009 PMCID: PMC10725166 DOI: 10.33073/pjm-2023-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Algeria is one of the wealthiest countries in terms of hydrothermal sources, with more than two hundred hot springs. However, diverse and little-described microbial communities colonize these habitats, making them an intriguing research subject. This work reports the isolation of bacteria from two hot springs water samples in northeastern Algeria, evaluating their enzymatic activities and effect on plant pathogens. Out of the obtained 72 bacterial isolates and based on the 16S rRNA gene sequence analysis, the strain HGR5 belonging to Bacillus halotolerans had the most interesting activity profile. Interestingly, HGR5 was substantially active against Fusarium graminearum, Phytophthora infestans, and Alternaria alternata. Furthermore, this strain presented a high ability to degrade casein, Tween 80, starch, chitin, cellulose, and xylan. The genome sequence of HGR5 allowed taxonomic validation and screening of specific genetic traits, determining its antagonistic and enzymatic activities. Genome mining revealed that strain HGR5 encloses several secondary metabolite biosynthetic gene clusters (SM-BGCs) involved in metabolite production with antimicrobial properties. Thus, antimicrobial metabolites included bacillaene, fengycin, laterocidine, bacilysin, subtilosin, bacillibactin, surfactin, myxovirescin, dumulmycin, and elansolid A1. HGR5 strain genome was also mined for CAZymes associated with antifungal activity. Finally, the HGR5 strain exhibited the capacity to degrade polycaprolactone (PCL), a model substrate for polyester biodegradation. Overall, these results suggest that this strain may be a promising novel biocontrol agent with interesting plastic-degradation capability, opening the possibilities of its use in various biotechnological applications.
Collapse
Affiliation(s)
- Bilal Yahiaoui
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif, Algeria
| | - Hadjira Bounabi
- Higher National School of Biotechnology Taoufik Khaznadar, Constantine, Algeria
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik Khaznadar, Constantine, Algeria
| | - Amine M. Boukerb
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, Rouen, France
| | - Meriem Gasmi
- Higher National School of Biotechnology Taoufik Khaznadar, Constantine, Algeria
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik Khaznadar, Constantine, Algeria
| |
Collapse
|
20
|
Sharma N, Agarwal A, Bijoy A, Pandit S, Sharma RK. Lignocellulolytic extremozymes and their biotechnological applications. Extremophiles 2023; 28:2. [PMID: 37950773 DOI: 10.1007/s00792-023-01314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Lignocellulolytic enzymes are used in different industrial and environmental processes. The rigorous operating circumstances of these industries, however, might prevent these enzymes from performing as intended. On the other side, extremozymes are enzymes produced by extremophiles that can function in extremely acidic or basic; hot or cold; under high or low salinity conditions. These severe conditions might denature the normal enzymes that are produced by mesophilic microorganisms. The increased stability of these enzymes has been contributed to a number of conformational modifications in their structures. These modifications may result from a few amino acid substitutions, an improved hydrophobic core, the existence of extra ion pairs and salt bridges, an increase in compactness, or an increase in positively charged amino acids. These enzymes are the best option for industrial and bioremediation activities that must be carried out under difficult conditions due to their improved stability. The review, therefore, discusses lignocellulolytic extremozymes, their structure and mechanisms along with industrial and biotechnological applications.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Aditi Agarwal
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Ananya Bijoy
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Sunidhi Pandit
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, India.
| |
Collapse
|
21
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Wang J, Lin L, Wu Q, Liu B, Li B. Design of a multi-band Raman tweezers objective for in situ studies of deep-sea microorganisms. OPTICS EXPRESS 2023; 31:36883-36902. [PMID: 38017829 DOI: 10.1364/oe.503218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 11/30/2023]
Abstract
The investigation of deep-sea microorganisms holds immense significance and value in advancing the fields of life sciences, biotechnology, and environmental conservation. However, the current lack of specialized underwater objectives specifically designed for in situ studies of deep-sea microorganisms hampers progress in this area. To address this limitation, we present the design of a multi-band Raman tweezer objective tailored for deep-sea environments. The objective is integrated into a high-pressure chamber capable of withstanding depths up to 1.5 km, enabling in situ microscopic imaging, optical tweezer capture, and Raman detection of deep-sea microorganisms. Through meticulous structural optimization, meticulous material selection, and thorough mechanical analysis of the underwater optical window, the objective exhibits remarkable attributes such as multi-band functionality, extended working distance, and high numerical aperture. Our design yields image quality near the diffraction limit, successfully achieving flat-field and apochromatic performance in each respective wavelength bands. Moreover, the tolerance analysis demonstrates that the full-field root mean square (RMS) wave aberration approaches λ/14, effectively meeting the demands of manufacturing and practical applications. This objective lens constitutes a vital tool for the in situ exploration of deep-sea microorganisms.
Collapse
|
23
|
Daddaoua A, Álvarez C, Oggerin M, Rodriguez N, Duque E, Amils R, Armengaud J, Segura A, Ramos JL. Rio Tinto as a niche for acidophilus enzymes of industrial relevance. Microb Biotechnol 2023; 16:1069-1086. [PMID: 36748404 PMCID: PMC10128141 DOI: 10.1111/1751-7915.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/06/2022] [Indexed: 02/08/2023] Open
Abstract
Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rıo Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5-5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC‐US)Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, CIC CartujaSevilleSpain
| | - Monika Oggerin
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
| | | | | | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
- Centro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS)Université Paris Saclay, CEA, INRAEBagnols‐sur‐CèzeFrance
| | - Ana Segura
- Estación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | | |
Collapse
|
24
|
Zhou H, Liu Q, Jiang L, Shen Q, Chen C, Zhang C, Tang J. Enhanced remediation of oil-contaminated intertidal sediment by bacterial consortium of petroleum degraders and biosurfactant producers. CHEMOSPHERE 2023; 330:138763. [PMID: 37094722 DOI: 10.1016/j.chemosphere.2023.138763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Oil pollution in intertidal zones is an important environmental issue that has serious adverse effects on coastal ecosystems. This study investigated the efficacy of a bacterial consortium constructed from petroleum degraders and biosurfactant producers in the bioremediation of oil-polluted sediment. Inoculation of the constructed consortium significantly enhanced the removal of C8-C40n-alkanes (80.2 ± 2.8% removal efficiency) and aromatic compounds (34.4 ± 10.8% removal efficiency) within 10 weeks. The consortium played dual functions of petroleum degradation and biosurfactant production, greatly improving microbial growth and metabolic activities. Real-time quantitative polymerase chain reaction (PCR) showed that the consortium markedly increased the proportions of indigenous alkane-degrading populations (up to 3.88-times higher than that of the control treatment). Microbial community analysis demonstrated that the exogenous consortium activated the degradation functions of indigenous microflora and promoted synergistic cooperation among microorganisms. Our findings indicated that supplementation of a bacterial consortium of petroleum degraders and biosurfactant producers is a promising bioremediation strategy for oil-polluted sediments.
Collapse
Affiliation(s)
- Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Qing Liu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, PR China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, PR China
| | - Qi Shen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, PR China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, PR China.
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
25
|
Wang S, Lei H, Ji Z. Exploring Oxidoreductases from Extremophiles for Biosynthesis in a Non-Aqueous System. Int J Mol Sci 2023; 24:ijms24076396. [PMID: 37047370 PMCID: PMC10094897 DOI: 10.3390/ijms24076396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Organic solvent tolerant oxidoreductases are significant for both scientific research and biomanufacturing. However, it is really challenging to obtain oxidoreductases due to the shortages of natural resources and the difficulty to obtained it via protein modification. This review summarizes the recent advances in gene mining and structure-functional study of oxidoreductases from extremophiles for non-aqueous reaction systems. First, new strategies combining genome mining with bioinformatics provide new insights to the discovery and identification of novel extreme oxidoreductases. Second, analysis from the perspectives of amino acid interaction networks explain the organic solvent tolerant mechanism, which regulate the discrete structure-functional properties of extreme oxidoreductases. Third, further study by conservation and co-evolution analysis of extreme oxidoreductases provides new perspectives and strategies for designing robust enzymes for an organic media reaction system. Furthermore, the challenges and opportunities in designing biocatalysis non-aqueous systems are highlighted.
Collapse
Affiliation(s)
- Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen 361005, China
| | - Hangbin Lei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhehui Ji
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
27
|
Liew KJ, Zakaria MR, Hong CWL, Tan MCY, Chong CS. Draft genome sequence of Joostella atrarenae M1-2 T with cellulolytic and hemicellulolytic ability. 3 Biotech 2023; 13:50. [PMID: 36685320 PMCID: PMC9845502 DOI: 10.1007/s13205-023-03472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The halophilic genus Joostella is one of the least-studied genera in the family of Flavobacteriaceae. So far, only two species were taxonomically identified with limited genomic analysis in the aspect of application has been reported. Joostella atrarenae M1-2T was previously isolated from a seashore sample and it is the second discovered species of the genus Joostella. In this project, the genome of J. atrarenae M1-2T was sequenced using NovaSeq 6000. The final assembled genome is comprised of 71 contigs, a total of 3,983,942 bp, a GC ratio of 33.2%, and encoded for 3,416 genes. The 16S rRNA gene sequence of J. atrarenae M1-2T shows 97.3% similarity against J. marina DSM 19592T. Genome-genome comparison between the two strains by ANI, dDDH, AAI, and POCP shows values of 80.8%, 23.3%, 83.4%, and 74.1% respectively. Pan-genome analysis shows that strain M1-2T and J. marina DSM 19592T shared a total of 248 core genes. Taken together, strain M-2T and J. marina DSM 19592T belong to the same genus but are two different species. CAZymes analysis revealed that strain M1-2T harbors 109 GHs, 40 GTs, 5 PLs, 9 CEs, and 6 AAs. Among these CAZymes, while 5 genes are related to cellulose degradation, 12 and 24 genes are found to encode for xylanolytic enzymes and other hemicellulases that involve majorly in the side chain removal of the lignocellulose structure, respectively. Furthermore, both the intracellular and extracellular crude extracts of strain M1-2T exhibited enzymatic activities against CMC, xylan, pNPG, and pNPX substrates, which corresponding to endoglucanase, xylanase, β-glucosidase, and β-xylosidase, respectively. Collectively, description of genome coupled with the enzyme assay results demonstrated that J. atrarenae M1-2T has a role in lignocellulosic biomass degradation, and the strain could be useful for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | | | - Clarine Wan Ling Hong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
28
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
A Review on Psychrophilic β-D-Galactosidases and Their Potential Applications. Appl Biochem Biotechnol 2022; 195:2743-2766. [PMID: 36422804 DOI: 10.1007/s12010-022-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
The majority of the Earth's ecosystem is frigid and frozen, which permits a vast range of microbial life forms to thrive by triggering physiological responses that allow them to survive in cold and frozen settings. The apparent biotechnology value of these cold-adapted enzymes has been targeted. Enzymes' market size was around USD 6.3 billion in 2017 and will witness growth at around 6.8% CAGR up to 2024 owing to shifting consumer preferences towards packaged and processed foods due to the rising awareness pertaining to food safety and security reported by Global Market Insights (Report ID-GMI 743). Various firms are looking for innovative psychrophilic enzymes in order to construct more effective biochemical pathways with shorter reaction times, use less energy, and are ecologically acceptable. D-Galactosidase catalyzes the hydrolysis of the glycosidic oxygen link between the terminal non-reducing D-galactoside unit and the glycoside molecule. At refrigerated temperature, the stable structure of psychrophile enzymes adjusts for the reduced kinetic energy. It may be beneficial in a wide variety of activities such as pasteurization of food, conversion of biomass, biological role of biomolecules, ambient biosensors, and phytoremediation. Recently, psychrophile enzymes are also used in claning the contact lens. β-D-Galactosidases have been identified and extracted from yeasts, fungi, bacteria, and plants. Conventional (hydrolyzing activity) and nonconventional (non-hydrolytic activity) applications are available for these enzymes due to its transgalactosylation activity which produce high value-added oligosaccharides. This review content will offer new perspectives on cold-active β-galactosidases, their source, structure, stability, and application.
Collapse
|
30
|
Xu L, Zhang Y, Liu N, Wei Z, Wang Z, Wang Y, Wang S. Purification and characterization of cold-adapted and salt-tolerant dextranase from Cellulosimicrobium sp. THN1 and its potential application for treatment of dental plaque. Front Microbiol 2022; 13:1012957. [PMID: 36439846 PMCID: PMC9691899 DOI: 10.3389/fmicb.2022.1012957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 10/28/2023] Open
Abstract
The cold-adapted and/or salt-tolerant enzymes from marine microorganisms were confirmed to be meritorious tools to enhance the efficiency of biocatalysis in industrial biotechnology. We purified and characterized a dextranase CeDex from the marine bacterium Cellulosimicrobium sp. THN1. CeDex acted in alkaline pHs (7.5-8.5) and a broad temperature range (10-50°C) with sufficient pH stability and thermostability. Remarkably, CeDex retained approximately 40% of its maximal activities at 4°C and increased its activity to 150% in 4 M NaCl, displaying prominently cold adaptation and salt tolerance. Moreover, CeDex was greatly stimulated by Mg2+, Na+, Ba2+, Ca2+ and Sr2+, and sugarcane juice always contains K+, Ca2+, Mg2+ and Na+, so CeDex will be suitable for removing dextran in the sugar industry. The main hydrolysate of CeDex was isomaltotriose, accompanied by isomaltotetraose, long-chain IOMs, and a small amount of isomaltose. The amino acid sequence of CeDex was identified from the THN1 genomic sequence by Nano LC-MS/MS and classified into the GH49 family. Notably, CeDex could prevent the formation of Streptococcus mutans biofilm and disassemble existing biofilms at 10 U/ml concentration and would have great potential to defeat biofilm-related dental caries.
Collapse
Affiliation(s)
- Linxiang Xu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Yan Zhang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Nannan Liu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shujun Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
31
|
Pan K, Liu Z, Zhang Z, Jin S, Yu Z, Liu T, Zhang T, Zhao J, Li Z. Improving the Specific Activity and Thermostability of Psychrophilic Xylosidase AX543 by Comparative Mutagenesis. Foods 2022; 11:foods11162463. [PMID: 36010463 PMCID: PMC9407119 DOI: 10.3390/foods11162463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Improving the specific activity and thermostability of psychrophilic xylosidase is important for improving its enzymatic performance and promoting its industrial application. Herein, a psychrophilic xylosidase AX543 exhibited activity in the temperature range between 0 and 35 °C, with optimum activity at 20 °C, which is lower than that of other reported psychrophilic xylosidases. The thermostability, specific activity, and catalytic efficiency of the site-directed variants G110S, Q201R, and L2 were significantly enhanced, without affecting the optimal reaction temperature. Comparative protein structural analysis and molecular dynamics simulation indicated that these improvements might be the result of the increased hydrogen bonds interaction and improved structural rigidity. Furthermore, homologous module substitution with four segments demonstrated that the psychrophilic characteristics of AX543 are the results of the whole protein structure, and the C-terminal segment A4 appears to be more essential in determining psychrophilic characteristics, exhibiting potentiality to produce more psychrophilic xylosidases. This study provides valuable structural information on psychrophilic xylosidases and also offers attractive modification strategies to modify catalytic activity, thermostability, and optimal reaction temperature.
Collapse
Affiliation(s)
- Kungang Pan
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongqi Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengjie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shanzheng Jin
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Yu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianhui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junqi Zhao
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- Correspondence: (J.Z.); (Z.L.)
| | - Zhongyuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (J.Z.); (Z.L.)
| |
Collapse
|
32
|
Pither MD, Sun ML, Speciale I, Silipo A, Zhang YZ, Molinaro A, Di Lorenzo F. Structural determination of the lipid A from the deep-sea bacterium Zunongwangia profunda SM-A87: a small-scale approach. Glycoconj J 2022; 39:565-578. [PMID: 35930130 PMCID: PMC9470727 DOI: 10.1007/s10719-022-10076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022]
Abstract
Zunongwangia profunda SM-A87 is a deep-sea sedimentary bacterium from the phylum Bacteroidetes, representing a new genus of Flavobacteriaceae. It was previously investigated for its capability of yielding high quantities of capsular polysaccharides (CPS) with interesting rheological properties, including high viscosity and tolerance to high salinities and temperatures. However, as a Gram-negative, Z. profunda SM-A87 also expresses lipopolysaccharides (LPS) as the main components of the external leaflet of its outer membrane. Here, we describe the isolation and characterization of the glycolipid part of this LPS, i.e. the lipid A, which was achieved by-passing the extraction procedure of the full LPS and by working on the ethanol precipitation product, which contained both the CPS fraction and bacterial cells. To this aim a dual approach was adopted and all analyses confirmed the isolation of Z. profunda SM-A87 lipid A that turned out to be a blend of species with high levels of heterogeneity both in the acylation and phosphorylation pattern, as well as in the hydrophilic backbone composition. Mono-phosphorylated tetra- and penta-acylated lipid A species were identified and characterized by a high content of branched, odd-numbered, and unsaturated fatty acid chains as well as, for some species, by the presence of a hybrid disaccharide backbone.
Collapse
Affiliation(s)
- Molly Dorothy Pither
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Mei-Ling Sun
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 80055, Portici, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, People's Republic of China
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Flaviana Di Lorenzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 80055, Portici, Naples, Italy.
| |
Collapse
|
33
|
Herbert-Read JE, Thornton A, Amon DJ, Birchenough SNR, Côté IM, Dias MP, Godley BJ, Keith SA, McKinley E, Peck LS, Calado R, Defeo O, Degraer S, Johnston EL, Kaartokallio H, Macreadie PI, Metaxas A, Muthumbi AWN, Obura DO, Paterson DM, Piola AR, Richardson AJ, Schloss IR, Snelgrove PVR, Stewart BD, Thompson PM, Watson GJ, Worthington TA, Yasuhara M, Sutherland WJ. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat Ecol Evol 2022; 6:1262-1270. [PMID: 35798839 DOI: 10.1038/s41559-022-01812-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.
Collapse
Affiliation(s)
| | - Ann Thornton
- Conservation Science Group, Department of Zoology, Cambridge University, Cambridge, UK.
| | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago.,Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria P Dias
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.,BirdLife International, The David Attenborough Building, Cambridge, UK
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sally A Keith
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Emma McKinley
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Ricardo Calado
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Omar Defeo
- Laboratory of Marine Sciences (UNDECIMAR), Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Steven Degraer
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Brussels, Belgium
| | - Emma L Johnston
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Peter I Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Victoria, Australia
| | - Anna Metaxas
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - David O Obura
- Coastal Oceans Research and Development in the Indian Ocean, Mombasa, Kenya.,School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - David M Paterson
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Alberto R Piola
- Servício de Hidrografía Naval, Buenos Aires, Argentina.,Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos, CONICET/CNRS, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anthony J Richardson
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, Brisbane, Queensland, Australia
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina.,Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur, Ushuaia, Argentina
| | - Paul V R Snelgrove
- Department of Ocean Sciences and Biology Department, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Bryce D Stewart
- Department of Environment and Geography, University of York, York, UK
| | - Paul M Thompson
- Lighthouse Field Station, School of Biological Sciences, University of Aberdeen, Cromarty, UK
| | - Gordon J Watson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Thomas A Worthington
- Conservation Science Group, Department of Zoology, Cambridge University, Cambridge, UK
| | - Moriaki Yasuhara
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, Musketeers Foundation Institute of Data Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Kadoorie Biological Sciences Building, Hong Kong, China
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, Cambridge, UK.,Biosecurity Research Initiative at St Catharine's (BioRISC), St Catharine's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Sponge–Microbial Symbiosis and Marine Extremozymes: Current Issues and Prospects. SUSTAINABILITY 2022. [DOI: 10.3390/su14126984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Marine microorganisms have great potential for producing extremozymes. They enter useful relationships like many other organisms in the marine habitat. Sponge–microbial symbiosis enables both sponges and microorganisms to mutually benefit each other while performing their activities within the ecosystem. Sponges, because of their nature as marine cosmopolitan benthic epifaunas and filter feeders, serve as a host for many extremophilic marine microorganisms. Potential extremozymes from microbial symbionts are largely dependent on their successful relationship. Extremozymes have found relevance in food processing, bioremediation, detergent, and drug production. Species diversity approach, industrial-scale bioremediation, integrative bioremediation software, government and industrial support are considered. The high cost of sampling, limited research outcomes, low species growth in synthetic media, laborious nature of metagenomics projects, difficulty in the development of synthetic medium, limited number of available experts, and technological knowhow are current challenges. The unique properties of marine extremozymes underpin their application in industry and biotechnological processes. There is therefore an urgent need for the development of cost-effective methods with government and industry support.
Collapse
|
35
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
36
|
Tian Y, Li Y. A Review on Bioactive Compounds from Marine-Derived Chaetomium Species. J Microbiol Biotechnol 2022; 32:541-550. [PMID: 35586928 PMCID: PMC9628867 DOI: 10.4014/jmb.2201.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,Corresponding authors Yuan Tian E-mail:
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,
Yanling Li E-mail:
| |
Collapse
|
37
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
38
|
Márquez-Villa JM, Mateos-Díaz JC, Rodríguez-González JA, Camacho-Ruíz RM. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms 2022; 10:983. [PMID: 35630427 PMCID: PMC9145298 DOI: 10.3390/microorganisms10050983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 02/05/2023] Open
Abstract
Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.
Collapse
Affiliation(s)
| | | | | | - Rosa María Camacho-Ruíz
- Department of Industrial Biotechnology, CIATEJ-CONACyT, Zapopan 45019, Mexico; (J.M.M.-V.); (J.C.M.-D.); (J.A.R.-G.)
| |
Collapse
|
39
|
Assessing the inhibitory activity of culture supernatants against foodborne pathogens of two psychrotrophic bacteria isolated from river trout. Arch Microbiol 2022; 204:294. [PMID: 35507075 PMCID: PMC9068630 DOI: 10.1007/s00203-022-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022]
Abstract
There is a need for new natural products with antimicrobial activity to treat multidrug resistant bacteria that can cause human illness. Some of them are foodborne pathogens. Two different Gram-negative psychrotrophic strains were isolated from healthy trout river samples (Salmotrutta). Based on phenotypic characterization, proteomics, genotyping and phylogenetic analyses of 16 rRNA gene, strains TCPS12 and TCPS13 were identified as Shewanellabaltica and Pseudomonasfragi, respectively. Both of them produced an exopolysaccharide that showed antimicrobial activity against four foodborne pathogens. P. fragi supernatant (AS13) showed higher antimicrobial activity than S. baltica supernatant (AS12) against all tested pathogens. The stability of the antimicrobial activity of AS13 was assessed against Enterococcus faecalis ATCC 29212 under different conditions. This solution was stable when exposed for 30 min to temperatures ranging from 40 to 100 °C. In addition, it retained its activity within a pH range of 2–8 during 2 h of incubation, showing higher activity at pH 6. Serine proteases and α-amylase inactivated significantly the antimicrobial activity of AS13, suggesting that the active molecule could most likely be a glycoprotein. These products are interesting for their possible application as biopreservatives in the food industry.
Collapse
|
40
|
Mesbah NM. Industrial Biotechnology Based on Enzymes From Extreme Environments. Front Bioeng Biotechnol 2022; 10:870083. [PMID: 35480975 PMCID: PMC9036996 DOI: 10.3389/fbioe.2022.870083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Biocatalysis is crucial for a green, sustainable, biobased economy, and this has driven major advances in biotechnology and biocatalysis over the past 2 decades. There are numerous benefits to biocatalysis, including increased selectivity and specificity, reduced operating costs and lower toxicity, all of which result in lower environmental impact of industrial processes. Most enzymes available commercially are active and stable under a narrow range of conditions, and quickly lose activity at extremes of ion concentration, temperature, pH, pressure, and solvent concentrations. Extremophilic microorganisms thrive under extreme conditions and produce robust enzymes with higher activity and stability under unconventional circumstances. The number of extremophilic enzymes, or extremozymes, currently available are insufficient to meet growing industrial demand. This is in part due to difficulty in cultivation of extremophiles in a laboratory setting. This review will present an overview of extremozymes and their biotechnological applications. Culture-independent and genomic-based methods for study of extremozymes will be presented.
Collapse
Affiliation(s)
- Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
41
|
Kochhar N, I․K K, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M. Perspectives on the microorganism of extreme environments and their applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100134. [PMID: 35909612 PMCID: PMC9325743 DOI: 10.1016/j.crmicr.2022.100134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Extremophiles are organisms that can survive and thrive in conditions termed as "extreme" by human beings. Conventional methods cannot be applied under extreme conditions like temperature and pH fluctuations, high salinity, etc. for a variety of reasons. Extremophiles can function and are adapted to thrive in these environments and are sustainable, cheaper, and efficient, therefore, they serve as better alternatives to the traditional methods. They adapt to these environments with biochemical and physiological changes and produce products like extremolytes, extremozymes, biosurfactants, etc., which are found to be useful in a wide range of industries like sustainable agriculture, food, cosmetics, and pharmaceuticals. These products also play a crucial role in bioremediation, production of biofuels, biorefinery, and astrobiology. This review paper comprehensively lists out the current applications of extremophiles and their products in various industries and explores the prospects of the same. They help us understand the underlying basis of biological mechanisms exploring the boundaries of life and thus help us understand the origin and evolution of life on Earth. This helps us in the research for extra-terrestrial life and space exploration. The structure and biochemical properties of extremophiles along with any possible long-term effects of their applications need to be investigated further.
Collapse
Affiliation(s)
- Nikita Kochhar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | - Kavya I․K
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Anshika Ghosh
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
| | | | - Kushneet Kaur Sodhi
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Mohit Kumar
- Department of Zoology, Hindu College, University of Delhi, Delhi-110007, India
- Department of Zoology, University of Delhi, Delhi-110007, India
| |
Collapse
|
42
|
Ahmed SF, Abdallah RZ, Siam R. Evaluation of a Thermophilic, Psychrostable, and Heavy Metal-Resistant Red Sea Brine Pool Esterase. Mar Drugs 2022; 20:md20050274. [PMID: 35621925 PMCID: PMC9144027 DOI: 10.3390/md20050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Lipolytic enzymes catalyze the hydrolysis and synthesis of ester compounds. They are valuable in the pulp, food, and textile industries. This study aims to comprehensively evaluate the extreme properties of a hormone-sensitive lipase (EstATII-TM) isolated from the Red Sea Atlantis II brine pool. EstATII-TM was cloned, expressed, and its biochemical activities were assessed under different conditions. EstATII-TM catalytic properties and resistance to different metal ions were compared to commercial thermophilic esterases under different temperatures. Phylogenetically, EstATII-TM was assigned to the GDSAG motif subfamily of hormone-sensitive lipase. The optimal enzyme activity was evident at a temperature of 30 °C and pH 7–8. The enzyme retained 84.9% of its activity at 0.5 M NaCl. EstATII-TM maintained 93% to 97% activity at −40 and −20 °C, respectively. EstATII-TM activity was significantly enhanced, up to 10-fold, at temperatures ranging from 45 to 65 °C in the presence of 1 mM Cu2+, Cd2+, Ba2+, Mn2+, and Zn2+. EstATII-TM showed superior catalytic activity and resistance-to/enhancement-by metal ions compared to two commercial thermophilic esterases. The Red Sea Atlantis II brine EstATII-TM is characterized by tolerance to high temperatures, stability to hot and cold conditions, as well as toxic heavy metal contamination, making it an ideal candidate for industrial processes.
Collapse
Affiliation(s)
- Shimaa F. Ahmed
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (S.F.A.); (R.Z.A.)
| | - Rehab Z. Abdallah
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (S.F.A.); (R.Z.A.)
- Max Planck institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (S.F.A.); (R.Z.A.)
- University of Medicine and Health Sciences, Basseterre, Saint Kitts and Nevis
- Correspondence:
| |
Collapse
|
43
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. Int J Mol Sci 2022; 23:ijms23084189. [PMID: 35457008 PMCID: PMC9030287 DOI: 10.3390/ijms23084189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity. However, fungi are still the least understood organisms among halophiles, even though they have been shown to counteract these unfavorable conditions by producing multiple secondary metabolites with interesting properties or unique biomolecules as one of their survival strategies. In this review, we focused on biomolecules obtained from halophilic filamentous fungi such as enzymes, pigments, biosurfactants, and osmoprotectants.
Collapse
|
45
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
46
|
Jiang D, Min Z, Leng J, Niu H, Chen Y, Liu D, Zhu C, Li M, Zhuang W, Ying H. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
48
|
Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030688. [PMID: 35163952 PMCID: PMC8838608 DOI: 10.3390/molecules27030688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).
Collapse
|
49
|
Pawaskar GM, Raval K, Rohit P, Shenoy RP, Raval R. Cloning, expression, purification and characterization of chitin deacetylase extremozyme from halophilic Bacillus aryabhattai B8W22. 3 Biotech 2021; 11:515. [PMID: 34917446 PMCID: PMC8636556 DOI: 10.1007/s13205-021-03073-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Chitin deacetylase (CDA) (EC 3.5.1.41) is a hydrolytic enzyme that belongs to carbohydrate esterase family 4 as per the CAZY database. The CDA enzyme deacetylates chitin into chitosan. As the marine ecosystem is a rich source of chitin, it would also hold the unexplored extremophiles. In this study, an organism was isolated from 40 m sea sediment under halophilic condition and identified as Bacillus aryabhattai B8W22 by 16S rRNA sequencing. The CDA gene from the isolate was cloned and overexpressed in E. coli Rosetta pLysS and purified using a Ni-NTA affinity chromatography. The enzyme was found active on both ethylene glycol chitin (EGC) and chitooligosaccharides (COS). The enzyme characterization study revealed, maximum enzyme velocity at one hour, optimum pH at 7 with 50 mM Tris-HCl buffer, optimum reaction temperature of 30 ºC in standard assay conditions. The co-factor screening affirmed enhancement in the enzyme activity by 142.43 ± 7.13% and 146.88 ± 4.09% with substrate EGC and COS, respectively, in the presence of 2 mM Mg2+. This activity was decreased with the inclusion of EDTA and acetate in the assay solutions. The enzyme was found to be halotolerant; the relative activity increased to 116.98 ± 3.87% and 118.70 ± 0.98% with EGC and COS as substrates in the presence of 1 M NaCl. The enzyme also demonstrated thermo-stability, retaining 87.27 ± 2.85% and 94.08 ± 0.92% activity with substrate EGC and COS, respectively, upon treatment at 50 ºC for 24 h. The kinetic parameters K m, V max, and K cat were 3.06E-05 µg mL-1, 3.06E + 01 µM mg-1 min-1 and 3.27E + 04 s-1, respectively, with EGC as the substrate and 7.14E-07 µg mL-1, 7.14E + 01 µM mg-1 min-1 and 1.40E + 06 s-1, respectively, with COS as the substrate. The enzyme was found to be following Michaelis-Menten kinetics with both the polymeric and oligomeric substrates. In recent years, enzymatic conversion of chitosan is gaining importance due to its known pattern of deacetylation and reproducibility. Thus, this BaCDA extremozyme could be used for industrial production of chitosan polymer as well as chitosan oligosaccharides for biomedical application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03073-3.
Collapse
Affiliation(s)
- Goutam Mohan Pawaskar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, 575025 India
| | - Prathibha Rohit
- ICAR-Central Marine and Fisheries Research Institute, Mangalore, 575001 India
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
50
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|