1
|
Vats M, Rathod D, Patel H, Richards T, Patel K. Self-emulsifying Nano-PND oral delivery systems of PND1186: In silico modeling for bioavailability estimation. J Mol Liq 2025; 426:127161. [PMID: 40322757 PMCID: PMC12048016 DOI: 10.1016/j.molliq.2025.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Focal adhesion kinase (FAK) inhibitors have proven to aid the therapeutic potential of anti-cancer agents. PND1186 (PND) is a FAK inhibitor disrupting the oncogenic processes such as cell survival, proliferation, adhesion, migration and angiogenesis, as well as remodeling of tumor microenvironment. However, the pharmacological potential of PND is limited by its poor solubility and bioavailability due to rapid precipitation of weakly basic PND in the intestinal milieu. As a solution, we have developed a self-nanoemulsifying PND oral delivery system (NanoPODS) for rapid dissolution of PND while Soluplus containing system (NanoPODS-S) was prepared to prevent the precipitation of PND. Optimized NanoPODS-S depicted a particle size of 107.0 ± 3.6 nm, PDI of 0.223 ± 0.016, and a surface potential of -4.2 ± 0.007 mV, along with > 70% PND released at pH 6.8. In silico pharmacokinetics predicted 99% oral bioavailability for NanoPODS-S. This study evaluates the efficacy of NanoPODS and NanoPODS-S for improved oral bioavailability with better cytotoxicity efficacy on Pancreatic Ductal Adenocarcinoma (PDAC) cell lines. NanoPODS-S is the first of its kind, self-nanoemulsifying system containing a polymeric precipitation inhibitor mimicking a "spring-parachute effect". It will be a novel platform technology for rapid and enhanced dissolution of poorly soluble molecules.
Collapse
Affiliation(s)
- Mukti Vats
- College of Pharmacy and Health Sciences, St. John’s University, NY, USA
| | - Drishti Rathod
- College of Pharmacy and Health Sciences, St. John’s University, NY, USA
| | - Henis Patel
- College of Pharmacy and Health Sciences, St. John’s University, NY, USA
| | - Terjahna Richards
- College of Pharmacy and Health Sciences, St. John’s University, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John’s University, NY, USA
| |
Collapse
|
2
|
Jindal A, Kumar Sharma P, Kumar A. Self-nanoemulsifying drug delivery system (SNEDDS) as nano-carrier framework for permeability modulating approaches of BCS class III drug. J Drug Target 2025:1-21. [PMID: 40013328 DOI: 10.1080/1061186x.2025.2469751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this review is to focus on the Self-Nanoemulsifying Drug Delivery System (SNEDDS) as an effective nanocarrier framework for permeability modulating approaches (PMA) of BCS class-III drugs and its challenges. Present review updates the recent trends in the SNEDDS research where it was employed as a cargo carrier for PMA and challenges. Patient compliance, ease of administration and non-invasiveness mode are non-trivial aspects in the oral administration of drugs. However, low aqueous solubility and impaired permeability are two prominent challenges resulting poor absorption of a drug. SNEDDS emerged as a dual nano-carrier system to enable nanodispersion of PMA via e.g. ion-pairing, phospholipid-complex, surfactant-drug interaction, loading of non-ionizable, free drug bases etc. These PMAs are embedded within the lipid phase of SNEDDS to produce nanosizing, enhancing nano-dispersibility via micellization/solubilization mechanism owing to its ternary components. Review highlights different PMAs employed in bioavailability enhancement of BCS class-III. It covers excipients employed in SNEDDS-loaded PMA, strategies for the hydrophobic transformation of water-soluble drugs for BCS class-III drugs. SNEDDS as a nano-cargo system for PMAs significantly modifies the bioavailability of BCS class-III drugs. SNEDDS is an isotropic-mixture of oil, surfactant:co-surfactant offers multipoint access to PMA loading and produces nano-dispersion in aqueous-medium.
Collapse
Affiliation(s)
- Amulya Jindal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pankaj Kumar Sharma
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmacy, Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Radhakrishnan A, Shanmukhan NK, Samuel LC. Pharmacogenomics influence on MDR1-associated cancer resistance and innovative drug delivery approaches: advancing precision oncology. Med Oncol 2025; 42:67. [PMID: 39913003 DOI: 10.1007/s12032-025-02611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Currently, there is a growing concern surrounding the treatment of cancer, a formidable disease. Pharmacogenomics and personalized medicine have emerged as significant areas of interest in cancer management. The efficacy of many cancer drugs is hindered by resistance mechanisms, particularly P-glycoprotein (P-gp) efflux, leading to reduced therapeutic outcomes. Efforts have intensified to inhibit P-gp efflux, thereby enhancing the effectiveness of resistant drugs. P-gp, a member of the ATP-binding cassette (ABC) superfamily, specifically the multidrug resistance (MDR)/transporter associated with antigen processing (TAP) sub-family B, member 1, utilizes energy derived from ATP hydrolysis to drive efflux. This review focuses on genetic polymorphisms associated with P-gp efflux and explores various novel pharmaceutical strategies to address this challenge. These strategies encompass SEDDS/SNEDDS, liposomes, immunoliposomes, solid lipid nanoparticles, lipid core nanocapsules, microemulsions, dendrimers, hydrogels, polymer-drug conjugates, and polymeric nanoparticles. The article aims to elucidate the interplay between pharmacogenomics, P-gp-mediated drug resistance in cancer, and formulation strategies to improve cancer therapy by tailoring formulations to genetically susceptible patients.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India.
| | - Nikhitha K Shanmukhan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India
| | - Linda Christabel Samuel
- Department of Conservative Dentistry and Endodontics, JKKN Dental College and Hospitals, Kumarapalayam, 638183, India
| |
Collapse
|
4
|
More SM, Rashid MA, Kharwade RS, Taha M, Alhamhoom Y, Elhassan GO, Gangane P, Asar TO, Pise A, Kaleem M, Mujtaba MA. Development of Solid Self-Nanoemulsifying Drug Delivery System of Rhein to Improve Biopharmaceutical Performance: Physiochemical Characterization, and Pharmacokinetic Evaluation. Int J Nanomedicine 2025; 20:267-291. [PMID: 39802374 PMCID: PMC11724663 DOI: 10.2147/ijn.s499024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability. Methods The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 32 factorial design. The optimized formulation was characterized for Fourier transform infrared spectroscopy, differential scanning calorimetry, powdered X-ray diffraction, and Field emission scanning electron microscopy. Further, the oral bioavailability study and brain tissue pharmacokinetics study were performed on Sprague-Dawley rats. Results The optimized RL-SNEDDS had an average droplet size of 129.3 ±1.57 nm, zeta potential of -24.6 mV ±0.34, % transmittance of 94.82 ± 0.61, and encapsulation efficiency of 98.86 ± 0.23. Furthermore, RL-SNEDDS was transformed into solid RL-SNEDDS (RS-SNEDDS) to increase stability. In vitro release of rhein from RS-SNEDDS showed prolonged release up to 24h with 99.03± 1.04% drug release. Differential scanning calorimetry and powdered X-ray diffraction analysis confirmed the reduction in drug crystallinity and supported the results of the dissolution study. Field emission scanning electron microscopy analysis revealed the smooth and spherical nanosized globule of SNEDDS. Moreover, the in vivo pharmacokinetic study showed a significantly higher (p ≤ 0.05) value of Cmax and AUC0-t of RS-SNEDDS (8 ± 0.930 μg/mL and 37.79 ± 2.01 μg/mL*hr) compared to free rhein suspension (1.96 ± 0.712 μg/mL and 7.32 ± 0.946 μg/mL*hr) which indicated the enhancement of bioavailability of RS-SNEDDS. We also examined the Cmax and AUC0-t of RS-SNEDDS in the brain and it was found to be 2.90 ± 0.171 μg/mL and 18.18 ± 1.68 μg/mL*hr respectively. Conclusion This study concludes that the RS-SNEDDS improves brain tissue concentration and oral bioavailability, both of which increase therapeutic potential.
Collapse
Affiliation(s)
- Sachin Madhusudan More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MH, 440037, India
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rohini S Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MH, 440037, India
| | - Murtada Taha
- Department of Clinical Laboratory Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Purushottam Gangane
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MH, 440037, India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| | - Ajay Pise
- Department of Regulatory Affairs Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MH, 440037, India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MH, 440037, India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
5
|
Víg L, Zátonyi A, Csernyus B, Horváth ÁC, Bojtár M, Kele P, Madarász M, Rózsa B, Fürjes P, Hermann P, Hakkel O, Péter L, Fekete Z. Optically Controlled Drug Delivery Through Microscale Brain-Machine Interfaces Using Integrated Upconverting Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:7987. [PMID: 39771721 PMCID: PMC11680031 DOI: 10.3390/s24247987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain-machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release.
Collapse
Affiliation(s)
- Levente Víg
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary; (L.V.)
| | - Anita Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary; (L.V.)
| | - Bence Csernyus
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary; (L.V.)
| | - Ágoston C. Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary; (L.V.)
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | | | - Balázs Rózsa
- BrainVisionCenter, H-1094 Budapest, Hungary; (M.M.); (B.R.)
- HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Péter Fürjes
- Microsystems Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary; (P.F.)
| | - Petra Hermann
- Microsystems Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary; (P.F.)
| | - Orsolya Hakkel
- Microsystems Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary; (P.F.)
| | - László Péter
- Complex Fluid Research Department, Institute of Solid-State Physics and Optics, HUN-REN Wigner Research Centre for Physics, H-1121 Budapest, Hungary;
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary; (L.V.)
- Sleep Oscillation Research Group, Institute of Cognitive Neuroscience & Psychology, HUN-REN Research Center for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Quoc TT, Bíró K, Pető Á, Kósa D, Haimhoffer Á, Lekli I, Pallér Á, Bak I, Gyöngyösi A, Fehér P, Bácskay I, Ujhelyi Z. The Role of Amphiphilic Compounds in Nasal Nanoparticles. AAPS PharmSciTech 2024; 25:269. [PMID: 39562402 DOI: 10.1208/s12249-024-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Nasal medications hold significant importance and are widely utilized due to their numerous advantageous properties, offering a compelling route for both local and systemic therapeutic effects. Nowadays, the development of nasal particles under 1 micrometer is in the focus of much scientific research. In our experiments, the use of innovative nanotechnology to increase the effectiveness of the active substance was of paramount importance. Our aim was to create solid nanoparticles that enable targeted and effective delivery of the active ingredient into the body. The innovation of this experimental series lies not only in highlighting the importance of amphiphilic compounds in enhancing penetration, but also in the fact that while most nasally administered formulations are in liquid form, our formulation is solid. Liquid formulations frequently suffer from the disadvantage of possible leakage during administration, which can reduce the bioavailability of the active ingredient. In our experiments we created novel drug delivery systems of finely divided powders, which, thanks to the penetration enhancers, can be successfully administered. These enhancers facilitate the swift disintegration and penetration of the particles through the membrane. This represents a new direction in nasal drug delivery methods. The results of our trials are promising in the development of innovative pharmaceutical products and outline the role of amphiphilic compounds in more efficient utilization and targeted application of active substances. According to our results it can be concluded that this innovative approach not only addresses the common issues associated with liquid nasal formulations but also paves the way for more stable and effective delivery methods. The use of finely divided powders for nasal delivery, enabled by penetration enhancers, represents a major breakthrough in the field, providing a dependable alternative to conventional liquid formulations and ensuring improved therapeutic results.
Collapse
Affiliation(s)
- Thinh To Quoc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Krisztina Bíró
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- University Pharmacy, University of Debrecen Clinical Center, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Pallér
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Mohite P, Sule S, Pawar A, Alharbi HM, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Ogbu CO, Oodo SI, Kumer A, Idowu AO, Okoye ONN. Development and characterization of a self-nano emulsifying drug delivery system (SNEDDS) for Ornidazole to improve solubility and oral bioavailability of BCS class II drugs. Sci Rep 2024; 14:27724. [PMID: 39532892 PMCID: PMC11557912 DOI: 10.1038/s41598-024-73760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to investigate the in vitro performance of self-nanoemulsifying drug delivery systems (SNEDDSs) of Ornidazole (ORD), a poorly water-soluble drug. Self-nanoemulsifying drug delivery systems of ORD were prepared using various oils, non-ionic surfactants, and/or water-soluble co-solvents and assessed visually/by droplet size measurement. Equilibrium solubility of ORD in the anhydrous and diluted SNEDDS was conducted to achieve the maximum drug loading. The in vitro dissolution of SNEDDS was studied to compare the solubility of the representative formulations with API. The results from the characterization and solubility studies showed that SNEDDS formulations were stable with lower droplet sizes and showed higher ORD solubility. From the dissolution studies, it was found that the developed A7-SNEDDS formulation provided a significantly higher rate of ORD release (98.94 ± 0.68 in 1.0 h) compared to API. ORD-loaded SNEDDS formulations could be a potential oral pharmaceutical product with high drug-loading capacity, improved drug dissolution, and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra, India
| | - Shruti Sule
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Anil Pawar
- MES's College of Pharmacy, Sonai, Tal- Newasa, Ahmednagar, Maharashtra, India
| | - Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Vetriselvan Subramaniyan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Daniel Ejim Uti
- Department of Research Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Celestine O Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Simon Inedu Oodo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Ajoy Kumer
- Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Ayodeji Oluwafemi Idowu
- Centre for Excellence in Functional foods and Gastronomy Faculty of Agro-industry, Prince of Songkla University, Hat Yai, Thailand
| | - Okechukwu N N Okoye
- Department of Industrial Chemistry, College of Science, Evangel University Akaeze, Ebonyi, Nigeria
| |
Collapse
|
8
|
Sherif AY, Elzayat EM, Altamimi MA. Optimization of Glibenclamide Loaded Thermoresponsive SNEDDS Using Design of Experiment Approach: Paving the Way to Enhance Pharmaceutical Applicability. Molecules 2024; 29:5163. [PMID: 39519804 PMCID: PMC11547575 DOI: 10.3390/molecules29215163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Thermoresponsive self-nanoemulsifying drug delivery systems (T-SNEDDS) offer a promising solution to the limitations of conventional SNEDDS formulations. Liquid SNEDDS are expected to enhance drug solubility; however, they are susceptible to leakage during storage. Even though solid SNEDDS offers a solution to this storage instability, they introduce new challenges, namely increased total dosage and potential for drug trapping within the formulation. The invented T-SNEDDS was used to overcome these limitations and improve the dissolution of glibenclamide (GBC). Solubility and transmittance studies were performed to select a suitable oil and surfactant. Design of Experiments (DoE) software was used to study the impact of propylene glycol and Poloxamer 188 concentrations on measured responses (liquefying temperature, liquefying time, and GBC solubility). The optimized formulation was subjected to an in vitro dissolution study. The optimized T-SNEDDS consisted of Kolliphor EL and Imwitor 308 as surfactants and oil. The optimized propylene glycol and Poloxamer 188 concentrations were 13.7 and 7.9% w/w, respectively. It exhibited a liquefying temperature of 35.0 °C, a liquefying time of 119 s, and a GBC solubility of 5.51 mg/g. In vitro dissolution study showed that optimized T-SNEDDS exhibited 98.8% dissolution efficiency compared with 2.5% for raw drugs. This study presents a promising approach to enhance pharmaceutical applicability by resolving the limitations of traditional SNEDDS.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.M.E.); (M.A.A.)
| | | | | |
Collapse
|
9
|
Sherif AY, Abbas Ibrahim M. Self-Nanoemulsifying Drug Delivery System Combined with a Polymeric Amorphous System of Glibenclamide for Enhanced Drug Dissolution and Stability. ACS OMEGA 2024; 9:43165-43174. [PMID: 39464452 PMCID: PMC11500158 DOI: 10.1021/acsomega.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been widely applied to improve the dissolution and bioavailability of hydrophobic medications like glibenclamide (GB). However, the acid liability of GB limits its loading in SNEDDS formulation owing to the expected drug degradation. The present study investigated the ability of a polymeric amorphous system (PAS) to amorphize raw GB and facilitate its integration within dispersed SNEDDS. Liquid-SNEDDS (L-SNEDDS), solid-SNEDDS (S-SNEDDS), and combined systems (SNEDDS + PAS) were prepared for this purpose. The physicochemical properties of the prepared formulations were examined using a zeta-sizer, SEM, DSC, PXRD, and dissolution apparatus. In addition, GB integrity within formulations following incubation in a stability chamber was also investigated. The prepared formulations were able to be dispersed within the nanosize range. SEM, DSC, and PXRD showed that freeze-drying (FD) was superior to the microwave (MW) method in GB amorphization. Even though L-SNEDDS and S-SNEDDS were able to increase the dissolution efficiency (DE) of GB, drug degradation was observed. However, PAS prepared using FD was able to increase the DE of GB from 2.5% to 84.2% and protect the drug from chemical degradation. The present study revealed that a combined system (SNEDDS + PAS) is a promising approach to enhance the stability of acid-labile drugs and facilitate the integration of amorphous drugs within a dispersed SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Oćwieja M, Barbasz A, Kowalska O, Maciejewska-Prończuk J, Lada A. The Adsorption of Chlorpromazine on the Surface of Gold Nanoparticles and Its Effect on the Toxicity to Selected Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4774. [PMID: 39410344 PMCID: PMC11477946 DOI: 10.3390/ma17194774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Chlorpromazine (CPZ) is a first-generation neuroleptic with well-established antitumor and antiviral properties. Currently, numerous studies are focused on developing new methods for CPZ delivery; however, the knowledge regarding its conjugates with metal nanoparticles remains limited. The aim of this study was to prepare CPZ conjugates with gold nanoparticles (AuNPs) and evaluate their biological activity on human lymphocytes (HUT-78 and COLO 720L), as well as human (COLO 679) and murine (B16-F0) melanoma cells, in comparison to the effects induced by unconjugated CPZ molecules and AuNPs with well-defined properties. During the treatment of cells with CPZ, AuNPs, and CPZ-AuNP conjugates, changes in mitochondrial activity, membrane integrity, and the secretion of lipid peroxidation mediators were studied using standard biological assays such as MTT, LDH, and MDA assays. It was found that positively charged CPZ-AuNP conjugates more effectively reduced cell viability compared to AuNPs alone. The dose-dependent membrane damage was correlated with oxidative stress resulting from exposure to CPZ-AuNP conjugates. The activity of the conjugates depended on their composition and the size of the AuNPs. It was concluded that conjugating CPZ to AuNPs reduced its biological activity, while the cellular response to the treatment varied depending on the specific cell type.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland;
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, PL-30084 Krakow, Poland;
| | - Oliwia Kowalska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland;
| | - Julia Maciejewska-Prończuk
- Department of Chemical and Process Engineering, Cracow University of Technology, Warszawska 24, PL-31155 Krakow, Poland;
| | - Agata Lada
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, PL-33100 Tarnow, Poland;
| |
Collapse
|
11
|
Yadav P, Singh S, Chauhan D, Yadav PK, Tiwari AK, Kothuri N, Verma S, Chakradhar JVUS, Sethi M, Gayen JR, Chourasia MK. LC-MS/MS method for simultaneous Doxorubicin and Baicalein estimation: formulation and pharmacokinetic applications. Nanomedicine (Lond) 2024; 19:2085-2097. [PMID: 39225142 PMCID: PMC11485909 DOI: 10.1080/17435889.2024.2390348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aim & objective: Combinatorial delivery of Doxorubicin (DOX) and Baicalein (BAC) has a potential to improve breast cancer treatment by mitigating the cardiotoxicity induced by DOX. The nanoformulation has been optimized and subjected to pharmacokinetic studies using LC-MS/MS.Materials & methods: Nanoformulation bearing DOX and BAC was optimized using quality by design approach and method validation was done following USFDA guidelines.Results: The particle size, PDI and zeta potential of developed nanoformulation were 162.56 ± 2.21 nm, 0.102 ± 0.03 and -16.5 ± 1.21 mV, respectively. DOX-BAC-SNEDDs had a higher AUC0-t values of 6128.84 ± 68.71 and 5896.62 ± 99.31 ng/mL/h as compared with DOX-BAC suspension.Conclusion: These findings hold promise for advancing breast cancer treatment and facilitating therapeutic drug monitoring.
Collapse
Affiliation(s)
- Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Singh
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pavan Kumar Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra Kumar Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naresh Kothuri
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
| | - Sonia Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - JVUS Chakradhar
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
| | - Mitali Sethi
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR–Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Woo MR, Woo S, Bak YW, Cheon S, Kim JS, Ji SH, Park S, Kim JO, Jin SG, Choi HG. Comparison of two self-nanoemulsifying drug delivery systems using different solidification techniques for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib. Colloids Surf B Biointerfaces 2024; 241:114044. [PMID: 38964274 DOI: 10.1016/j.colsurfb.2024.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
In this study, we aimed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) and a solid self-nanoemulsifying granule system (S-SNEGS) to enhance the solubility and oral bioavailability of celecoxib. This process involved the preparation of a liquid SNEDDS (L-SNEDDS) and its subsequent solidification into a S-SNEDDS and a S-SNEGS. The L-SNEDDS consisted of celecoxib (drug), Captex® 355 (Captex; oil), Tween® 80 (Tween 80; surfactant) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS; cosurfactant) in a weight ratio of 3.5:25:60:15 to produce the smallest nanoemulsion droplet size. The S-SNEDDS and S-SNEGS were prepared with L-SNEDDS/Ca-silicate/Avicel PH 101 in a weight ratio of 103.5:50:0 using a spray dryer and 103.5:50:100 using a fluid bed granulator, respectively. We compared the two novel developed systems and celecoxib powder based on their solubility, dissolution rate, physicochemical properties, flow properties and oral bioavailability in rats. S-SNEGS showed a significant improvement in solubility and dissolution rate compared to S-SNEDDS and celecoxib powder. Both systems had been converted from crystalline drug to amorphous form. Furthermore, S-SNEGS exhibited a significantly reduced angle of repose, compressibility index and Hausner ratio than S-SNEDDS, suggesting that S-SNEGS was significantly superior in flow properties. Compared to S-SNEDDS and celecoxib powder, S-SNEGS increased the oral bioavailability (AUC value) in rats by 1.3 and 4.5-fold, respectively. Therefore, S-SNEGS wolud be recommended as a solid self-nanoemulsifying system suitable for poorly water-soluble celecoxib.
Collapse
Affiliation(s)
- Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sanghyun Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Young-Woo Bak
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seunghyun Cheon
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sang Hun Ji
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Seonghyeon Park
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
13
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
14
|
Alfaraj R, Hababah S, Eltayb EK, Alqahtani FY, Aleanizy FS. Isotretinoin self-nano-emulsifying drug delivery system: Preparation, optimization and antibacterial evaluation. Saudi Pharm J 2024; 32:102063. [PMID: 38650911 PMCID: PMC11033190 DOI: 10.1016/j.jsps.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose Isotretinoin (ITN) is a poorly water-soluble drug. The objective of this study was to design a successful liquid self-nanoemulsifying drug delivery system (L-SNEDDS) for ITN to improve its solubility, dissolution rate, and antibacterial activity. Methods According to solubility and emulsification studies, castor oil, Cremophor EL, and Transcutol HP were selected as system excipients. A pseudo ternary phase diagram was constructed to reveal the self-emulsification area. The developed SNEDDS were visually assessed, and the droplet size was measured. In vitro release studies and stability studies were conducted. The antimicrobial effectiveness against multiple bacterial strains, including Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and different accessory gene regulator (Agr) variants were investigated for the optimum ITN-loaded SNEDDS formulation. Results Characterization studies showed emulsion homogeneity and stability (%T 95.40-99.20, A graded) with low droplet sizes (31.87 ± 1.23 nm-115.47 ± 0.36 nm). It was found that the developed ITN-SNEDDS provided significantly a higher release rate (>96 % in 1 h) as compared to the raw drug (<10 % in 1 h). The in vitro antimicrobial activities of pure ITN and ITN-loaded SNEDDS demonstrated a remarkable inhibitory effect on bacterial growth with statistically significant findings (p < 0.0001) for all tested strains when treated with ITN-SNEDDS as compared to the raw drug. Conclusion These outcomes suggested that SNEDDS could be a potential approach for improving solubility, dissolution rates, and antibacterial activity of ITN.
Collapse
Affiliation(s)
- Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Sandra Hababah
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Esra K. Eltayb
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- King Saud University, 11495 Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Mohite P, Joshi A, Singh S, Prajapati B. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:433-445. [PMID: 37832935 DOI: 10.1016/j.pharma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India.
| | - Anjali Joshi
- MES's College of Pharmacy, Sonai, Ahmednagar, Maharashtra, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, 50200 Chiang Mai Thailand; Office of Research Administration, Chiang Mai University, 50200 Chiang Mai Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
16
|
Krawczyk S, Golba S, Neves C, Tedim J. Chlorpromazine-Polypyrrole Drug Delivery System Tailored for Neurological Application. Molecules 2024; 29:1531. [PMID: 38611809 PMCID: PMC11013625 DOI: 10.3390/molecules29071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Nowadays, drug delivery systems (DDSs) are gaining more and more attention. Conducting polymers (CPs) are efficiently used for DDS construction as such systems can be used in therapy. In this research, a well-known CP, polypyrrole (PPy), was synthesized in the presence of the polysaccharide heparin (HEP) and chlorpromazine (CPZ) using sodium dodecyl sulfate (SDS) as electrolyte on a steel substrate. The obtained results demonstrate the successful incorporation of CPZ and HEP into the polymer matrix, with the deposited films maintaining stable electrochemical parameters across multiple doping/dedoping cycles. Surface roughness, estimated via AFM analysis, revealed a correlation with layer thickness-decreasing for thinner layers and increasing for thicker ones. Moreover, SEM images revealed a change in the morphology of PPy films when PPy is electropolymerized in the presence of CPZ and HEP, while FTIR confirmed the presence of CPZ and HEP within PPy. Due to its lower molecular mass compared to HEP, CPZ was readily integrated into the thin polymer matrix during deposition, with diffusion being unimpeded, as opposed to films with greater thickness. Finally, the resulting system exhibited the ability to release CPZ, enabling a dosing range of 10 mg to 20 mg per day, effectively covering the therapeutic concentration range.
Collapse
Affiliation(s)
- Sara Krawczyk
- Department of Science and Technology, Institute of Materials Engineering, Doctoral School, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
| | - Sylwia Golba
- Department of Science and Technology, Institute of Materials Engineering, Bankowa 14, 40-007 Katowice, Poland
| | - Cristina Neves
- Department of Materials and Ceramic Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.N.); (J.T.)
| | - João Tedim
- Department of Materials and Ceramic Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.N.); (J.T.)
| |
Collapse
|
17
|
Dehghani M, Zahir-Jouzdani F, Shahbaz S, Andarzbakhsh K, Dinarvand S, Fathian Nasab MH, Asadi Amoli F, Asgharian R, Atyabi F. Triamcinolone-loaded self nano-emulsifying drug delivery systems for ocular use: An alternative to invasive ocular surgeries and injections. Int J Pharm 2024; 653:123840. [PMID: 38262585 DOI: 10.1016/j.ijpharm.2024.123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Inflammation of the posterior segment of the eye is a severe condition and hard to cure as delivery of drugs to the inflammation site is inefficient. Currently, the primary treatment approach is ocular surgery or invasive ocular injections. Herein, we designed and developed a topically self nano-emulsifying drug delivery system (SNEDDs) to deliver triamcinolone acetonide (TCA) to the posterior segment of the eye. A screening based on TCA solubility was conducted on each excipient followed by preparation of various formulations using different ratios of the selected excipients. Vesicles of optimized SNEDDs had less than 100 nm size and spherical morphology. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed self-emulsified vesicles have relatively high safety on retinal pigment epithelium (RPE) cell line. Furthermore, efficient cellular uptake of coumarin 6-loaded SNEDDs in RPE using confocal laser scanning microscopy (CLSM) was confirmed. In addition, an in-vivo study using hematoxylin and eosin (H&E) staining revealed that 14 days of topical treatment of albino rabbit eyes with TCA-loaded SNEDDs was safe and no sign of tissue destruction and inflammation was detected in different parts of the eye sections including cornea, sclera, retina, and optic nerve. Also, the CLSM images from topically treated eyes with coumarin 6 (a hydrophobic, fluorescent drug model) loaded SNEDDs, showed that the optimized SNEDDs could properly penetrate toward the posterior segments of the eye especially the retina, posterior parts of the choroid, and sclera. Considering the outstanding results obtained by ocular tissue penetration and low toxicity, prepared SNEDDs, have the potential to be used as a topical administration for treating posterior segment disorders of the eye through an utterly non-invasive route and TCA-loaded SNEDDs could be an alternative for TCA intravitreal and intra conjunctival injections.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Forouhe Zahir-Jouzdani
- Arvan Pharmed Pharmaceutical Co., Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shahbaz
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyab Andarzbakhsh
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sajad Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahimeh Asadi Amoli
- Farabi Hospital, Pathology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Asgharian
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Jvus C, Kothuri N, Singh S, Verma S, Shafi H, Reddy DVS, Kedar A, Rana R, Mishra K, Sharma D, Chourasia MK. A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:14. [PMID: 38191830 DOI: 10.1208/s12249-023-02725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Vemurafenib (VMF) is a practically insoluble (< 0.1 μg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Chakradhar Jvus
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasham Shafi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - D V Siva Reddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Deepak Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
19
|
Phan NT, Tran YTH, Nguyen LT, Hoang YK, Bui CK, Nguyen HD, Vu GTT. Self Nanoelmusifying Drug Delivery System of Rosuvastatin: Bioavailability Evaluation and In vitro - In vivo Correlation. Curr Drug Deliv 2024; 21:734-743. [PMID: 36545742 DOI: 10.2174/1567201820666221220104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube. OBJECTIVE The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A in vitro-in vivo correlation (IVIVC) for Ros SNEDDS. METHODS An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. In vitro dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS. RESULTS The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin Cmax in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the in vitro dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y2 as it presented the lowest values of AIC. CONCLUSION Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.
Collapse
Affiliation(s)
- Nghia Thi Phan
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
- Bioequivalence Centre, National Institute of Drug Quality Control, Hanoi, Vietnam
| | - Yen Thi Hai Tran
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Linh Tran Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yen Kieu Hoang
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Cuong Khac Bui
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoa Dang Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Giang Thi Thu Vu
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
20
|
Ifrah S, Dahan A, Debotton N. Towards Effective Antiviral Oral Therapy: Development of a Novel Self-Double Emulsifying Drug Delivery System for Improved Zanamivir Intestinal Permeability. Pharmaceutics 2023; 15:2518. [PMID: 37896277 PMCID: PMC10610354 DOI: 10.3390/pharmaceutics15102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Self-double emulsifying drug delivery systems have the potential to enhance the intestinal permeability of drugs classified under the Biopharmaceutics Classification System (BCS) class III. One such example is the antiviral agent zanamivir, exhibiting suboptimal oral absorption (with a bioavailability range of 1-5%). To address this challenge, we have developed an innovative oral formulation for zanamivir: a self-double nanoemulsifying Winsor delivery system (SDNE-WDS) consisting of the microemulsion, which subsequently yields final double nanoemulsion (W1/O/W2) upon interaction with water. Two distinct formulations were prepared: SDNE-WDS1, classified as a W/O microemulsion, and SDNE-WDS2, discovered to be a bicontinuous microemulsion. The inner microemulsions displayed a consistent radius of gyration, with an average size of 35.1 ± 2.1 nm. Following self-emulsification, the resultant zanamivir-loaded nanoemulsion droplets for zSDNE-WDS1 and zSDNE-WDS2 measured 542.1 ± 36.1 and 174.4 ± 3.4 nm, respectively. Both types of emulsions demonstrated the ability to enhance the transport of zanamivir across a parallel artificial membrane. Additionally, in situ rat intestinal perfusion studies involving drug-loaded SDNE-WDSs revealed a significantly increased permeability of zanamivir through the small intestinal wall. Notably, both SDNE-WDS formulations exhibited effective permeability (Peff) values that were 3.5-5.5-fold higher than those of the low/high permeability boundary marker metoprolol. This research emphasizes the success of SDNE-WDSs in overcoming intestinal permeability barriers and enabling the effective oral administration of zanamivir. These findings hold promise for advancing the development of efficacious oral administration of BCS class III drugs.
Collapse
Affiliation(s)
- Sapir Ifrah
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Nir Debotton
- Department of Chemical Engineering, Shenkar College of Engineering and Design, Ramat-Gan 52526, Israel
| |
Collapse
|
21
|
Silberstein S, Spierings ELH, Kunkel T. Celecoxib Oral Solution and the Benefits of Self-Microemulsifying Drug Delivery Systems (SMEDDS) Technology: A Narrative Review. Pain Ther 2023; 12:1109-1119. [PMID: 37329440 PMCID: PMC10444713 DOI: 10.1007/s40122-023-00529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The oral route of drug delivery is the most widespread and preferred route of administration, but it has several limitations, including variable pharmacokinetics (PK), reduced dissolution and absorption, and gastrointestinal irritation. Further, many compounds have low aqueous solubility, which also limits intestinal absorption. METHODS For this narrative review, we conducted a literature search of PubMed until August 2022, focusing on emulsions, microemulsions, nanoemulsions, and self-emulsifying drug delivery systems. RESULTS The self-microemulsifying drug delivery system (SMEDDS) overcomes these limitations of hydrophobic compounds to enhance their bioavailability. A SMEDDS formulation is a clear, thermodynamically stable, oil-in-water emulsion of lipid, solubilized drug, and two surfactants, which spontaneously forms droplets < 100 nm in diameter. These components help deliver presolubilized drugs to the gastrointestinal tract, while protecting them from degradation in gastric acid or first-pass hepatic metabolism. SMEDDS formulations have improved oral drug delivery in the treatment of cancer (paclitaxel), viral infections (ritonavir), and migraine headache (ibuprofen and celecoxib oral solution). The American Headache Society recently updated their consensus statement for the acute treatment of migraine and included a selective cyclo-oxygenase-2 selective inhibitor formulated in SMEDDS, celecoxib oral solution. This SMEDDS formulation showed pronounced improvement in bioavailability compared with celecoxib capsules, allowing for a low dose of celecoxib in the oral solution to provide safe and effective acute migraine treatment. Here, we will focus on SMEDDS formulations, what differentiates them from other analogous emulsions as vehicles for poorly soluble drugs, and their clinical application in the acute treatment of migraine. CONCLUSIONS Oral drugs reformulated in SMEDDS have shown accelerated times to peak plasma drug concentrations and increased maximum plasma concentrations, compared with capsules, tablets, or suspensions. SMEDDS technology increases both drug absorption and bioavailability of lipophilic drugs, compared with other formulations. Clinically, this allows the use of lower doses with improved PK profiles without compromising efficacy, as shown with celecoxib oral solution for the acute treatment of migraine.
Collapse
Affiliation(s)
| | | | - Todd Kunkel
- Collegium Pharmaceutical, Inc., 100 Technology Center Drive, Suite 300, Stoughton, MA, 02072, USA.
| |
Collapse
|
22
|
Salim M, Fraser-Miller SJ, Bērziņš K, Sutton JJ, Gordon KC, Boyd BJ. In Situ Monitoring of Drug Precipitation from Digesting Lipid Formulations Using Low-Frequency Raman Scattering Spectroscopy. Pharmaceutics 2023; 15:1968. [PMID: 37514154 PMCID: PMC10383805 DOI: 10.3390/pharmaceutics15071968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Low-frequency Raman spectroscopy (LFRS) is a valuable tool to detect the solid state of amorphous and crystalline drugs in solid dosage forms and the transformation of drugs between different polymorphic forms. It has also been applied to track the solubilisation of solid drugs as suspensions in milk and infant formula during in vitro digestion. This study reports the use of LFRS as an approach to probe drug precipitation from a lipid-based drug delivery system (medium-chain self-nanoemulsifying drug delivery system, MC-SNEDDS) during in vitro digestion. Upon lipolysis of the digestible components in MC-SNEDDS containing fenofibrate as a model drug, sharp phonon peaks appeared at the low-frequency Raman spectral region (<200 cm-1), indicating the precipitation of fenofibrate in a crystalline form from the formulation. Two multivariate data analysis approaches (principal component analysis and partial least squares discriminant analysis) and one univariate analysis approach (band ratios) were explored to track these spectral changes over time. The low-frequency Raman data produces results in good agreement with in situ small angle X-ray scattering (SAXS) measurements with all data analysis approaches used, whereas the mid-frequency Raman requires the use of PLS-DA to gain similar results. This suggests that LFRS can be used as a complementary, and potentially more accessible, technique to SAXS to determine the kinetics of drug precipitation from lipid-based formulations.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sara J Fraser-Miller
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kārlis Bērziņš
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Joshua J Sutton
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Keith C Gordon
- Te Whai Ao-Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Mirzaeei S, Tahmasebi N, Islambulchilar Z. Optimization of a Self-microemulsifying Drug Delivery System for Oral Administration of the Lipophilic Drug, Resveratrol: Enhanced Intestinal Permeability in Rat. Adv Pharm Bull 2023; 13:521-531. [PMID: 37646050 PMCID: PMC10460816 DOI: 10.34172/apb.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose This study aimed to formulate Resveratrol, a practically water-insoluble antioxidant in a self-microemulsifying drug delivery system (SMEDDS) to improve the solubility, release rate, and intestinal permeability of the drug. Methods The suitable oil, surfactant, and co-surfactant were chosen according to the drug solubility study. Utilizing the design of experiment (DoE) method, the pseudo-ternary phase diagram was plotted based on the droplet size. In vitro dissolution study and the single-pass intestinal perfusion were performed for the investigation of in vitro and in-situ permeability for drugs formulated as SMEDDS in rat intestine using High-Performance Liquid Chromatography. Results Castor oil, Cremophor® RH60, and PEG 1500 were selected as oil, surfactant, and co-surfactant. According to the pseudo-ternary phase diagram, nine formulations developed microemulsions with sizes ranging between 145-967 nm. Formulations passed the centrifuge and freeze-thaw stability tests. The optimum formulation possessed an almost 2.5-fold higher cumulative percentage of in vitro released resveratrol, in comparison to resveratrol aqueous suspension within 120 minutes. The results of the in-situ permeability study suggested a 2.6-fold higher intestinal permeability for optimum formulation than that of the resveratrol suspension. Conclusion SMEDDS can be considered suitable for the oral delivery of resveratrol according to the observed increased intestinal permeability, which could consequently enhance the bioavailability and therapeutic efficacy of the drug.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Nano Drug Delivery Research Centre, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Tahmasebi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
25
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
26
|
Tashish AY, Shahba AAW, Alanazi FK, Kazi M. Adsorbent Precoating by Lyophilization: A Novel Green Solvent Technique to Enhance Cinnarizine Release from Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS). Pharmaceutics 2022; 15:pharmaceutics15010134. [PMID: 36678766 PMCID: PMC9863206 DOI: 10.3390/pharmaceutics15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Solidification by high surface area adsorbents has been associated with major obstacles in drug release. Accordingly, new approaches are highly demanded to solve these limitations. The current study proposes to improve the drug release of solidified self-nanoemulsifying drug delivery systems (SNEDDS) to present dual enhancement of drug solubilization and formulation stabilization, using cinnarizine (CN) as a model drug. METHODS The solidification process involved the precoating of adsorbent by lyophilization of the aqueous dispersion of polymer-adsorbent mixture using water as a green solvent. Then, the precoated adsorbent was mixed with drug-loaded liquid SNEDDS to prepare solid SNEDDS. The solid-state characterization of developed cured S-SNEDDS was done using X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). In vitro dissolution studies were conducted to investigate CN SNEDDS performance at pH 1.2 and 6.8. The solidified formulations were characterized by Brunauer-Emmett-Teller (BET), powder flow properties, scanning electron microscopy, and droplet size analysis. In addition, the optimized formulations were evaluated through in vitro lipolysis and stability studies. RESULTS The cured solid SNEDDS formula by PVP k30 showed acceptable self-emulsification and powder flow properties. XRD and DSC revealed that CN was successfully amorphized into drug-loaded S-SNEDDS. The uncured solid SNEDDS experienced negligible drug release (only 5% drug release after 2 h), while the cured S-SNEDDS showed up to 12-fold enhancement of total drug release (at 2 h) compared to the uncured counterpart. However, the cured S- SNEDDS showed considerable CN degradation and decrease in drug release upon storage in accelerated conditions. CONCLUSIONS The implemented solidification approach offers a promising technique to minimize the adverse effect of adsorbent on drug release and accomplish improved drug release from solidified SNEDDS.
Collapse
Affiliation(s)
- Ahmad Yousef Tashish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| | - Fars Kaed Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.-W.S.); (M.K.); Tel.: +966-(11)-4677372(M.K.); Fax: +966-(11)-4676295 (M.K.)
| |
Collapse
|
27
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
28
|
Oral self-emulsifying nanoemulsion systems for enhancing dissolution, bioavailability and anticancer effects of camptothecin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Villaseñor-Ortega F, Luna-Barcenas G, García HS. Self-nanoemulsifying drug delivery system (SNEDDS) improves the oral bioavailability of betulinic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Vaginal Nanoformulations for the Management of Preterm Birth. Pharmaceutics 2022; 14:pharmaceutics14102019. [PMID: 36297454 PMCID: PMC9611874 DOI: 10.3390/pharmaceutics14102019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Preterm birth (PTB) is a leading cause of infant morbidity and mortality in the world. In 2020, 1 in 10 infants were born prematurely in the United States. The World Health Organization estimates that a total of 15 million infants are born prematurely every year. Current therapeutic interventions for PTB have had limited replicable success. Recent advancements in the field of nanomedicine have made it possible to utilize the vaginal administration route to effectively and locally deliver drugs to the female reproductive tract. Additionally, studies using murine models have provided important insights about the cervix as a gatekeeper for pregnancy and parturition. With these recent developments, the field of reproductive biology is on the cusp of a paradigm shift in the context of treating PTB. The present review focuses on the complexities associated with treating the condition and novel therapeutics that have produced promising results in preclinical studies.
Collapse
|
31
|
Tonjan R, Singh D. Functional Excipients and Novel Drug Delivery Scenario in Self-nanoemulsifying Drug Delivery System: A Critical Note. Pharm Nanotechnol 2022; 10:PNT-EPUB-125930. [PMID: 36043758 DOI: 10.2174/2211738510666220829085745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Lipid-based formulations have emerged as prospective dosage forms for extracting the therapeutic effects of existing lipophilic compounds and novel chemical entities more efficiently. Compared to other excipients, lipids have the added benefit of enhancing the bioavailability of lipophilic and highly metabolizable drugs due to their unique physicochemical features and similarities to in vivo components. Furthermore, lipids can minimize the needed dose and even the toxicity of drugs with poor aqueous solubility when employed as the primary excipient. Hence, the aim of the present review is to highlight the functional behavior of lipid excipients used in SNEDD formulation along with the stability aspects of the formulation in vivo. Moreover, this review also covered the importance of SNEDDS in drug delivery, the therapeutic and manufacturing benefits of lipids as excipients, and the technological advances made so far to convert liquid to solid SNEDDS like melt granulation, adsorption on solid support, spray cooling, melt extrusion/ spheronization has also highlighted. The mechanistic understanding of SNEDD absorption in vivo is highly complex, which was discussed very critically in this review. An emphasis on their application and success on an industrial scale was presented, as supported by case studies and patent surveys.
Collapse
Affiliation(s)
- Russel Tonjan
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| |
Collapse
|
32
|
Franceschinis E, Roverso M, Gabbia D, De Martin S, Brusegan M, Vaccarin C, Bogialli S, Chilin A. Self-Emulsifying Formulations to Increase the Oral Bioavailability of 4,6,4′-Trimethylangelicin as a Possible Treatment for Cystic Fibrosis. Pharmaceutics 2022; 14:pharmaceutics14091806. [PMID: 36145554 PMCID: PMC9506254 DOI: 10.3390/pharmaceutics14091806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
4,6,4′-trimethylangelicin (TMA) is a promising pharmacological option for the treatment of cystic fibrosis (CF) due to its triple-acting behavior toward the function of the CF transmembrane conductance regulator. It is a poorly water-soluble drug, and thus it is a candidate for developing a self-emulsifying formulation (SEDDS). This study aimed to develop a SEDDS to improve the oral bioavailability of TMA. Excipients were selected on the basis of solubility studies. Polyoxyl-35 castor oil (Cremophor® EL) was proposed as surfactant, diethylene glycol-monoethyl ether (Transcutol® HP) as cosolvent, and a mixture of long-chainmono-,di-, and triglycerides (Maisine® CC) or medium-chain triglycerides (LabrafacTM lipophile) as oil phases. Different mixtures were prepared and characterized by measuring the emulsification time, drop size, and polydispersity index to identify the most promising formulation. Two formulations containing 50% surfactant (w/w), 40% cosolvent (w/w), and 10% oil (w/w) (Maisine® CC or LabrafacTM lipophile) were selected. The results showed that both formulations were able to self-emulsify, producing nanoemulsions with a drop size range of 20–25 nm, and in vivo pharmacokinetic studies demonstrated that they were able to significantly increase the oral bioavailability of TMA. In conclusion, SEEDS are useful tools to ameliorate the pharmacokinetic profile of TMA and could represent a strategy to improve the therapeutic management of CF.
Collapse
Affiliation(s)
- Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
- Correspondence:
| | - Marco Roverso
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Matteo Brusegan
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Sara Bogialli
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
33
|
Rehman FU, Farid A, Shah SU, Dar MJ, Rehman AU, Ahmed N, Rashid SA, Shaukat I, Shah M, Albadrani GM, Kamel M, Altyar AE, Abdel-Daim MM, Shah KU. Self-Emulsifying Drug Delivery Systems (SEDDS): Measuring Energy Dynamics to Determine Thermodynamic and Kinetic Stability. Pharmaceuticals (Basel) 2022; 15:1064. [PMID: 36145285 PMCID: PMC9500766 DOI: 10.3390/ph15091064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
This research was designed to identify thermodynamically and kinetically stable lipidic self-emulsifying formulations through simple energy dynamics in addition to highlighting and clarifying common ambiguities in the literature in this regard. Proposing a model study, this research shows how most of the professed energetically stable systems are actually energetically unstable, subjected to indiscriminate and false characterization, leading to significant effects for their pharmaceutical applications. A self-emulsifying drug delivery system (SEDDS) was developed and then solidified (S-SEDDS) using a model drug finasteride. Physical nature of SEDDS was identified by measuring simple dynamics which showed that the developed dispersion was thermodynamically unstable. An in vivo study of albino rats showed a three-fold enhanced bioavailability of model drug with SEDDS as compared to the commercial tablets. The study concluded that measuring simple energy dynamics through inherent properties can distinguish between thermodynamically stable and unstable lipidic systems. It might lead to correct identification of a specific lipidic formulation and the application of appropriate characterization techniques accordingly. Future research strategies include improving their pharmaceutical applications and understanding the basic differences in their natures.
Collapse
Affiliation(s)
- Fiza Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shefaat Ullah Shah
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Junaid Dar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sheikh Abdur Rashid
- Skin/Regenerative Medicine and Drug Delivery Research, GCPS, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Irfan Shaukat
- Department of Biochemistry, University of Narowal, Narowal 51600, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
34
|
Self-Emulsifying Drug Delivery Systems: An Alternative Approach to Improve Brain Bioavailability of Poorly Water-Soluble Drugs through Intranasal Administration. Pharmaceutics 2022; 14:pharmaceutics14071487. [PMID: 35890385 PMCID: PMC9319231 DOI: 10.3390/pharmaceutics14071487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Efforts in discovering new and effective neurotherapeutics are made daily, although most fail to reach clinical trials. The main reason is their poor bioavailability, related to poor aqueous solubility, limited permeability through biological membranes, and the hepatic first-pass metabolism. Nevertheless, crossing the blood–brain barrier is the major drawback associated with brain drug delivery. To overcome it, intranasal administration has become more attractive, in some cases even surpassing the oral route. The unique anatomical features of the nasal cavity allow partial direct drug delivery to the brain, circumventing the blood–brain barrier. Systemic absorption through the nasal cavity also avoids the hepatic first-pass metabolism, increasing the systemic bioavailability of highly metabolized entities. Nevertheless, most neurotherapeutics present physicochemical characteristics that require them to be formulated in lipidic nanosystems as self-emulsifying drug delivery systems (SEDDS). These are isotropic mixtures of oils, surfactants, and co-surfactants that, after aqueous dilution, generate micro or nanoemulsions loading high concentrations of lipophilic drugs. SEDDS should overcome drug precipitation in absorption sites, increase their permeation through absorptive membranes, and enhance the stability of labile drugs against enzymatic activity. Thus, combining the advantages of SEDDS and those of the intranasal route for brain delivery, an increase in drugs’ brain targeting and bioavailability could be expected. This review deeply characterizes SEDDS as a lipidic nanosystem, gathering important information regarding the mechanisms associated with the intranasal delivery of drugs loaded in SEDDS. In the end, in vivo results after SEDDS intranasal or oral administration are discussed, globally revealing their efficacy in comparison with common solutions or suspensions.
Collapse
|
35
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Vyas M, Dua K, Khursheed R, Awasthi A, Vishwas S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson's model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50488-50499. [PMID: 35230633 DOI: 10.1007/s11356-022-19428-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Fisetin is a polyphenolic flavonoid reported to have antioxidant, anti-inflammatory, and anti-cancer activities. However, it loses its importance as an effective phytochemical due to its poor water solubility and lower bioavailability. In the present study, the self-nanoemulsifying drug delivery system (SNEDDS) of fisetin was developed in order to improve its pharmacological activity. The developed SNEDDS of fisetin was evaluated for improving the rotenone-induced behavioral changes in the rats, and its efficacy was compared with naïve fisetin. It was noticed that fisetin loaded in the SNEDDS formulation significantly (p < 0.001) ameliorated the rotenone-induced alteration in the body weight, grip strength, beam walk, postural instability, etc., in rats when compared to the effect of naïve fisetin. Naïve fisetin significantly (p < 0.05) ameliorated the effect of rotenone on the level of dopamine only at a higher dose. Whereas, SNEDDS of fisetin produced a significant (p < 0.05) effect at both dose levels when compared with the diseased group as well as also produced a significant (p < 0.05) effect when compared with the naïve fisetin group. The results of histopathological examination revealed about the neuroprotective effect of SNEDDS loaded with fisetin as observed through the protection of neuronal damage. From this study, it was concluded that SNEDDS improved the anti-Parkinsonian activity of fisetin by improving the behavioral alteration produced by rotenone due to enhancement in its solubility and bioavailability.
Collapse
Affiliation(s)
- Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shelly Khurana
- Department of Pharmacy, Government Polytechnic College, Amritsar, Punjab, India
| | - Surajpal Verma
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
36
|
Khan AA, Atiya A, Akhtar S, Yadav Y, Qureshi KA, Jaremko M, Mahmood S. Optimization of a Cefuroxime Axetil-Loaded Liquid Self-Nanoemulsifying Drug Delivery System: Enhanced Solubility, Dissolution and Caco-2 Cell Uptake. Pharmaceutics 2022; 14:pharmaceutics14040772. [PMID: 35456606 PMCID: PMC9028143 DOI: 10.3390/pharmaceutics14040772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cefuroxime axetil (CA) is an oral cephalosporin which hydrolyzes rapidly to the active parent compound cefuroxime. CA is known to have incomplete oral bioavailability (30−50%) due to its poor solubility and enzymatic conversion to cefuroxime in the gut lumen. In order to overcome these drawbacks, a lipid-based self-nanoemulsifying drug delivery system (SNEDDS) has been developed and optimized. The SNEDDS formulations were prepared using the aqueous phase titration method. The greatest self-emulsifying area was found in the 2:1 Smix ratio. As a result, different SNEDDS formulations were carefully selected from this phase diagram based on their smaller droplet size < 100 nm, polydispersity index ≤ 0.5, dispersibility (Grade A), and transmittance (%) > 85%. Thermodynamic stability tests were carried out in order to rule out any metastable/unstable SNEDDS formulations. The droplet size, polydispersity index, zeta potential, and entrapment efficiency (% EE) of optimized CA-loaded SNEDDS (C-3) were 18.50 ± 1.83 nm, 0.064 ± 0.008, −22.12 ± 1.20 mV, and 97.62 ± 1.06%, respectively. In vitro release studies revealed that the SNEDDS formulation had increased CA solubility. CA-SNEDDS-C3 increased CA cellular uptake, possibly due to increased CA solubility and the inhibition of enzymatic conversion to cefuroxime. Finally, in terms of the improvement of oral bioavailability, CA-loaded-SNEDDS could be a viable alternative to commercially available CA formulations.
Collapse
Affiliation(s)
- Arshad Ali Khan
- The Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (A.A.K.); (S.M.)
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia;
| | - Safia Akhtar
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Yogesh Yadav
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.A.K.); (S.M.)
| |
Collapse
|
37
|
Ahmed TA, Alotaibi HA, Alharbi WS, Safo MK, El-Say KM. Development of 3D-Printed, Liquisolid and Directly Compressed Glimepiride Tablets, Loaded with Black Seed Oil Self-Nanoemulsifying Drug Delivery System: In Vitro and In Vivo Characterization. Pharmaceuticals (Basel) 2022; 15:68. [PMID: 35056126 PMCID: PMC8778328 DOI: 10.3390/ph15010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Glimepiride is characterized by an inconsistent dissolution and absorption profile due to its limited aqueous solubility. The aim of this study was to develop glimepiride tablets using three different manufacturing techniques, as well as to study their quality attributes and pharmacokinetics behavior. Black seed oil based self-nanoemulsifying drug delivery system (SNEDDS) formulation was developed and characterized. Glimepiride liquisolid and directly compressed tablets were prepared and their pre-compression and post-compression characteristics were evaluated. Semi-solid pastes loaded with SNEDDS were prepared and used to develop three-dimensional printing tablets utilizing the extrusion technique. In vivo comparative pharmacokinetics study was conducted on Male Wistar rats using a single dose one-period parallel design. The developed SNEDDS formulation showed a particle size of 45.607 ± 4.404 nm, and a glimepiride solubility of 25.002 ± 0.273 mg/mL. All the studied tablet formulations showed acceptable pre-compression and post-compression characteristics and a difference in their in vitro drug release behavior. The surface of the liquisolid and directly compressed tablets was smooth and non-porous, while the three-dimensional printing tablets showed a few porous surfaces. The inner structure of the liquisolid tablets showed some cracks and voids between the incorporated tablet ingredients while that of the three-dimensional printing tablets displayed some tortuosity and a gel porous-like structure. Most of the computed pharmacokinetic parameters improved with the liquisolid and three-dimensional printed tablets. The relative bioavailabilities of the three-dimensional printed and liquisolid tablets compared to commercial product were 121.68% and 113.86%, respectively. Therefore, the liquisolid and three-dimensional printed tablets are promising techniques for modifying glimepiride release and improving in vivo performance but more clinical investigations are required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| |
Collapse
|
38
|
Sharma PK, Shukla VK, Kumar A. Physical Characterization and In Vitro Evaluation of Dissolution Rate from Cefpodoxime Proxetil Loaded Self Solidifying Solid SNEDDS. Curr Drug Deliv 2022; 19:395-406. [PMID: 34353259 DOI: 10.2174/1567201818666210805153859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cefpodoxime Proxetil (CPD) is a broad-spectrum cephalosporin indicated in respiratory and urinary tract infections. CPD is a BCS class IV drug with pH-dependent solubility and has poor bioavailability. This study investigated the challenges of developing ternary components based on solid SNEDDS of CPD for in vitro dissolution rate enhancement and self-solidifying behaviour. METHODS Tween 80, Transcutol and PEG6000 were employed as surfactants, solvents and solidifiers for a base of ternary components to develop self-solidifying solid SNEDDS, respectively. Ternary phase diagrams were used to characterize solidifying behaviour of ternary components in different proportions. S-SNEDDS formulations were drawn on the solidification areas available in the phase diagram and characterized for IR, XRD, DSC and in vitro drug release in various pH media. RESULTS Ternary components for the preparation of self-solidifying solid SNEDDS were selected based on drug solubility. FTIR and DSC characterization studies ruled out any drug interaction between CPD and components chosen to prepare S-SNEDDS. CPD was transformed from a crystalline into an amorphous state in ternary dispersions as revealed from XRD data. Optimized formulation (S-S 1) demonstrated more than 95% of drug release irrespective of the pH environments of the medium. Calculation of dissolution efficiency and similarity factors indicate that S SNEDDS resulted in a higher drug dissolution rate over binary dispersion (p<0.01). The stability studies showed that the S SNEDDS were stable in performances and CPD assay. CONCLUSION The present investigation provides an alternative approach for enhancing the CPD dissolution rate using self-solidifying solid SNEDDS exhibited solidification behaviour at ambient temperature conditions and drug loading, which could be exploited over conventional dosage form.
Collapse
Affiliation(s)
- Pankaj Kumar Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, 201303, Uttar Pradesh, India
| | - Vikesh Kumar Shukla
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, 201303, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Uttar Pradesh, India
| |
Collapse
|
39
|
Kushwaha P, Singh N, Gupta A, Ved A, Swarup S. Development and evaluation of sesamol-loaded self nanoemulsifying drug delivery system for breast cancer. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_248_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Kamble PR, Shaikh KS. Optimization and Evaluation of Self-nanoemulsifying Drug Delivery System for Enhanced Bioavailability of Plumbagin. PLANTA MEDICA 2022; 88:79-90. [PMID: 33450771 DOI: 10.1055/a-1332-2037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plumbagin, a potential bioactive lipophilic molecule, possesses limited solubility and low oral bioavailability. The purpose of the present study was to examine the potential of the self-nanoemulsifying drug delivery system for improving solubility and oral bioavailability of plumbagin. The self-nanoemulsifying drug delivery system was formulated from Capmul MCM (oil), Tween 20 (surfactant), and propylene glycol (cosurfactant). Central composite design was employed as statistical tool to optimize the formulation variables, X1 (oil) and X2 (surfactant: co-surfactant mixture ratio), of the self-nanoemulsifying drug delivery system. The responses studied were droplet size, self-emulsification time, % of drug release in 15 min, and equilibrium solubility. The optimized liquid self-nanoemulsifying drug delivery system was adsorbed on Neusilin US2 and characterized for flow properties, X-ray diffractometry, differential scanning calorimetry, in vitro dissolution, in vivo anti-inflammatory activity, and bioavailability study in Wistar rats, as well as ex vivo permeation study. The droplet size, polydispersity index, self-emulsification time, and equilibrium solubility of the optimized formulation were 58.500 ± 1.170 nm, 0.228 ± 0.012, 17.660 ± 1.520 s, and 34.180 ± 1.380 mg/mL, respectively. Its zeta potential, transmittance value, and cloud point were - 28.200 ± 1.200 mV, 99.200% ± 0.600, and 90 °C, respectively. Drug release was found to be 93.320% ± 1.090. In vivo anti-inflammatory study confirmed more enhanced activity from the self-nanoemulsifying drug delivery system than with pure plumbagin. Pharmacokinetic study in rats revealed that solid self-nanoemulsifying drug delivery system had 4.49-fold higher bioavailability than pure plumbagin. Ex vivo permeation study demonstrated 1.75-fold increased intestinal permeability of the self-nanoemulsifying drug delivery system than pure plumbagin. The developed self-nanoemulsifying drug delivery system is a useful solid platform for improving solubility and oral bioavailability of plumbagin.
Collapse
Affiliation(s)
- Pavan Ram Kamble
- Progressive Education Society's Modern College of Pharmacy, Yamunanagar, Nigdi, Pune, Maharashtra, India (Affiliated with Savitribai Phule Pune University)
| | - Karimunnisa Sameer Shaikh
- Progressive Education Society's Modern College of Pharmacy, Yamunanagar, Nigdi, Pune, Maharashtra, India (Affiliated with Savitribai Phule Pune University)
| |
Collapse
|
41
|
Alothaid H, Aldughaim MS, Yusuf AO, Yezdani U, Alhazmi A, Habibullah MM, Khan MG. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv 2021; 28:2119-2126. [PMID: 34612775 PMCID: PMC8510591 DOI: 10.1080/10717544.2021.1986601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Albendazolum (ABZ) is a BCS class II drug. It has challenging biopharmaceutical properties, which include poor solubility and dissolution rate. These properties have laid the ground for developing a supersaturated self-nanoemulsifying drug delivery system (S-SNEDDS) to form oil-in-water nanoemulsion in situ to improve the oral bioavailability of ABZ. Based on the ABZ solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal self-nanoemulsifying drug delivery system (SNEDDS) consisting of oleic acid, Tween® 20, and PEG 600 (X:Y:Z, w/w) was identified, having 10% (w/w) hydroxypropyl methylcellulose (HPMC) E15 lv as its precipitation inhibitor. The optimized system possessed a small mean globule size value (89.2 nm), good dispersion properties (polydispersity index (PDI): 0.278), and preserved the supersaturated state of ABZ. S-SNEDDS was transformed into solid supersaturated self-nanoemulsifying drug delivery systems (SS-SNEDDS) using microcrystalline cellulose as a solid material. The developed S-SNEDDS were characterized for globule size, pH, turbidity, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and flow properties. The data obtained from the results suggest that this S-SNEDDS formulation can enhance the solubility and oral bioavailability of ABZ for appropriate clinical application.
Collapse
Affiliation(s)
- Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al Baha University, Al-Baha, Saudi Arabia
| | | | | | - Umama Yezdani
- Department of Pharmacy Practice, MRM College of Pharmacy, Hyderabad, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Mahmoud M Habibullah
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
42
|
Iqbal R, Qureshi OS, Yousaf AM, Raza SA, Sarwar HS, Shahnaz G, Saleem U, Sohail MF. Enhanced solubility and biopharmaceutical performance of atorvastatin and metformin via electrospun polyvinylpyrrolidone-hyaluronic acid composite nanoparticles. Eur J Pharm Sci 2021; 161:105817. [PMID: 33757829 DOI: 10.1016/j.ejps.2021.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
The study was aimed to improve the aqueous solubility of atorvastatin (AT) and ameliorate permeability of metformin (MT) in a combination formulation, improving their oral bioavailability. Several AT-MT loaded polyvinylpyrrolidone (PVP) and hyaluronic acid (HA) based nanoparticles were prepared through electrospraying method (ES-NPs), and tested for physicochemical, in vitro, and in vivo parameters. Among the trialed formulations, a sample consisting of AT, MT, PVP, and HA at the weight ratio of 1/6.25/3.75/15 furnished the most satisfying solubility and release rate results. It enhanced approximately 10.3-fold and 3.6-fold solubility of AT as compared with AT powder and marketed product (Lipilow) in phosphate buffer pH = 6.8, respectively. Whereas, permeation of MT was 1.60-fold and 1.47-fold improved as compared with MT powder and marketed product (Glucophage), respectively. As compared with Lipilow, AUC (0-∞) and Cmax of AT with ES-NPs in rats were improved to 3.6-fold and 3.2-fold, respectively. Similarly, as compared with Glucophage, AUC (0-∞) and Cmax of MT were improved to 2.3-fold and 1.8-fold, respectively. Thus, ES-NPs significantly enhanced the solubility of AT (a BCS class II drug) and permeability of MT (a BCS class III drug) and might be a promising drug delivery system for co-delivery of these drugs.
Collapse
Affiliation(s)
- Rabia Iqbal
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, 54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSAT University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Hafiz Shoaib Sarwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmacy, GC University, Faisalabad, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
43
|
Priani SE, Rahayu DP, Maulana IT. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Cod Liver Oil. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cod liver oil (CLO) has long been used as medicine or as a functional food. The CLO is a potential source of vitamin D, vitamin A, and omega fatty acids (eicosapentaenoic acid/EPA and docosahexaenoic acid/DHA). Self-nanoemulsifying drug delivery system (SNEDDS) can enhance dissolution, absorption, and bioavailability of hydrophilic and lipophilic substances for oral administration. The objective of this study was to develop a SNEDDS of CLO with good physical characteristics and stability. The optimization formula was carried out using various ratios of oil, surfactant, and cosurfactant. The physical properties of SNEDDS were determined by transmittance percentage, dispersibility, robustness, thermodynamics stability (heating-cooling cycle, centrifugation, and freeze-thaw cycle), and globule size distribution. The optimum formula of CLO-SNEDDS was obtained at a ratio of surfactant and cosurfactant 2 : 1 and a comparison of oil and surfactant mixtures 1 : 6. The CLO-SNEDDS meets the requirement of percent transmittance (97.90±0.85), dispersibility (grade A), and stability based on robustness and thermodynamic stability tests. Diluted SNEDDS has an average globule size of 125 nm with a polydispersity index (PDI) of 0.515. CLO-SNEDDS preparation has good physical characteristics and stability.
Collapse
|
44
|
Tharmatt A, Thakur S, Singh A, Kaur M, Shahtaghi NR, Malhotra D, Jain SK. Olive oil and oleic acid-based self nano-emulsifying formulation of omega-3-fatty acids with improved strength, stability, and therapeutics. J Microencapsul 2021; 38:298-313. [PMID: 33863269 DOI: 10.1080/02652048.2021.1914760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To develop, characterise, and optimise SNEDDS formulation to enhance organoleptics, bioavailability, physical & oxidative-stability, and extend shelf-life of pure Ω-3-fatty acids oil for use in the food fortification industry as nutraceuticals. METHODS SNEDDS formulations were prepared using a simple stirring technique and optimised based on in-vitro characterisation. RESULTS The optimised SNEDDS formulation (F3) had a mean diameter of 52.9 ± 0.4 nm, PDI of 0.229 ± 0.02, zeta potential of -17.3 ± 0.1 mV, cloud temperature of 92 ± 0.2 °C, self-emulsification time of 50 ± 0.2 sec, and stable under accelerated stability conditions. Intestinal permeability study on rat ileum depicted absorption of 88.5 ± 0.2% DHA at 5 h for F3 formulation in comparison to 61.5 ± 0.2% for commercial counterpart. F3 formulation exhibited better therapeutics for melamine-induced cognitive dysfunction. CONCLUSIONS The developed Ω-3-loaded SNEDDS heralds the future for an efficacious, safer, and higher strength formulation intended as a better substitute for currently available formulations.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Divay Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
45
|
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved Pharmacodynamic Potential of Rosuvastatin by Self-Nanoemulsifying Drug Delivery System: An in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:905-924. [PMID: 33603359 PMCID: PMC7881784 DOI: 10.2147/ijn.s287665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The purpose of this proposed research was to investigate a nano-formulation developed using self-nanoemulsifying drug delivery system (SNEDDS) to improve the pharmacodynamic potential of rosuvastatin by assisting its transportation through lymphatic circulation. METHODS The utilized lipids, surfactants, and co-surfactants for SNEDDS were selected on the basis of solubility studies. The SNEDDS formulation was optimized by implementing a D-optimal mixture design, wherein the effect of concentration of Capmul MCM EP (X1), Tween 20 (X2) and Transcutol P (X3) as independent variables was studied on droplet size (Y1), % cumulative drug release (Y2) and self-emulsification time (Y3) as dependent variables. The optimized formulation was evaluated via in vitro parameters and in vivo pharmacodynamic potential in Wistar rats. RESULTS The D-optimal mixture design and subsequent ANOVA application resulted in the assortment of the optimized SNEDDS formulation that exhibited a droplet size of nano range (14.91nm), in vitro drug release of >90% within 30 minutes, and self-emulsification time of 16 seconds. The in vivo pharmacodynamic study carried out using Wistar rats confirmed the better antihyperlipidemic potential of developed formulation in normalizing the lipidic level of serum in contrast to pure drug and marketed tablets. CONCLUSION This research reports the application of D-optimal mixture design for successful and systematic development of rosuvastatin-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance in comparison to marketed formulation. Eventually, improved anti-hyperlipidemic efficacy was envisaged which might be attributed to increased drug solubility and absorption. Overall, this study shows the utility of SNEDDS for improving the dissolution rate and bioavailability of poor aqueous-soluble drugs. The present SNEDDS formulation could be a promising approach and alternative to conventional dosage form.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Arts, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
46
|
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27:756-771. [PMID: 32397771 PMCID: PMC7269045 DOI: 10.1080/10717544.2020.1760961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
During the last decades, much attention has been focused on SNEDDS approach to resolve concerns of BCS II class drugs with accentuation on upgrading the solubility and bioavailability. The present hypothesis confirms the theory that SNEDDS can reduce the impact of food on Candesartan solubilization, thereby offering the potential for improved oral delivery without co-administration with meals. The present studies describe quality-by-design-based development and characterization of Candesartan loaded SNEDDS for improving its pharmacodynamic potential. D-optimal mixture design was used for systematic optimization of SNEDDS, which showed globule size of 13.91 nm, more rapid drug release rate of >90% in 30 min and 16 s for self-emulsification. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated up to 1.99- and 1.10-fold enhancement in dissolution rate from SNEDDS over pure drug and marketed tablet. In vivo pharmacodynamic investigation also showed superior antihypertensive potential of SNEDDS in normalizing serum lipid levels as compared to pure drug and marketed tablet that was executed on male Wistar rats. Overall, this paper reports successful systematic development of candesartan-loaded SNEDDS with distinctly improved biopharmaceutical performance. This research work interpreted a major role of SNEDDS for enhancing the rate of dissolution and bioavailability of poorly water soluble drugs.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand
University, Rohtak, Haryana, India
| |
Collapse
|
47
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Self-Nanoemulsifying Drug Delivery Systems for Enhancing Solubility, Permeability, and Bioavailability of Sesamin. Molecules 2020; 25:molecules25143119. [PMID: 32650503 PMCID: PMC7397308 DOI: 10.3390/molecules25143119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 11/17/2022] Open
Abstract
Sesamin (SSM) is a water-insoluble compound that is easily eliminated by liver metabolism. To improve the solubility and bioavailability of SSM, this study developed and characterized a self-nanoemulsifying drug delivery system (SNEDDS) for the oral delivery of SSM and conducted pharmacokinetic assessments. Oil and surfactant materials suitable for SNEDDS preparation were selected on the basis of their saturation solubility at 37 ± 0.5 °C. The mixing ratios of excipients were determined on the basis of their dispersibility, transmittance (%), droplet sizes, and polydispersity index. An SNEDDS (F10) formulation comprising glyceryl trioctanoate, polyoxyethylene castor oil, and Tween 20 at a ratio of 10:10:80 (w/w/w) was the optimal formulation. This formulation maintained over 90% of its contents in different storage environments for 12 weeks. After the self-emulsification of SNEDDS, the SSM dispersed droplet size was 66.4 ± 31.4 nm, intestinal permeability increased by more than three-fold, relative bioavailability increased by approximately 12.9-fold, and absolute bioavailability increased from 0.3% to 4.4%. Accordingly, the developed SNEDDS formulation can preserve SSM's solubility, permeability, and bioavailability. Therefore, this SNEDDS formulation has great potential for the oral administration of SSM, which can enhance its pharmacological application value.
Collapse
|
49
|
Shailendrakumar AM, Ghate VM, Kinra M, Lewis SA. Improved Oral Pharmacokinetics of Pentoxifylline with Palm Oil and Capmul® MCM Containing Self-Nano-Emulsifying Drug Delivery System. AAPS PharmSciTech 2020; 21:118. [PMID: 32318890 DOI: 10.1208/s12249-020-01644-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/24/2020] [Indexed: 12/30/2022] Open
Abstract
Pentoxifylline (PTX), an anti-hemorrhage drug used in the treatment of intermittent claudication, is extensively metabolized by the liver resulting in a reduction of the therapeutic levels within a short duration of time. Self-nano-emulsifying drug delivery system (SNEDDS) is well reported to enhance the bio-absorption of drugs by forming nano-sized globules upon contact with the biological fluids after oral administration. The present study aimed to formulate, characterize, and improve the oral bioavailability of PTX using SNEDDS. The formulated SNEDDS consisted of palm oil, Capmul® MCM, and Tween® 80 as oil, surfactant, and co-surfactant, respectively. The mixture design module under the umbrella of the design of experiments was used for the optimization of SNEDDS. The dynamic light-scattering technique was used to confirm the formation of nanoemulsion based on the globule size, in addition to the turbidity measurements. In vivo bioavailability studies were carried out on male Wistar rats. The pharmacokinetic parameters upon oral administration were calculated using the GastroPlus software. The optimized SNEDDS had a mean globule size of 165 nm with minimal turbidity in an aqueous medium. Bioavailability of PTX increased 1.5-folds (AUC = 1013.30 ng h/mL) as SNEDDS than the pure drug with an AUC of 673.10 ng h/mL. In conclusion, SNEDDS was seen to enhance the bioavailability of PTX and can be explored to effectively control the incidents of intermittent claudication.
Collapse
|
50
|
Ansari MJ, Alshetaili A, Aldayel IA, Alablan FM, Alsulays B, Alshahrani S, Alalaiwe A, Ansari MN, Ur Rehman N, Shakeel F. Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020; 14:1386-1401. [DOI: 10.1080/16583655.2020.1812269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ibrahim Abdulaziz Aldayel
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faisal Mohammed Alablan
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bader Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saad Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|