1
|
Wang B, McKenna N, Pollak J, Mayonu M, Jiang L. The investigation of early metabolic level perturbation of northern quahog ( Mercenaria mercenaria) in response to brevetoxin. Mol Omics 2025; 21:143-151. [PMID: 39744881 DOI: 10.1039/d4mo00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs (M. mercenaria) are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins. Our study showed that the brevetoxin PbTx-2 had minimal influence on the physical activities of M. mercenaria for a short exposure time (24 hours). However, major metabolic level perturbations were observed in the clam gill extracts from the 1 ppb treatment. In addition, in the low concentration (0.1 ppb) study, clam gills showed combinational metabolite perturbations, as observed by an OPLS-DA study. The highly disturbed metabolites in the gill samples were the upregulated serine, glucose, hypotaurine, and glycine and the downregulated lactate, leucine, isoleucine, threonine, biotin, taurine, and valine. The results indicated that the brevetoxin PbTx-2 potentially affects glycolysis, glycine, serine, and threonine metabolism, taurine and hypotaurine metabolism, and biotin metabolism. While the digestive gland had less significantly changed metabolites, the potential combinational metabolite changes from PCA were observed from the 5-ppb treatment. Glucose and glycine are the primary metabolites that showed high contributions to the OPLS-DA model, which indicates the potential influence of digestive activities. The study indicated that metabolomic analysis of the gills and digestive glands of M. mercenaria is a feasible method to monitor the toxicity of brevetoxins, especially under sublethal doses in marine water.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Nicole McKenna
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Moses Mayonu
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
- Department of Chemistry and Biochemistry, Stetson University, Deland, FL, USA
| |
Collapse
|
2
|
Aldrich GJ, Nkiliza A, Ferguson S, Niedospial D, Helgager D, Keegan AP, Paris D, Kirkpatrick B, Crawford F, Mullan M, Abdullah L. The impact of APOE4 on neurological symptoms after exposure to K. brevis neurotoxin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104621. [PMID: 39710124 PMCID: PMC12022920 DOI: 10.1016/j.etap.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The harmful alga Karenia brevis (K. brevis) releases brevetoxins (PbTx) that cause respiratory and neurological symptoms. The apolipoprotein E (APOE) ε4 allele has been linked to poor neurological outcomes after exposure to environmental toxicants. This study explores the influence of the ε4 allele on the relationship between K. brevis in coastal waters and neurological symptoms reported by Southwest Florida residents. METHODS A Surrogate Brevetoxin Exposure (SBEair) index was developed to estimate aerosolized PbTx exposure. Data on past medical history and symptoms and blood for analyzing APOE genotypes were collected from 244 participants. RESULTS Compared to non-carriers, ε4 carriers more frequently reported experiencing memory problems and fatigue during red tide blooms, independent of conditions like dementia and chronic fatigue syndrome. CONCLUSION This study suggests that the ε4 allele may exacerbate neurological symptoms from aerosolized PbTx, highlighting the need for strategies to better understand the impact of PbTx on the brain.
Collapse
Affiliation(s)
- Gregory J Aldrich
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA.
| | - Aurore Nkiliza
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | | | - Dakota Helgager
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| | | | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| | - Barbara Kirkpatrick
- Gulf of Mexico Coastal Ocean Observing System, Texas A & M University, College Station, TX, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| |
Collapse
|
3
|
Medina M, Julian P, Chin N, Davis SE. An early-warning forecast model for red tide (Karenia brevis) blooms on the southwest coast of Florida. HARMFUL ALGAE 2024; 139:102729. [PMID: 39567083 DOI: 10.1016/j.hal.2024.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024]
Abstract
Karenia brevis blooms occur nearly annually along the southwest coast of Florida, and effective mitigation of ecological, public health, and economic impacts requires reliable real-time forecasting. We present two boosted random forest models that predict the weekly maximum K. brevis abundance category across the Greater Charlotte Harbor estuaries over one-week and four-week forecast horizons. The feature set was restricted to data available in near-real time, consistent with adoption of the models as decision-support tools. Features include current and lagged K. brevis abundance statistics, Loop Current position, sea surface temperature, sea level, and riverine discharges and nitrogen concentrations. During cross-validation, the one-week and four-week forecasts exhibited 73 % and 84 % accuracy, respectively, during the 2010-2023 study period. In addition, we assessed the models' reliability in forecasting the onset of 10 bloom events on time or in advance; the one-week and four-week models anticipated the onset eight times and five times, respectively.
Collapse
Affiliation(s)
- Miles Medina
- ECCO Scientific, LLC, St. Petersburg, Florida, USA.
| | - Paul Julian
- The Everglades Foundation, Palmetto Bay, Florida, USA
| | - Nicholas Chin
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
4
|
Lai C, Dai X, Tian D, Lv S, Tang J. Chemistry and bioactivity of marine algal toxins and their geographic distribution in China. Fitoterapia 2024; 178:106193. [PMID: 39187028 DOI: 10.1016/j.fitote.2024.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Marine algal toxins are usually produced by some toxic algae during toxic algal blooms which can be accumulated in marine organisms through food chains, leading to contamination of aquatic products. Consumption of the contaminated seafood often results in poisoning in human being. Although algal toxins are harmful for human health, their unique structures and broad spectrum of biological activities have attracted widespread attention of chemists and pharmacologists. Marine algal toxins are not only a reservoir of biological active compound discovery, but also powerful tools for exploring life science. This review first provides a comprehensive overview of the chemistry and biological activities of marine algal toxins, with the aim of providing references for biological active compound discovery. Additionally, typical shellfish poisoning incidents occurred in China in the past 15 years and the geographical distribution of the marine algal toxins in China Sea are discussed, for the purpose of enhancing public awareness of the possible dangers of algal toxins.
Collapse
Affiliation(s)
- Changrong Lai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Songhui Lv
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 510362, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Ozogul F, Rathod N, Köse S, Alak G, Kızılyıldırım S, Bilgin Ş, Emir Çoban Ö, İnanlı AG, Ünal-Şengör GF, İzci L, Ozogul Y, Tokur B, Ucak İ, Ceylan Z, Kulawik P. Biochemical and microbial food safety hazards in seafood: A Mediterranean perspective (Part 2). ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:209-271. [PMID: 40155085 DOI: 10.1016/bs.afnr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The marine environment is teeming with a diverse array of algae, dinoflagellates and phytoplankton. These organisms possess the remarkable capacity to produce toxic compounds that can be passed to humans through the ingestion of seafood, resulting in potential health risks. Similarly, seafood can be susceptible to contamination from various microorganisms, viruses and parasites, thereby, potentially compromising food safety. Consuming seafood that contains toxins or pathogenic microorganisms may have serious health consequences, including the potential for severe illness or even fatality. This chapter delves into the various hazards that arise from biochemical and microbiological factors, with particular emphasis on the Mediterranean region. In addition, it provides a succinct analysis regarding the effect of COVID-19 pandemic on the safety of seafood.
Collapse
Affiliation(s)
- Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye; Biotechnology Research and Application Center, Çukurova University, Adana, Türkiye.
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, Maharashtra, India.
| | - Sevim Köse
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Çamburnu, Trabzon, Türkiye
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Suna Kızılyıldırım
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - Şengül Bilgin
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Özlem Emir Çoban
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Ayşe Gürel İnanlı
- Department of Seafood Processing Technology, Faculty of Fisheries, Fırat University, Elazığ, Türkiye
| | - Gülgün F Ünal-Şengör
- Division of Food Safety, Department of Fisheries and Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, İstanbul, Türkiye
| | - Levent İzci
- Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Türkiye
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye.
| | - Bahar Tokur
- Fatsa Faculty of Marine Sciences, Ordu University, Ordu, Türkiye
| | - İlknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Zafer Ceylan
- Department of Molecular Biology and Genetics/Biotechnology, Science Faculty, Bartın University, Bartın, Turkiye
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, Kraków, Poland.
| |
Collapse
|
6
|
Nederlof RA, van der Veen D, Perrault JR, Bast R, Barron HW, Bakker J. Emerging Insights into Brevetoxicosis in Sea Turtles. Animals (Basel) 2024; 14:991. [PMID: 38612230 PMCID: PMC11010821 DOI: 10.3390/ani14070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the current understanding of how brevetoxins, produced by Karenia brevis during harmful algal blooms, impact sea turtle health. Sea turtles may be exposed to brevetoxins through ingestion, inhalation, maternal transfer, and potentially absorption through the skin. Brevetoxins bind to voltage-gated sodium channels in the central nervous system, disrupting cellular function and inducing neurological symptoms in affected sea turtles. Moreover, the current evidence suggests a broader and longer-term impact on sea turtle health beyond what is seen during stranding events. Diagnosis relies on the detection of brevetoxins in tissues and plasma from stranded turtles. The current treatment of choice, intravenous lipid emulsion therapy, may rapidly reduce symptoms and brevetoxin concentrations, improving survival rates. Monitoring, prevention, and control strategies for harmful algal blooms are discussed. However, as the frequency and severity of blooms are expected to increase due to climate change and increased environmental pollution, continued research is needed to better understand the sublethal effects of brevetoxins on sea turtles and the impact on hatchlings, as well as the pharmacokinetic mechanisms underlying brevetoxicosis. Moreover, research into the optimization of treatments may help to protect endangered sea turtle populations in the face of this growing threat.
Collapse
Affiliation(s)
| | | | - Justin R. Perrault
- Loggerhead Marinelife Center, Juno Beach, FL 33408, USA; (J.R.P.); (H.W.B.)
| | - Robin Bast
- Clinic for the Rehabilitation of Wildlife, Inc., Sanibel, FL 33957, USA;
| | - Heather W. Barron
- Loggerhead Marinelife Center, Juno Beach, FL 33408, USA; (J.R.P.); (H.W.B.)
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands;
| |
Collapse
|
7
|
Parak M, Asgari A, Hasani Nourian Y, Ghanei M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024; 240:107629. [PMID: 38336277 DOI: 10.1016/j.toxicon.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Biotoxins are toxic substances that originate from living organisms and are harmful to humans. Therefore, we need to know the symptoms of biotoxins poisoning to manage the damage. The purpose of this study is to establish a practical diagnostic protocol for dealing with poisoned patients exposed to biotoxins. MATERIALS AND METHODS The present study is a review study. Our studied community is articles and books matching the title of the project and relevant keywords. First, by searching the key words sign, symptom, biotoxins, relevant articles were extracted and studied from valid databases. By reviewing the studies based on the search strategy, four groups of biotoxins that were studied the most were identified. These four groups are marine biotoxins, bacterial biotoxins, fungal biotoxins and plant biotoxins. In each of these biotoxin groups, important toxins were selected and studied. RESULTS A total of 1864 articles were initially identified from the databases searched in present study. After screening titles and abstracts, 26 articles were included in the systematic review. Specifically, 7 articles were included for bacterial toxins, 9 articles for marine toxins, 5 articles for plant toxins and 5 articles for fungal toxins. CONCLUSION The symptoms of plant biotoxins poisoning may include cardiovascular, hematologic, neurologic, respiratory, renal, and gastrointestinal symptoms, while the symptoms of fungal biotoxins poisoning may include hepatic, renal, gastrointestinal, musculoskeletal, metabolic, respiratory, neurological, and cardiovascular symptoms. marine biotoxins poisoning presents with gastrointestinal and neurological symptoms, with varying incubation periods and recovery times. bacterial biotoxins exposure can lead to a wide range of clinical symptoms, with diarrhea, vomiting, and abdominal pain being the most common, and hemoglobinuria or hematuria being a sensitive and specific clinical manifestation for diagnosing ongoing HUS in children.
Collapse
Affiliation(s)
- Mohammadreza Parak
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Asgari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bechard A, Lang C. The human health effects of harmful algal blooms in Florida: The importance of high resolution data. HARMFUL ALGAE 2024; 132:102584. [PMID: 38331540 DOI: 10.1016/j.hal.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Harmful algal blooms (HABs) have been found to cause increases in healthcare visits for a variety of illnesses to humans if exposure and contact is sufficient. We use a more comprehensive dataset than previously implemented in prior literature to better isolate visits by healthcare facility type and proximity to bloom. Using a difference-in-differences model, our results suggest HABs cause an increase of 23.67 healthcare admissions per zip code per month across four HAB-related diagnoses. This impact is a 3,000% increase over baseline non-bloom times and an increase in monthly healthcare costs of about $250,000 for the entire impacted area. Our data include inpatient non-emergency and outpatient healthcare visits, which account for over 60% of all HAB-related healthcare visits, meaning that prior literature that has not measured those facilities has greatly underestimated HAB health impacts.
Collapse
Affiliation(s)
| | - Corey Lang
- 1 Greenhouse Rd., University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
9
|
Raposo-Garcia S, Costas C, Louzao MC, Vieytes MR, Vale C, Botana LM. Synergistic Effect of Brevetoxin BTX-3 and Ciguatoxin CTX3C in Human Voltage-Gated Na v1.6 Sodium Channels. Chem Res Toxicol 2023; 36:1990-2000. [PMID: 37965843 PMCID: PMC10845145 DOI: 10.1021/acs.chemrestox.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Celia Costas
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - M. Carmen Louzao
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Carmen Vale
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Luis M. Botana
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| |
Collapse
|
10
|
Barbe P, Molgó J, Thai R, Urman A, Servent D, Arnich N, Keck M. Acute Effects of Brevetoxin-3 Administered via Oral Gavage to Mice. Mar Drugs 2023; 21:644. [PMID: 38132965 PMCID: PMC10744354 DOI: 10.3390/md21120644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg-1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3's impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg-1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs' weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity).
Collapse
Affiliation(s)
- Peggy Barbe
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| | - Jordi Molgó
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| | - Robert Thai
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| | - Apolline Urman
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| | - Denis Servent
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| | - Nathalie Arnich
- Risk Assessment Directorate, ANSES—French Agency for Food, Environmental and Occupational Health and Safety, 94701 Maisons-Alfort, France;
| | - Mathilde Keck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; (P.B.); (J.M.); (R.T.); (A.U.); (D.S.)
| |
Collapse
|
11
|
Fang L, Qiu F. Determination of neurotoxic shellfish poisoning toxins in shellfish by liquid chromatography-tandem mass spectrometry coupled with dispersive solid phase extraction. Heliyon 2023; 9:e21610. [PMID: 37954300 PMCID: PMC10638005 DOI: 10.1016/j.heliyon.2023.e21610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
An innovative method based on dispersive solid phase extraction (d-SPE) in conjunction with LC-MS/MS had been developed for the simultaneous quantitative determination of three brevetoxins (BTXs), which can result in neurotoxic shellfish poisoning (NSP), in shellfish. The toxins were extracted with a 50 % acetonitrile (v/v) and cleaned by alumina-neutral sorbent. After chromatographic separation on a C18 column, the analytes were qualitatively and quantitatively detected using multiple reaction monitoring (MRM) in positive ionization mode. The created approach was validated by SANTE 11312/2021. The LOQs were 5 μg/kg for each toxin, below the advised regulatory limit of 800 μg BTX-2/kg. The mean recoveries of brevetoxins were in the range of 75.9 %-114.1 %, and the ranges of their intra- and inter-day precisions were 0.9-9.7 % and 0.6-7.2 %, respectively. The matrix effects for three BTXs in four shellfish matrices were in the range of 85.6 %-114.8 %. The method demonstrated great consistency and high sensitivity, and it can meet the requirements of daily monitoring.
Collapse
Affiliation(s)
- Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province (Zhoushan Municipal District Center for Disease Control and Prevention), Zhoushan, PR China
| | - Fengmei Qiu
- Putuo Center for Disease Control and Prevention, Zhoushan, PR China
| |
Collapse
|
12
|
Devillier VM, Hall ER, Anderson DM, Lewis KA. Exposure of blue crab (Callinectes sapidus) to modified clay treatment of Karenia brevis as a bloom control strategy. HARMFUL ALGAE 2023; 128:102492. [PMID: 37714578 DOI: 10.1016/j.hal.2023.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Harmful algal blooms (HABs) of the toxic marine dinoflagellate Karenia brevis, commonly called red tides, are an ongoing threat to human health and marine ecosystems in Florida. Clay flocculation is a standard control strategy for marine HABs in China and Korea and is currently being assessed for use in the United States. We evaluated the effects of a PAC-modified clay called Modified Clay II on mortality, eyestalk reflexes, and righting reflexes of 48 adult blue crabs (Callinectes sapidus). Crabs were exposed to clay alone (0.5 g L - 1), untreated K. brevis (1 × 106 cells L - 1), or a combination of K. brevis and clay for eight days. Clay treatment reduced cell concentrations in the water column by 95% after 24 h. We detected no significant differences in mortality, righting reflexes, or eyestalk reflexes between treatments. Our results indicate that the clay alone is not harmful to adult crabs at typical treatment concentrations within the measured time frame, and that treatment of K. brevis with this clay appears to have a negligible impact on crab mortality and the reflex variables we measured. These results suggest that Modified Clay II may be a viable option to treat K. brevis blooms without impacting adult blue crab populations. Additional controlled experiments and field tests are needed to further evaluate the impact of clay on natural benthic communities.
Collapse
Affiliation(s)
- Victoria M Devillier
- University of Central Florida, National Center for Integrated Coastal Research, Orlando, FL, USA
| | - Emily R Hall
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Donald M Anderson
- Woods Hole Oceanographic Institution, MS # 32, Woods Hole, MA 02543, USA
| | - Kristy A Lewis
- University of Central Florida, National Center for Integrated Coastal Research, Orlando, FL, USA.
| |
Collapse
|
13
|
Gwinn JK, Robertson A, Ivanova L, Fæste CK, Kryuchkov F, Uhlig S. Identification and cross-species comparison of in vitro phase I brevetoxin (BTX-2) metabolites in northern Gulf of Mexico fish and human liver microsomes by UHPLC-HRMS(/MS). Toxicon X 2023; 19:100168. [PMID: 37483846 PMCID: PMC10362319 DOI: 10.1016/j.toxcx.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Brevetoxins (BTX) are a group of marine neurotoxins produced by the harmful alga Karenia brevis. Numerous studies have shown that BTX are rapidly accumulated and metabolized in shellfish and mammals. However, there are only limited data on BTX metabolism in fish, despite growing evidence that fish serve as vectors for BTX transfer in marine food webs. In this study, we aimed to investigate the in vitro biotransformation of BTX-2, the major constituent of BTX profiles in K. brevis, in several species of northern Gulf of Mexico fish. Metabolism assays were performed using hepatic microsomes prepared in-house as well as commercially available human microsomes for comparison, focusing on phase I reactions mediated by cytochrome P450 monooxygenase (CYP) enzymes. Samples were analyzed by UHPLC-HRMS(/MS) to monitor BTX-2 depletion and characterize BTX metabolites based on MS/MS fragmentation pathways. Our results showed that both fish and human liver microsomes rapidly depleted BTX-2, resulting in a 72-99% reduction within 1 h of incubation. We observed the simultaneous production of 22 metabolites functionalized by reductions, oxidations, and other phase I reactions. We were able to identify the previously described congeners BTX-3 and BTX-B5, and tentatively identified BTX-9, 41,43-dihydro-BTX-2, several A-ring hydrolysis products, as well as several novel metabolites. Our results confirmed that fish are capable of similar BTX biotransformation reactions as reported for shellfish and mammals, but comparison of metabolite formation across the tested species suggested considerable interspecific variation in BTX-2 metabolism potentially leading to divergent BTX profiles. We additionally observed non-enzymatic formation of BTX-2 and BTX-3 glutathione conjugates. Collectively, these findings have important implications for determining the ecotoxicological fate of BTX in marine food webs.
Collapse
Affiliation(s)
- Jessica Kay Gwinn
- University of South Alabama, School of Marine and Environmental Sciences, Mobile, AL, 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, United States
| | - Alison Robertson
- University of South Alabama, School of Marine and Environmental Sciences, Mobile, AL, 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, United States
| | - Lada Ivanova
- Norwegian Veterinary Institute, Toxinology Research Group, NO-1431, Ås, Norway
| | | | - Fedor Kryuchkov
- Norwegian Veterinary Institute, Toxinology Research Group, NO-1431, Ås, Norway
| | - Silvio Uhlig
- Norwegian Veterinary Institute, Toxinology Research Group, NO-1431, Ås, Norway
- Nordic Institute of Dental Materials, NO-0855, Oslo, Norway
| |
Collapse
|
14
|
Giovannini M, Beken B, Buyuktiryaki B, Barni S, Liccioli G, Sarti L, Lodi L, Pontone M, Bartha I, Mori F, Sackesen C, du Toit G, Lopata AL, Muraro A. IgE-Mediated Shellfish Allergy in Children. Nutrients 2023; 15:2714. [PMID: 37375617 DOI: 10.3390/nu15122714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Shellfish, including various species of mollusks (e.g., mussels, clams, and oysters) and crustaceans (e.g., shrimp, prawn, lobster, and crab), have been a keystone of healthy dietary recommendations due to their valuable protein content. In parallel with their consumption, allergic reactions related to shellfish may be increasing. Adverse reactions to shellfish are classified into different groups: (1) Immunological reactions, including IgE and non-IgE allergic reactions; (2) non-immunological reactions, including toxic reactions and food intolerance. The IgE-mediated reactions occur within about two hours after ingestion of the shellfish and range from urticaria, angioedema, nausea, and vomiting to respiratory signs and symptoms such as bronchospasm, laryngeal oedema, and anaphylaxis. The most common allergenic proteins involved in IgE-mediated allergic reactions to shellfish include tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, troponin c, and triosephosphate isomerase. Over the past decades, the knowledge gained on the identification of the molecular features of different shellfish allergens improved the diagnosis and the potential design of allergen immunotherapy for shellfish allergy. Unfortunately, immunotherapeutic studies and some diagnostic tools are still restricted in a research context and need to be validated before being implemented into clinical practice. However, they seem promising for improving management strategies for shellfish allergy. In this review, epidemiology, pathogenesis, clinical features, diagnosis, and management of shellfish allergies in children are presented. The cross-reactivity among different forms of shellfish and immunotherapeutic approaches, including unmodified allergens, hypoallergens, peptide-based, and DNA-based vaccines, are also addressed.
Collapse
Affiliation(s)
- Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Burcin Beken
- Department of Pediatric Allergy & Immunology, School of Medicine, Acibadem University, 34303 Istanbul, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Giulia Liccioli
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
- Immunology Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Matteo Pontone
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Bartha
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Cansin Sackesen
- Division of Pediatric Allergy, Department of Pediatrics, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London SE1 9RT, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE5 9NU, UK
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Mother and Child Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
15
|
Batista FM, Hatfield R, Powell A, Baker-Austin C, Lowther J, Turner AD. Methodological advances in the detection of biotoxins and pathogens affecting production and consumption of bivalve molluscs in a changing environment. Curr Opin Biotechnol 2023; 80:102896. [PMID: 36773575 DOI: 10.1016/j.copbio.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023]
Abstract
The production, harvesting and safe consumption of bivalve molluscs can be disrupted by biological hazards that can be divided into three categories: (1) biotoxins produced by naturally occurring phytoplankton that are bioaccumulated by bivalves during filter-feeding, (2) human pathogens also bioaccumulated by bivalves and (3) bivalve pathogens responsible for disease outbreaks. Environmental changes caused by human activities, such as climate change, can further aggravate these challenges. Early detection and accurate quantification of these hazards are key to implementing measures to mitigate their impact on production and safeguard consumers. This review summarises the methods currently used and the technological advances in the detection of biological hazards affecting bivalves, for the screening of known hazards and discovery of new ones.
Collapse
Affiliation(s)
- Frederico M Batista
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Robert Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
16
|
Bechard A, Lang C. Seafood consumption during harmful algal blooms: The impact of information regarding safety and health. HARMFUL ALGAE 2023; 123:102387. [PMID: 36894207 DOI: 10.1016/j.hal.2023.102387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Harmful algal blooms (HABs) can cause massive fish kills all over the world. However, some commercially caught species are safe to eat. The fish safe for consumption are vastly different from the fish that wash up on shore. Prior research finds this difference in edibility is mostly unknown by consumers, and that the misperception of unhealthy and unsafe fish is the dominant paradigm. To date, there has been minimal research on the effect of disseminating this information regarding seafood health to consumers, and how consumption habits would change during a bloom. We implement a survey that presents respondents with information explaining the health and safety of certain commercially caught seafood during a HAB, specifically red grouper. It is a particularly popular, large, deep-sea fish. Our results suggest that respondents receiving this information are 34 percentage points more likely to say that they would be willing to consume red grouper during a bloom, relative to consumers who were not provided this added information. Prior knowledge of this information suggests long-term outreach programs may be more effective than last minute "point of sale" information campaigns. The results demonstrated the importance of correct knowledge and awareness regarding HABs, as it pertains to efforts to stabilize local economies dependent on seafood harvesting and consumption.
Collapse
Affiliation(s)
- Andrew Bechard
- 400 Northridge Road, Suite 400, Sandy Springs, GA 30350, USA.
| | - Corey Lang
- 400 Northridge Road, Suite 400, Sandy Springs, GA 30350, USA
| |
Collapse
|
17
|
Barua R, Sanborn D, Nyman L, McFarland M, Moore T, Hong J, Garrett M, Nayak AR. In situ digital holographic microscopy for rapid detection and monitoring of the harmful dinoflagellate, Karenia brevis. HARMFUL ALGAE 2023; 123:102401. [PMID: 36894209 DOI: 10.1016/j.hal.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Karenia brevis blooms, also known as red tide, are a recurring problem in the coastal Gulf of Mexico. These blooms have the capacity to inflict substantial damage to human and animal health as well as local economies. Thus, monitoring and detection of K. brevis blooms at all life stages and cell concentrations is essential for ensuring public safety. Current K. brevis monitoring methods have several limitations, including size resolution limits and concentration ranges, limited capacity for spatial and temporal profiling, and/or small sample volume processing. Here, a novel monitoring method wherein an autonomous digital holographic imaging microscope (AUTOHOLO), that overcomes these limitations and can characterize K. brevis concentrations in situ, is presented. Using the AUTOHOLO, in situ field measurements were conducted in the coastal Gulf of Mexico during an active K. brevis bloom over the 2020-21 winter season. Surface and sub-surface water samples collected during these field studies were also analyzed in the lab using benchtop holographic imaging and flow cytometry for validation. A convolutional neural network was trained for automated classification of K. brevis at all concentration ranges. The network was validated with manual counts and flow cytometry, yielding a 90% accuracy across diverse datasets with varying K. brevis concentrations. The usefulness of pairing the AUTOHOLO with a towing system was also demonstrated for characterizing particle abundance over large spatial distances, which could potentially facilitate characterization of spatial distributions of K. brevis during bloom events. Future applications of the AUTOHOLO can include integration into existing HAB monitoring networks to enhance detection capabilities for K. brevis in aquatic environments around the world.
Collapse
Affiliation(s)
- Ranjoy Barua
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, 33431, FL United States of America; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America
| | - Delaney Sanborn
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, MN United States of America; St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, 55455, MN United States of America
| | - Lisa Nyman
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, 33431, FL United States of America; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America
| | - Malcolm McFarland
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America
| | - Timothy Moore
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America
| | - Jiarong Hong
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, MN United States of America; St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, 55455, MN United States of America
| | - Matt Garrett
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, 33701, FL United States of America
| | - Aditya R Nayak
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, 33431, FL United States of America; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America.
| |
Collapse
|
18
|
Estevez P, Gago-Martinez A. Contribution of Mass Spectrometry to the Advances in Risk Characterization of Marine Biotoxins: Towards the Characterization of Metabolites Implied in Human Intoxications. Toxins (Basel) 2023; 15:toxins15020103. [PMID: 36828418 PMCID: PMC9964301 DOI: 10.3390/toxins15020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
A significant spread and prevalence of algal toxins and, in particular, marine biotoxins have been observed worldwide over the last decades. Marine biotoxins are natural contaminants produced during harmful algal blooms being accumulated in seafood, thus representing a threat to human health. Significant progress has been made in the last few years in the development of analytical methods able to evaluate and characterize the different toxic analogs involved in the contamination, Liquid Chromatography coupled to different detection modes, including Mass Spectrometry, the method of choice due to its potential for separation, identification, quantitation and even confirmation of the different above-mentioned analogs. Despite this, the risk characterization in humans is still limited, due to several reasons, including the lack of reference materials or even the limited access to biological samples from humans intoxicated during these toxic events and episodes, which hampered the advances in the evaluation of the metabolites responsible for the toxicity in humans. Mass Spectrometry has been proven to be a very powerful tool for confirmation, and in fact, it is playing an important role in the characterization of the new biotoxins analogs. The toxin metabolization in humans is still uncertain in most cases and needs further research in which the implementation of Mass Spectrometric methods is critical. This review is focused on compiling the most relevant information available regarding the metabolization of several marine biotoxins groups, which were identified using Mass Spectrometry after the in vitro exposition of these toxins to liver microsomes and hepatocytes. Information about the presence of metabolites in human samples, such as human urine after intoxication, which could also be used as potential biomarkers for diagnostic purposes, is also presented.
Collapse
|
19
|
Rattner BA, Wazniak CE, Lankton JS, McGowan PC, Drovetski SV, Egerton TA. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. HARMFUL ALGAE 2022; 120:102319. [PMID: 36470599 DOI: 10.1016/j.hal.2022.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/17/2023]
Abstract
The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxins on wildlife in the Chesapeake Bay region. As background, we first review the scientific literature on algal toxins and harmful algal bloom (HAB) events in various regions of the world that principally affected birds, and to a lesser degree other wildlife. To examine the situation for the Chesapeake, we compiled information from government reports and databases summarizing wildlife mortality events for 2000 through 2020 that were associated with potentially toxic algae and HAB events. Summary findings indicate that there have been few wildlife mortality incidents definitively linked to HABs, other mortality events that were suspected to be related to HABs, and more instances in which HABs may have indirectly contributed to or occurred coincident with wildlife mortality. The dominant toxins found in the Chesapeake Bay drainage that could potentially affect wildlife are microcystins, with concentrations in water approaching or exceeding human-based thresholds for ceasing recreational use and drinking water at a number of locations. As an increasing trend in HAB events in the U.S. and in the Chesapeake Bay have been reported, additional information on HAB toxin exposure routes, comparative sensitivity among species, consequences of sublethal exposure, and better diagnostic and risk criteria would greatly assist in predicting algal toxin hazard and risks to wildlife.
Collapse
Affiliation(s)
- Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA.
| | - Catherine E Wazniak
- Maryland Department of Natural Resources, Resource Assessment Service, Annapolis, MD 21401, USA
| | - Julia S Lankton
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401, USA
| | - Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Todd A Egerton
- Virginia Department of Health, Division of Shellfish Safety and Waterborne Hazards, Norfolk, VA 23510, USA
| |
Collapse
|
20
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
21
|
Abdullah L, Ferguson S, Niedospial D, Patterson D, Oberlin S, Nkiliza A, Bartenfelder G, Hahn-Townsend C, Parks M, Crawford F, Reich A, Keegan A, Kirkpatrick B, Mullan M. Exposure-response relationship between K. brevis blooms and reporting of upper respiratory and neurotoxin-associated symptoms. HARMFUL ALGAE 2022; 117:102286. [PMID: 35944953 DOI: 10.1016/j.hal.2022.102286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
In southwest Florida, Karenia brevis (K. brevis) blooms occur frequently, can be very intense and persist over several years. Individuals living in coastal communities around the Gulf of Mexico are particularly vulnerable to brevetoxins released by K. brevis in seawater and carried inland within marine aerosol. Exposure to K. brevis occurs during residential, recreational, and occupational activities and has been associated with upper respiratory tract (URT) symptoms in healthy and medically vulnerable individuals. Additionally, ingestion of brevetoxin-contaminated seafood causes neurotoxic shellfish poisoning (NSP), and severe headaches prompting emergency department visits which occur in excess during K. brevis blooms. The current study examined a dose-response relationship between K. brevis in coastal waters and URT and NSP-like symptoms and headaches among southwest Florida residents. Data on past medical history (PMH) and medical symptoms were collected from the participants (n = 258) in five southwest Florida counties between June 2019 to August 2021. A dose-response relationship was observed between K. brevis blooms and reporting of URT and NSP-like symptoms and headaches. Reporting of NSP-like symptoms was higher among participants with a PMH of migraines, chronic fatigue syndrome (CFS) and mild memory loss, while the association of headaches with K. brevis blooms was accentuated among individuals with a PMH of migraines. These results suggest further investigations into the threshold of aerosolized brevetoxin dose required to elicit URT, headaches and/or NSP-like symptoms. These symptoms ultimately cause significant public health safety concerns, primarily among vulnerable populations with preexisting neurological conditions.
Collapse
Affiliation(s)
- L Abdullah
- Roskamp Institute, Sarasota, FL, United States.
| | - S Ferguson
- Roskamp Institute, Sarasota, FL, United States
| | | | - D Patterson
- Roskamp Institute, Sarasota, FL, United States
| | - S Oberlin
- Roskamp Institute, Sarasota, FL, United States
| | - A Nkiliza
- Roskamp Institute, Sarasota, FL, United States
| | | | | | - M Parks
- CDC Foundation, Atlanta, GA, United States
| | - F Crawford
- Roskamp Institute, Sarasota, FL, United States
| | - A Reich
- Health2oConsulting, Tampa, FL, United States
| | - A Keegan
- Roskamp Institute, Sarasota, FL, United States
| | - B Kirkpatrick
- Gulf of Mexico Coastal Ocean Observing System, Texas A & M University, College Station, TX, United States
| | - M Mullan
- Roskamp Institute, Sarasota, FL, United States
| |
Collapse
|
22
|
Litaker RW, Bogdanoff AK, Hardison DR, Holland WC, Ostrowski A, Morris JA. The Effects of the Harmful Algal Bloom Species Karenia brevis on Survival of Red Porgy ( Pagrus pagrus) Larvae. Toxins (Basel) 2022; 14:toxins14070439. [PMID: 35878177 PMCID: PMC9317425 DOI: 10.3390/toxins14070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The harmful algal bloom species, Karenia brevis, forms annual, often intense blooms in the Gulf of Mexico, particularly along the west Florida shelf. Though the ability of K. brevis blooms to cause mass mortalities in juvenile fish are well documented, the direct effect of bloom concentrations on larval fish has not been studied extensively. To better understand the potential effect of K. brevis on larval fish survival, laboratory spawned red porgy (Pagrus pagrus) larvae from 4-26 days post-hatch were exposed to concentrations of K. brevis observed in the field for either 24 or 48 h. This species is representative of fish which spawn in regions of the Gulf of Mexico and whose larvae are epipelagic and may encounter K. brevis blooms. In this study, three different K. brevis strains varying in the amount of brevetoxin produced were tested. Larval survivorship was found to be inversely proportional to the amount of brevetoxin produced by each strain. The EC50 value from the combined 24 h experiments was ~163,000 K. brevis cells L-1, which corresponds to cell concentrations found in moderately dense blooms. Larval mortality also increased substantially in the 48 h versus 24 h exposure treatments. These findings indicate K. brevis blooms have the potential to contribute to natural mortality of fish larvae and further reduce inter-annual recruitment of fishery species whose stocks in the Gulf of Mexico may already be depleted.
Collapse
Affiliation(s)
- Richard Wayne Litaker
- CSS Inc. Under Contract to National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA
- Correspondence: ; Tel.: +1-919-672-8881
| | - Alex K. Bogdanoff
- JHT Under Contract to National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA;
- The Department of General Education, James Sprunt Community College, Kenansville, NC 28349, USA
| | - Donnie Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.); (J.A.M.)
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.); (J.A.M.)
| | - Andrew Ostrowski
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort Laboratory, Beaufort, NC 28516, USA;
| | - James A. Morris
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC 28516, USA; (D.R.H.); (W.C.H.); (J.A.M.)
| |
Collapse
|
23
|
Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. BIOLOGY 2022; 11:biology11060852. [PMID: 35741373 PMCID: PMC9220063 DOI: 10.3390/biology11060852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Harmful algal blooms (HABs) are a serious threat to aquatic environments. The intensive expansion of HABs across the world is a warning signal of environmental deterioration. Global climatic change enforced variations in environmental factors causing stressed environments in aquatic ecosystems that favor the occurrence, distribution, and persistence of HABs. Perceived intensification in HABs increases toxin production, affecting the ecological quality as well as serious consequences on organisms including humans. This review outlines the causes and impacts of harmful algal blooms, including algal toxicity, grazing defense, management, control measures, emerging technologies, and their limitations for controlling HABs in aquatic ecosystems. Abstract Aquatic pollution is considered a major threat to sustainable development across the world, and deterioration of aquatic ecosystems is caused usually by harmful algal blooms (HABs). In recent times, HABs have gained attention from scientists to better understand these phenomena given that these blooms are increasing in intensity and distribution with considerable impacts on aquatic ecosystems. Many exogenous factors such as variations in climatic patterns, eutrophication, wind blowing, dust storms, and upwelling of water currents form these blooms. Globally, the HAB formation is increasing the toxicity in the natural water sources, ultimately leading the deleterious and hazardous effects on the aquatic fauna and flora. This review summarizes the types of HABs with their potential effects, toxicity, grazing defense, human health impacts, management, and control of these harmful entities. This review offers a systematic approach towards the understanding of HABs, eliciting to rethink the increasing threat caused by HABs in aquatic ecosystems across the world. Therefore, to mitigate this increasing threat to aquatic environments, advanced scientific research in ecology and environmental sciences should be prioritized.
Collapse
|
24
|
|
25
|
Chin Chwan Chuong JJ, Rahman M, Ibrahim N, Heng LY, Tan LL, Ahmad A. Harmful Microalgae Detection: Biosensors versus Some Conventional Methods. SENSORS (BASEL, SWITZERLAND) 2022; 22:3144. [PMID: 35590834 PMCID: PMC9103738 DOI: 10.3390/s22093144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022]
Abstract
In the last decade, there has been a steady stream of information on the methods and techniques available for detecting harmful algae species. The conventional approaches to identify harmful algal bloom (HAB), such as microscopy and molecular biological methods are mainly laboratory-based and require long assay times, skilled manpower, and pre-enrichment of samples involving various pre-experimental preparations. As an alternative, biosensors with a simple and rapid detection strategy could be an improvement over conventional methods for the detection of toxic algae species. Moreover, recent biosensors that involve the use of nanomaterials to detect HAB are showing further enhanced detection limits with a broader linear range. The improvement is attributed to nanomaterials' high surface area to volume ratio, excellent biological compatibility with biomolecules, and being capable of amplifying the electrochemical signal. Hence, this review presents the potential usage of biosensors over conventional methods to detect HABs. The methods reported for the detection of harmful algae species, ranging from conventional detection methods to current biosensor approaches will be discussed, along with their respective advantages and drawbacks to indicate the future prospects of biosensor technology for HAB event management.
Collapse
Affiliation(s)
- Jeremy Jason Chin Chwan Chuong
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (J.J.C.C.C.); (N.I.); (L.L.T.)
| | - Mahbubur Rahman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
- Department of General Educational Development (GED), Faculty of Science & Information Technology, Daffodil International University, Dhaka 1341, Bangladesh
| | - Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (J.J.C.C.C.); (N.I.); (L.L.T.)
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (J.J.C.C.C.); (N.I.); (L.L.T.)
| | - Asmat Ahmad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
26
|
Jiang X, Zhao Y, Tang C, Appelbaum M, Rao Q. Aquatic food animals in the United States: Status quo and challenges. Compr Rev Food Sci Food Saf 2022; 21:1336-1382. [PMID: 35150203 DOI: 10.1111/1541-4337.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
This review summarizes (1) the U.S. status quo for aquatic food animal production and marketing; (2) major food safety and quality issues/concerns for aquatic food animals in the United States, including fish misbranding, finfish/shellfish allergies, pathogens, toxins and harmful residues, microplastics, and genetically engineered salmon; and (3) various U.S. regulations, guidances, and detection methods for the surveillance of fishery products. Overall, fish misbranding is the biggest challenge in the United States due to the relatively low inspection rate. In addition, due to the regulatory differences among countries, illegal animal drugs and/or pesticide residues might also be identified in imported aquatic food animals. Future regulatory and research directions could focus on further strengthening international cooperation, enhancing aquatic food animal inspection, and developing reliable, sensitive, and highly efficient detection methods.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yaqi Zhao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Megan Appelbaum
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
27
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
28
|
Hort V, Abadie E, Arnich N, Dechraoui Bottein MY, Amzil Z. Chemodiversity of Brevetoxins and Other Potentially Toxic Metabolites Produced by Karenia spp. and Their Metabolic Products in Marine Organisms. Mar Drugs 2021; 19:656. [PMID: 34940655 PMCID: PMC8709462 DOI: 10.3390/md19120656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, more than 130 potentially toxic metabolites originating from dinoflagellate species belonging to the genus Karenia or metabolized by marine organisms have been described. These metabolites include the well-known and large group of brevetoxins (BTXs), responsible for foodborne neurotoxic shellfish poisoning (NSP) and airborne respiratory symptoms in humans. Karenia spp. also produce brevenal, brevisamide and metabolites belonging to the hemi-brevetoxin, brevisin, tamulamide, gymnocin, gymnodimine, brevisulcenal and brevisulcatic acid groups. In this review, we summarize the available knowledge in the literature since 1977 on these various identified metabolites, whether they are produced directly by the producer organisms or biotransformed in marine organisms. Their structures and physicochemical properties are presented and discussed. Among future avenues of research, we highlight the need for more toxin occurrence data with analytical techniques, which can specifically determine the analogs present in samples. New metabolites have yet to be fully described, especially the groups of metabolites discovered in the last two decades (e.g tamulamides). Lastly, this work clarifies the different nomenclatures used in the literature and should help to harmonize practices in the future.
Collapse
Affiliation(s)
- Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), 94701 Maisons-Alfort, France
| | - Eric Abadie
- MARBEC (MARine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34200 Sète, France;
| | - Nathalie Arnich
- Risk Assessment Directorate, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), 94701 Maisons-Alfort, France;
| | - Marie-Yasmine Dechraoui Bottein
- Université Côte d’Azur, CNRS, UMR 7035 ECOSEAS, 06103 Nice, France;
- Federative Research Institute—Marine Ressources, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Zouher Amzil
- Ifremer (French Research Institute for Exploitation of the Sea), 44311 Nantes, France
| |
Collapse
|
29
|
Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mar Drugs 2021; 19:md19100562. [PMID: 34677461 PMCID: PMC8537899 DOI: 10.3390/md19100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are considered to be one of the most important ion channels given their remarkable physiological role. VGSCs constitute a family of large transmembrane proteins that allow transmission, generation, and propagation of action potentials. This occurs by conducting Na+ ions through the membrane, supporting cell excitability and communication signals in various systems. As a result, a wide range of coordination and physiological functions, from locomotion to cognition, can be accomplished. Drugs that target and alter the molecular mechanism of VGSCs’ function have highly contributed to the discovery and perception of the function and the structure of this channel. Among those drugs are various marine toxins produced by harmful microorganisms or venomous animals. These toxins have played a key role in understanding the mode of action of VGSCs and in mapping their various allosteric binding sites. Furthermore, marine toxins appear to be an emerging source of therapeutic tools that can relieve pain or treat VGSC-related human channelopathies. Several studies documented the effect of marine toxins on VGSCs as well as their pharmaceutical applications, but none of them underlined the principal marine toxins and their effect on VGSCs. Therefore, this review aims to highlight the neurotoxins produced by marine animals such as pufferfish, shellfish, sea anemone, and cone snail that are active on VGSCs and discuss their pharmaceutical values.
Collapse
|
30
|
Guidance Level for Brevetoxins in French Shellfish. Mar Drugs 2021; 19:md19090520. [PMID: 34564182 PMCID: PMC8468261 DOI: 10.3390/md19090520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Brevetoxins (BTXs) are marine biotoxins responsible for neurotoxic shellfish poisoning (NSP) after ingestion of contaminated shellfish. NSP is characterized by neurological, gastrointestinal and/or cardiovascular symptoms. The main known producer of BTXs is the dinoflagellate Karenia brevis, but other microalgae are also suspected to synthesize BTX-like compounds. BTXs are currently not regulated in France and in Europe. In November 2018, they have been detected for the first time in France in mussels from a lagoon in the Corsica Island (Mediterranean Sea), as part of the network for monitoring the emergence of marine biotoxins in shellfish. To prevent health risks associated with the consumption of shellfish contaminated with BTXs in France, a working group was set up by the French Agency for Food, Environmental and Occupational Health & Safety (Anses). One of the aims of this working group was to propose a guidance level for the presence of BTXs in shellfish. Toxicological data were too limited to derive an acute oral reference dose (ARfD). Based on human case reports, we identified two lowest-observed-adverse-effect levels (LOAELs). A guidance level of 180 µg BTX-3 eq./kg shellfish meat is proposed, considering a protective default portion size of 400 g shellfish meat.
Collapse
|
31
|
Pearson LA, D'Agostino PM, Neilan BA. Recent developments in quantitative PCR for monitoring harmful marine microalgae. HARMFUL ALGAE 2021; 108:102096. [PMID: 34588118 DOI: 10.1016/j.hal.2021.102096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Marine microalgae produce a variety of specialised metabolites that have toxic effects on humans, farmed fish, and marine wildlife. Alarmingly, many of these compounds bioaccumulate in the tissues of shellfish and higher trophic organisms, including species consumed by humans. Molecular methods are emerging as a potential alternative and complement to the conventional microscopic diagnosis of toxic or otherwise harmful microalgal species. Quantitative PCR (qPCR) in particular, has gained popularity over the past decade as a sensitive, rapid, and cost-effective method for monitoring harmful microalgae. Assays targeting taxonomic marker genes provide the opportunity to identify and quantify (or semi-quantify) microalgal species and importantly to pre-empt bloom events. Moreover, the discovery of paralytic shellfish toxin biosynthesis genes in dinoflagellates has enabled researchers to directly monitor toxigenic species in coastal waters and fisheries. This review summarises the recent developments in qPCR detection methods for harmful microalgae, with emphasis on emerging toxin gene monitoring technologies.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
32
|
Monitoring the Emergence of Algal Toxins in Shellfish: First Report on Detection of Brevetoxins in French Mediterranean Mussels. Mar Drugs 2021; 19:md19070393. [PMID: 34356818 PMCID: PMC8305566 DOI: 10.3390/md19070393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.
Collapse
|
33
|
Loeffler CR, Bodi D, Tartaglione L, Dell'Aversano C, Preiss-Weigert A. Improving in vitro ciguatoxin and brevetoxin detection: selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). HARMFUL ALGAE 2021; 103:101994. [PMID: 33980434 DOI: 10.1016/j.hal.2021.101994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Marine biotoxins accumulating in seafood products pose a risk to human health. These toxins are often potent in minute amounts and contained within complex matrices; requiring sensitive, reliable, and robust methods for their detection. The mouse neuroblastoma (Neuro-2a) cytotoxicity assay (N2a-assay) is a sensitive, high-throughput, in vitro method effective for detecting sodium channel-specific marine biotoxins. The N2a-assay can be conducted to distinguish between specific effects on voltage-gated sodium (NaV) channels, caused by toxins that activate (e.g., ciguatoxins (CTXs), brevetoxins (PbTxs)) or block (e.g., tetrodotoxins, saxitoxins) the target NaV. The sensitivity and specificity of the assay to compounds activating the NaV are achieved through the addition of the pharmaceuticals ouabain (O) and veratridine (V). However, these compounds can be toxic to Neuro-2a cells and their application at insufficient or excessive concentrations can reduce the effectiveness of this assay for marine toxin detection. Therefore, during growth incubation, Neuro-2a cells were exposed to O and V, and surviving cells exhibiting a lower sensitivity to O and V (OV-LS) were propagated. OV-LS Neuro-2a cells were selected for 60-80% survival when exposed to 0.22/0.022 mM O/V during the cytotoxicity assay. At these conditions, OV-LS N2a cells demonstrated a 3.5-fold higher survival rate 71% ± 7.9 SD (n = 232), and lower sensitivity to O/V, compared to the original Neuro-2a cells 20% ± 9.0 SD (n = 16). Additionally, OV-LS N2a cells were 1.3-2.6-fold more sensitive for detecting CTX3C 1.35 pg/ml, CTX1B 2.06 pg/ml, and PbTx-3 3.04 ng/ml compared to Neuro-2a cells using 0.1/0.01 mM O/V. Detection of CTX3C in a complex fish matrix using OV-LS cells was 0.0048 pg CTX3C/mg fish tissue equivalent. This work shows the potential for a significant improvement in sensitivity for CTX3C, CTX1B, and PbTx-3 using the OV-LS N2a-assay.
Collapse
Affiliation(s)
- Christopher R Loeffler
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de; Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Angelika Preiss-Weigert
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| |
Collapse
|
34
|
|
35
|
Xu L, Cai J, Gao T, Ma A. Shellfish consumption and health: A comprehensive review of human studies and recommendations for enhanced public policy. Crit Rev Food Sci Nutr 2021; 62:4656-4668. [PMID: 33527847 DOI: 10.1080/10408398.2021.1878098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Shellfish, including various species of mollusks (e.g., clams, oysters, and mussels) and crustaceans (e.g., shrimp and crab), have been a cornerstone of healthy dietary recommendations. However, beyond providing basic nutrition needs, their health-promoting effects have been suggested to include inflammation reduction and prevention of various chronic non-communicable diseases. Currently, studies on the association between shellfish consumption and health outcomes have reported conflicting results. The present comprehensive review summarized the latest studies on shellfish consumption and synthesized the available evidence on the potential health benefits or risks of shellfish consumption. The findings demonstrated that shellfish consumption may increase the risk of hyperuricemia and gout but may not increase the risk of type 2 diabetes, cardiovascular diseases, and thyroid cancer. Adequate evidence is lacking on the association between shellfish consumption and the risk of colorectal cancer, pancreatic cancer, oral cancer, endometriosis, hip fracture, cognitive function, wheeze, eczema and food allergy. Raw shellfish consumption may cause gastroenteritis and other diseases infected by bacteria or viruses. This review thus provides consumers and other relevant stakeholders with the latest evidence-based information on the potential benefits and risks of shellfish consumption.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Jing Cai
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Tianlin Gao
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qngdao, China
| |
Collapse
|
36
|
Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA, Kulis DM, Landsberg JH, Lefebvre KA, Provoost P, Richlen ML, Smith JL, Solow AR, Trainer VL. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. HARMFUL ALGAE 2021; 102:101975. [PMID: 33875183 PMCID: PMC8058451 DOI: 10.1016/j.hal.2021.101975] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990-2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida - Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921-2001 but have appeared in more than 15 U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50 U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
Collapse
Affiliation(s)
- Donald M Anderson
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
| | - Elizabeth Fensin
- NC Division of Water Resources, 4401 Reedy Creek Road, Raleigh, NC, 27607, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Alicia E Hoeglund
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, United States
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, United States
| | - David M Kulis
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Jan H Landsberg
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, United States
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, United States
| | - Pieter Provoost
- Intergovernmental Oceanographic Commission (IOC) of UNESCO, IOC Project Office for IODE, 8400 Oostende, Belgium
| | - Mindy L Richlen
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Juliette L Smith
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, United States
| | - Andrew R Solow
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Vera L Trainer
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, United States
| |
Collapse
|
37
|
Cunningham BR, Coleman RM, Schaefer AM, Hamelin EI, Johnson RC. Detection of Brevetoxin in Human Plasma by ELISA. J Anal Toxicol 2021; 46:322-327. [PMID: 33515246 PMCID: PMC8679180 DOI: 10.1093/jat/bkab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022] Open
Abstract
Florida red tides have become more common and persistent in and around the Gulf of Mexico. When in bloom, red tides can produce brevetoxins in high concentrations, leading to human exposures primarily through contaminated food and ocean spray. The research described here includes adapting and validating a commercial brevetoxin water test kit for human plasma testing. Pooled plasma was fortified with a model brevetoxin, brevetoxin 3, at concentrations from 0.00500 to 3.00 ng/mL to generate calibration curves and quality control samples. The quantitative detection range was determined to be 0.0400–2.00 ng/mL brevetoxin 3 equivalents with inter- and intraday accuracies ranging from 94.0% to 109% and relative standard deviations <20%, which is within the US Food and Drug Administration guidelines for receptor-binding assays. Additionally, cross-reactivity was tested using 4 of the 10 known brevetoxins and 12 paralytic shellfish toxins. The cross-reactivity varied from 0.173% to 144% for the commercially available brevetoxin standards and 0% for the commercially available paralytic shellfish toxin standards. Fifty individual unexposed human plasma samples were measured to determine the limit of detection and endogenous interferences to the test. The validated method was used to test 31 plasma samples collected from humans potentially exposed to brevetoxins, detecting 11 positives. This method has been proven useful to measure human exposure to brevetoxins and can be applied to future exposure events.
Collapse
Affiliation(s)
- Brady R. Cunningham
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Rebecca M. Coleman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Adam M. Schaefer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL 34946, USA
| | - Elizabeth I. Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
- Author to whom correspondence should be addressed.
| | - Rudolph C. Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| |
Collapse
|
38
|
Pierre O, Fouchard M, Buscaglia P, Le Goux N, Leschiera R, Mignen O, Fluhr JW, Misery L, Le Garrec R. Calcium Increase and Substance P Release Induced by the Neurotoxin Brevetoxin-1 in Sensory Neurons: Involvement of PAR2 Activation through Both Cathepsin S and Canonical Signaling. Cells 2020; 9:E2704. [PMID: 33348659 PMCID: PMC7767211 DOI: 10.3390/cells9122704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S (Cat-S) and substance P (SP) release are crucial mediators of the sensory effects of ciguatoxins (CTXs) which are PbTx analogs. This work explored the role of PAR2 and Cat-S in PbTx-1-induced sensory effects and deciphered the signaling pathway involved. We performed calcium imaging, PAR2 immunolocalization and SP release experiments in monocultured sensory neurons or co-cultured with keratinocytes treated with PbTx-1 or P-CTX-2. We demonstrated that PbTx-1-induced calcium increase and SP release involved Cat-S, PAR2 and transient receptor potential vanilloid 4 (TRPV4). The PbTx-1-induced signaling pathway included protein kinase A (PKA) and TRPV4, which are compatible with the PAR2 biased signaling induced by Cat-S. Internalization of PAR2 and protein kinase C (PKC), inositol triphosphate receptor and TRPV4 activation evoked by PbTx-1 are compatible with the PAR2 canonical signaling. Our results suggest that PbTx-1-induced sensory disturbances involve the PAR2-TRPV4 pathway. We identified PAR2, Cat-S, PKA, and PKC that are involved in TRPV4 sensitization induced by PbTx-1 in sensory neurons.
Collapse
Affiliation(s)
- Ophélie Pierre
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Paul Buscaglia
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Nelig Le Goux
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Raphaël Leschiera
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Olivier Mignen
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Joachim W. Fluhr
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charit Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
39
|
Abraham A, Flewelling LJ, El Said KR, Odom W, Geiger SP, Granholm AA, Jackson JT, Bodager D. An occurrence of neurotoxic shellfish poisoning by consumption of gastropods contaminated with brevetoxins. Toxicon 2020; 191:9-17. [PMID: 33338449 DOI: 10.1016/j.toxicon.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022]
Abstract
Brevetoxins were confirmed in urine specimens from patients diagnosed with neurotoxic shellfish poisoning (NSP) after consumption of gastropods that were recreationally harvested from an area previously affected by a Karenia brevis bloom. Several species of gastropods (Triplofusus giganteus, Sinistrofulgur sinistrum, Cinctura hunteria, Strombus alatus, Fulguropsis spirata) and one clam (Macrocallista nimbosa) from the NSP implicated gastropod collection area (Jewfish Key, Sarasota Bay, Florida) were examined for brevetoxins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA). All gastropods and the clam were contaminated with brevetoxins. Composite B-type toxin concentrations in gastropods ranged from 1.1 to 198 μg BTX-3 equiv./g by ELISA, levels likely capable of causing NSP in consumers. Several brevetoxin metabolites previously characterized in molluscan shellfish were identified in these gastropods. Brevetoxin analog profiles by ELISA were similar in the gastropod species examined. This work documents the occurrence of NSP through consumption of a type of seafood not typically monitored in Florida to protect human health, demonstrating the need to better assess and communicate the risk of NSP to gastropod harvesters in Karenia brevis endemic areas.
Collapse
Affiliation(s)
- Ann Abraham
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Drive, Dauphin Island, AL, 36528, USA
| | - Leanne J Flewelling
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA.
| | - Kathleen R El Said
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Drive, Dauphin Island, AL, 36528, USA
| | - William Odom
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Drive, Dauphin Island, AL, 36528, USA
| | - Stephen P Geiger
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA
| | - April A Granholm
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA
| | - Jennifer T Jackson
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Orlando, FL, 32801, USA
| | - Dean Bodager
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Orlando, FL, 32801, USA
| |
Collapse
|
40
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d'Histoire Naturelle, Paris, FR
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l'Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
41
|
Elleuch J, Barkallah M, Smith KF, Ben Neila I, Fendri I, Abdelkafi S. Quantitative PCR assay for the simultaneous identification and enumeration of multiple Karenia species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36889-36899. [PMID: 32577959 DOI: 10.1007/s11356-020-09739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Quantitative PCR (qPCR) is the method of choice for specific detection and quantification of harmful algal bloom (HAB) species. Development of qPCR assay for simultaneous enumeration of species that frequently co-exist in HABs is required. A high sensitivity TaqMan qPCR assay, using probe and primers, located at ITS1-5.8S-ITS2 rDNA region, detecting, specifically, Karenia selliformis, K. bidigitata, and K. mikimotoi, was designed. ITS1-5.8S-ITS2 rDNA region copy numbers per Karenia cell genome were estimated to 217.697 ± 67.904, allowing cell quantification. An application of the designed methodology in field samples has been conducted, and it showed high sensitivity (detection of around 10-1 cell/100 mg of bivalve mollusk tissue, equivalent to about 20 copies of the target sequence). We suggest that the optimized method could contribute to early detection of three closely related Karenia species in seafood cultivating areas to promote control quality, guarantee a fast and effective intervention, and improve public health prevention.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Staff NP. Peripheral Neuropathies Due to Vitamin and Mineral Deficiencies, Toxins, and Medications. Continuum (Minneap Minn) 2020; 26:1280-1298. [PMID: 33003002 DOI: 10.1212/con.0000000000000908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Vitamin and mineral deficiencies, neurotoxins, and, particularly, prescription medications, are some of the most common causes of peripheral neuropathy. Recognition and prompt treatment of these neuropathies require a high index of suspicion and an accompanied detailed history. This article provides a comprehensive approach and list of items that must be considered in the setting of new-onset neuropathy. RECENT FINDINGS Although many of the neuropathies described in this article have decreased in prevalence in developed countries because of public health interventions and occupational/environmental regulations, new causes for this class of neuropathy continue to be uncovered. SUMMARY The peripheral nervous system is susceptible to a broad array of metabolic and toxic abnormalities, which most often lead to a length-dependent sensory-predominant axonal peripheral neuropathy. A careful history accompanied by recognition of multisystem clues can increase recognition of these neuropathies, which is important as many have specific treatments that may either improve the neuropathy or halt its progression.
Collapse
|
43
|
Kong X, Ma J, Le-Clech P, Wang Z, Tang CY, Waite TD. Management of concentrate and waste streams for membrane-based algal separation in water treatment: A review. WATER RESEARCH 2020; 183:115969. [PMID: 32721703 DOI: 10.1016/j.watres.2020.115969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Frequent occurrence of harmful algal blooms (HABs) and red tides in freshwater and seawater poses serious threats to water treatment and drives the application of membrane-based technologies in algal separation. Despite the high removal efficiency of algal cells and their metabolites (e.g. organic matter and toxins) by membranes, the generation of concentrate and waste streams presents a major challenge. In this paper, we review the scenarios under which membrane-based processes are integrated with algal separation, with particular attention given to (i) drinking water production and desalination at low algal concentrations and (ii) cyanobacteria-laden water treatment/desalination. The concentrate and waste streams from backwashing and membrane cleaning in each scenario are characterised with this information facilitating a better understanding of the transport of algal cells and metabolites in membrane processes. Current strategies and gaps in managing concentrate and waste streams are identified with guidance and perspectives for future studies discussed in an Eisenhower framework.
Collapse
Affiliation(s)
- Xiangtong Kong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
44
|
Neves RAF, Pardal MA, Nascimento SM, Oliveira PJ, Rodrigues ET. Screening-level evaluation of marine benthic dinoflagellates toxicity using mammalian cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110465. [PMID: 32199217 DOI: 10.1016/j.ecoenv.2020.110465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
45
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
46
|
Wang X, Niu X, Chen Y, Sun Z, Han A, Lou X, Ge J, Li X, Yang Y, Jian J, Gonçalves RJ, Guan W. Transcriptome sequencing of a toxic dinoflagellate, Karenia mikimotoi subjected to stress from solar ultraviolet radiation. HARMFUL ALGAE 2019; 88:101640. [PMID: 31582153 DOI: 10.1016/j.hal.2019.101640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet radiation (UVR) is a stress factor in aquatic environments and may act directly or indirectly on orgnisms in the upper layers of the water column. However, UVR effects are usually species-specific and difficult to extrapolate. Here we use the HAB-forming, toxic dinoflagellate Karenia mikimotoi (which was found to be relatively resistant in previous studies) to investigate its transcriptional responses to a one-week UVR exposure. For this, batch cultures of K. mikimotoi were grown with and without UVR, and their transcriptomes (generated via RNAseq technology) were compared. RNA-seq generated 45.31 million reads, which were further assembled to 202600 unigenes (>300bp). Among these, ca. 61% were annotated with NCBI, NR, GO, KOG, PFAM, Swiss-Prot, and KEGG database. Transcriptomic analysis revealed 722 differentially expressed unigenes (DEGs, defined as being within a |log2 fold change| ≥ 2 and padj < 0.05) responding to solar UVR, which were only 0.36% of all unigenes. 716 unigenes were down-regulated, and only 6 unigenes were up-regulated in the UVR compared to non-UVR treatment. KEGG pathway further analysis revealed DEGs were involved in the different pathway; genes involved in the ribosome, endocytosis and steroid biosynthesis pathways were highly down-regulated, but this was not the case for those involved in the energy metabolisms (including photosynthesis, oxidative phosphorylation) which may contribute to the sustainable growth observed in UVR treatment. The up-regulated expression of both zinc-finger proteins (ZFPs) and ribosomal protein L11 (RPL11) may be one of the acclimated mechanisms against UVR. In addition, this work identified down-regulated genes involved in fatty acid degradation and the hydrophobic branched chain amino acids (e.g., Valine, leucine, and isoleucine), which act as structural components of cell membranes modulating lipid homeostasis or turnover. In conclusion, the present study suggests that the toxic dinoflagellate K. mikimotoi has limited transcriptomic regulation but confirms that it appears as a tolerant species in response to solar UVR. These findings expand current knowledge of gene expression in HAB-forming species in response to natural environment factors such as solar radiation.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China; Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Xiaoqin Niu
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yiji Chen
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhewei Sun
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Axiang Han
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiayuan Lou
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jingke Ge
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xuanwen Li
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yuqian Yang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China.
| |
Collapse
|
47
|
Yau MS, Lei ENY, Ng IHM, Yuen CKK, Lam JCW, Lam MHW. Changes in the neurotransmitter profile in the central nervous system of marine medaka (Oryzias melastigma) after exposure to brevetoxin PbTx-1 - A multivariate approach to establish exposure biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:327-336. [PMID: 30991322 DOI: 10.1016/j.scitotenv.2019.03.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
A strategy to construct multivariate biomarkers for exposure to algal neurotoxins via correlating changes to the profiles of a series of neurotransmitters and their metabolites in the central nervous system (CNS) of exposed test organism is reported. 3-Month-old marine medaka (Oryzais melastigma) were exposed to waterborne brevetoxin PbTx-1 at two sub-lethal dose levels (0.5 and 2.5 μg-PbTx-1 L-1) for a duration of 12 h before quantification of 43 selected neurotransmitters and metabolites in their CNS were measured via dansyl chloride derivatization and LC-MS/MS determination. The profiling data were analyzed by multivariate statistical analyses, including principle component analysis (PCA), projection on latent structure-discriminate analysis (PLS-DA) and orthogonal projection on latent structure-discriminate analysis (OPLS-DA). Neurotransmitters and metabolites related to activation of voltage-gated sodium channels (VGSCs), N-methyl-D-aspartic acid receptors (NMDARs) and cholinergic neurotransmission were found to contribute significantly to class separation in the corresponding OPLS-DA models. Those models obtained from different exposure dosages were correlated by the Shared and Unique Structures Plot (SUS-plot) to identify appropriate variables for the construction of exposure biomarkers in the form of multivariate predictive scores. The established biomarkers for male and female medaka fish were able to predict acute sub-lethal exposure to PbTx-1 with good sensitivity and specificity (male fish: sensitivity 94.7%, specificity 80.0%; female fish: sensitivity 91.4%, specificity 83.3%). Neurotransmitter profiles in the CNS of medaka fish that should have recovered from exposure to PbTx-1 have also been determined to reveal long-term impacts to the CNS of the affected organism even after the exposure has been interrupted.
Collapse
Affiliation(s)
- Man-Shan Yau
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Elva Ngai-Yu Lei
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Isabel Hei-Ma Ng
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Carrie Ka-Ki Yuen
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - James Chung-Wah Lam
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Science and Environmental Studies, Education University of Hong Kong, Hong Kong, China
| | - Michael Hon-Wah Lam
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
48
|
Hardison DR, Holland WC, Currier RD, Kirkpatrick B, Stumpf R, Fanara T, Burris D, Reich A, Kirkpatrick GJ, Litaker RW. HABscope: A tool for use by citizen scientists to facilitate early warning of respiratory irritation caused by toxic blooms of Karenia brevis. PLoS One 2019; 14:e0218489. [PMID: 31220134 PMCID: PMC6586399 DOI: 10.1371/journal.pone.0218489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
Blooms of the toxic microalga Karenia brevis occur seasonally in Florida, Texas and other portions of the Gulf of Mexico. Brevetoxins produced during Karenia blooms can cause neurotoxic shellfish poisoning in humans, massive fish kills, and the death of marine mammals and birds. Brevetoxin-containing aerosols are an additional problem, having a severe impact on beachgoers, triggering coughing, eye and throat irritation in healthy individuals, and more serious respiratory distress in those with asthma or other breathing disorders. The blooms and associated aerosol impacts are patchy in nature, often affecting one beach but having no impact on an adjacent beach. To provide timely information to visitors about which beaches are low-risk, we developed HABscope; a low cost (~$400) microscope system that can be used in the field by citizen scientists with cell phones to enumerate K. brevis cell concentrations in the water along each beach. The HABscope system operates by capturing short videos of collected water samples and uploading them to a central server for rapid enumeration of K. brevis cells using calibrated recognition software. The HABscope has a detection threshold of about 100,000 cells, which is the point when respiratory risk becomes evident. Higher concentrations are reliably estimated up to 10 million cells L-1. When deployed by volunteer citizen scientists, the HABscope consistently distinguished low, medium, and high concentrations of cells in the water. The volunteers were able to collect data on most days during a severe bloom. This indicates that the HABscope can provide an effective capability to significantly increase the sampling coverage during Karenia brevis blooms.
Collapse
Affiliation(s)
- D. Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
- * E-mail:
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | - Robert D. Currier
- Gulf of Mexico Coastal Ocean Observing System, Department of Oceanography, Texas A & M University, College Station, Texas, United States of America
| | - Barbara Kirkpatrick
- Gulf of Mexico Coastal Ocean Observing System, Department of Oceanography, Texas A & M University, College Station, Texas, United States of America
| | - Richard Stumpf
- National Oceanic and Atmospheric Administration, Center for Coastal Management and Assessment, Silver Spring, Maryland, United States of America
| | - Tracy Fanara
- Mote Marine Laboratory and Aquarium, Sarasota, Florida, United States of America
| | - Devin Burris
- Mote Marine Laboratory and Aquarium, Sarasota, Florida, United States of America
| | - Andrew Reich
- Florida Department of Health, Public Health Toxicology Section, Tallahassee, Florida, United States of America
| | - Gary J. Kirkpatrick
- Mote Marine Laboratory and Aquarium, Sarasota, Florida, United States of America
| | - R. Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| |
Collapse
|
49
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
50
|
Murk AJ, Nicolas J, Smulders FJ, Bürk C, Gerssen A. Marine biotoxins: types of poisoning, underlying mechanisms of action and risk management programmes. CHEMICAL HAZARDS IN FOODS OF ANIMAL ORIGIN 2019. [DOI: 10.3920/978-90-8686-877-3_09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology group, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - Jonathan Nicolas
- 68300 Saint-Louis, France, formerly affiliated with Division of Toxicology, Wageningen University and Research Centre, the Netherlands
| | - Frans J.M. Smulders
- Institute of Meat Hygiene, Meat Technology and Food Science, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christine Bürk
- Milchwirstschaftliche Untersuchungs- und Versuchsanstalt (MUVA) Kempten, GmbH, Ignaz-Kiechle-Straße 20-22, 87437 Kempten (Allgäu), Germany
| | - Arjen Gerssen
- RIKILT, Wageningen University & Research, P.O. Box 230, 6708 WB Wageningen, the Netherlands
| |
Collapse
|