1
|
Madheswaran T, Chellappan DK, Lye FSN, Dua K. Recent advances in the use of liquid crystalline nanoparticles for non-small cell lung cancer treatment. Expert Opin Drug Deliv 2025:1-13. [PMID: 40022612 DOI: 10.1080/17425247.2025.2474693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) continues to pose a considerable health challenge with few therapeutic alternatives. Liquid crystalline nanoparticles (LCN) are nanostructured drug delivery systems made of lipid-based amphiphilic materials that self-assemble into crystalline phases in aqueous environments. LCN have become a promising way to treat NSCLC owing to their specific properties that make them useful for targeted delivery and controlled drug release. AREAS COVERED The review provides a brief overview of the use of LCN in the treatment of NSCLC. It explores their composition, fabrication methods, and characterization processes. The article further addresses several nanoparticle-based approaches for the treatment of NSCLC. Ultimately, it underscores the promise of LCNs as a promising drug delivery system for NSCLC and discusses the obstacles and outlook in this field. EXPERT OPINION LCN represents a promising frontier in the treatment of NSCLC, offering several specific advantages over conventional therapies. Utilizing their intrinsic self-assembly characteristics, LCN provides meticulous control over drug encapsulation, release kinetics, and cellular absorption, which are crucial for improving therapy success. LCN also has the capability for co-delivery of various drugs, facilitating synergistic therapeutic benefits and addressing multidrug resistance, a prevalent issue in NSCLC treatment.
Collapse
Affiliation(s)
- Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research Development and Innovation, IMU University, Kuala Lumpur, Malaysia
- Department of Life Sciences, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Fiona Sze Nee Lye
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Selangor, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Nsairat H, Lafi Z, Al-Najjar BO, Al-Samydai A, Saqallah FG, El-Tanani M, Oriquat GA, Sa’bi BM, Ibrahim AA, Dellinger AL, Alshaer W. How Advanced are Self-Assembled Nanomaterials for Targeted Drug Delivery? A Comprehensive Review of the Literature. Int J Nanomedicine 2025; 20:2133-2161. [PMID: 39990285 PMCID: PMC11847455 DOI: 10.2147/ijn.s490444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The development of effective drug delivery systems is a key focus in pharmaceutical research, aiming to enhance therapeutic efficacy while minimizing adverse effects. Self-assembled nanostructures present a promising solution due to their tunable properties, biocompatibility, and ability to encapsulate and deliver therapeutic agents to specific targets. This review examines recent advancements in drug-based self-assembled nanostructures for targeted delivery applications, including drug-drug conjugates, polymeric-based architectures, biomolecules, peptides, DNA, squalene conjugates and amphiphilic drugs. Various strategies for fabricating these nanostructures are discussed, with an emphasis on the design principles and mechanisms underlying their self-assembly and potential for targeted drug delivery to specific tissues or cells. Furthermore, the integration of targeting ligands, stimuli-responsive moieties and imaging agents into these nanostructures is explored for enhanced therapeutic outcomes and real-time monitoring. Challenges such as stability, scalability and regulatory hurdles in translating these nanostructures from bench to bedside are also addressed. Drug-based self-assembled nanostructures represent a promising platform for developing next-generation targeted drug delivery systems with improved therapeutic efficacy and reduced side effects.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Belal O Al-Najjar
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Fadi G Saqallah
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ghaleb Ali Oriquat
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Bailasan Mohammad Sa’bi
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Anthony Lee Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
3
|
Mathew Thevarkattil A, Yousaf S, Houacine C, Khan W, Bnyan R, Elhissi A, Khan I. Anticancer drug delivery: Investigating the impacts of viscosity on lipid-based formulations for pulmonary targeting. Int J Pharm 2024; 664:124591. [PMID: 39168287 DOI: 10.1016/j.ijpharm.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Pulmonary drug delivery via aerosolization is a non-intrusive method for achieving localized and systemic effects. The aim of this study was to establish the impact of viscosity as a novel aspect (i.e., low, medium and high) using various lipid-based formulations (including liposomes (F1-F3), transfersomes (F4-F6), micelles (F7-F9) and nanostructured lipid carriers (NLCs; F10-F12)) as well as to investigate their impact on in-vitro nebulization performance using Trans-resveratrol (TRES) as a model anticancer drug. Based on the physicochemical properties, micelles (F7-F9) elicited the smallest particle size (12-174 nm); additionally, all formulations tested exhibited high entrapment efficiency (>89 %). Through measurement using capillary viscometers, NLC formulations exhibited the highest viscosity (3.35-10.04 m2/sec). Upon using a rotational rheometer, formulations exhibited shear-thinning (non-Newtonian) behaviour. Air jet and vibrating mesh nebulizers were subsequently employed to assess nebulization performance using an in-vitro model. Higher viscosity formulations elicited a prolonged nebulization time. The vibrating mesh nebulizer exhibited significantly higher emitted dose (ED), fine particle fraction (FPF) and fine particle dose (FPD) (up to 97 %, 90 % and 64 µg). Moreover, the in-vitro release of TRES was higher at pH 5, demonstrating an alignment of the release profile with the Korsmeyer-Peppas model. Thus, formulations with higher viscosity paired with a vibrating mesh nebulizer were an ideal combination for delivering and targeting peripheral lungs.
Collapse
Affiliation(s)
- Anila Mathew Thevarkattil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Wasiq Khan
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Ruba Bnyan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, London, United Kingdom
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
4
|
Duraloglu C, Baysal I, Yabanoglu-Ciftci S, Arica B. Nintedanib and miR-29b co-loaded lipoplexes in idiopathic pulmonary fibrosis: formulation, characterization, and in vitro evaluation. Drug Dev Ind Pharm 2024; 50:671-686. [PMID: 39099436 DOI: 10.1080/03639045.2024.2387166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE This study was aimed to develop a cationic lipoplex formulation loaded with Nintedanib and miR-29b (LP-NIN-miR) as an alternative approach in the combination therapy of idiopathic pulmonary dibrosis (IPF) by proving its additive anti-fibrotic therapeutic effects through in vitro lung fibrosis model. SIGNIFICANCE This is the first research article reported that the LP-NIN-MIR formulations in the treatment of IPF. METHODS To optimize cationic liposomes (LPs), quality by design (QbD) approach was carried out. Optimized blank LP formulation was prepared with DOTAP, CHOL, DOPE, and DSPE-mPEG 2000 at the molar ratio of 10:10:1:1. Nintedanib loaded LP (LPs-NIN) were produced by microfluidization method and were incubated with miR-29b at room temperature for 30 min to obtain LP-NIN-miR. To evaluate the cellular uptake of LP-NIN-miR, NIH/3T3 cells were treated with 20 ng.mL-1 transforming growth factor-β1 (TGF-β1) for 96 h to establish the in vitro IPF model and incubated with LP-NIN-miR for 48 h. RESULTS The hydrodynamic diameter, polydispersity index (PDI), and zeta potential of the LP-NIN-miR were 87.3 ± 0.9 nm, 0.184 ± 0.003, and +24 ± 1 mV, respectively. The encapsulation efficiencies of Nintedanib and miR-29b were 99.8% ± 0.08% and 99.7% ± 1.2%, respectively. The results of the cytotoxicity study conducted with NIH/3T3 cells indicated that LP-NIN-miR is a safe delivery system. CONCLUSIONS The outcome of the transfection study proved the additive anti-fibrotic therapeutic effect of LP-NIN-miR and suggested that lipoplexes are effective delivery systems for drug and nucleic acid to the NIH/3T3 cells in the treatment of IPF.
Collapse
Affiliation(s)
- Ceren Duraloglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Kedar T, Jalalpure S, Kurangi B. Cubosomal nanoformulation increase invitro dissolution and anticancer activity of Fisetin in A549 lung cancer cells. Ther Deliv 2024; 15:355-369. [PMID: 38639652 PMCID: PMC11160450 DOI: 10.4155/tde-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: To prepare fisetin (FIS) cubosomal nanoformulation to increase aqueous solubility and anticancer activity. Methods: Top-down method using glyceryl monooleate (GMO) and Pluronic F-127. Results: Optimized using 2% GMO and 1% Pluronic F-127, reported 93.07 nm particle size, 80.10% drug entrapment, and reports more than 50% enhanced in vitro drug release than native FIS. MTT assay reports IC50 Values of FIS 16.59 μg/ml and optimized cubosomal FIS nanoformulation (FISCUB) 12.18 μg/ml. The colony numbers observed in clonogenic assay for FISCUB were 8.33 ± 0.58 and FIS 11.67 ± 1.15. In flow cytometry study, apoptotic cells in FISCUB and FIS-treated A549 cells were found to be 33.4 and 6.83% respectively. Conclusion: A stable cubosomal nanoformulation of FIS showed enhanced aqueous solubility and anticancer activity.
Collapse
Affiliation(s)
- Tukaram Kedar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
- Dr Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Bhaskar Kurangi
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| |
Collapse
|
6
|
Saman S, Srivastava N, Yasir M, Chauhan I. A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer. Curr Cancer Drug Targets 2024; 24:142-166. [PMID: 37642226 DOI: 10.2174/1568009623666230811093139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 08/31/2023]
Abstract
Ovarian cancer (OC) is the second most common gynaecological malignancy. It typically affects females over the age of 50, and since 75% of cases are only discovered at stage III or IV, this is a sign of a poor diagnosis. Despite intraperitoneal chemotherapy's chemosensitivity, most patients relapse and face death. Early detection is difficult, but treatment is also difficult due to the route of administration, resistance to therapy with recurrence, and the need for precise cancer targeting to minimize cytotoxicity and adverse effects. On the other hand, undergoing debulking surgery becomes challenging, and therapy with many chemotherapeutic medications has manifested resistance, a condition known as multidrug resistance (MDR). Although there are other therapeutic options for ovarian cancer, this article solely focuses on co-delivery techniques, which work via diverse pathways to overcome cancer cell resistance. Different pathways contribute to MDR development in ovarian cancer; however, usually, pump and non-pump mechanisms are involved. Striking cancerous cells from several angles is important to defeat MDR. Nanocarriers are known to bypass the drug efflux pump found on cellular membranes to hit the pump mechanism. Nanocarriers aid in the treatment of ovarian cancer by enhancing the delivery of chemotherapeutic drugs to the tumour sites through passive or active targeting, thereby reducing unfavorable side effects on the healthy tissues. Additionally, the enhanced permeability and retention (EPR) mechanism boosts the bioavailability of the tumour site. To address the shortcomings of conventional delivery, the current review attempts to explain the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors developed to treat ovarian cancer. In conclusion, tailored nanocarriers would optimize medication delivery into the intracellular compartment before optimizing intra-tumour distribution. Other novel treatment possibilities for ovarian cancer include tumour vaccines, gene therapy, targeting epigenetic alteration, and biologically targeted compounds. These characteristics might enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Saika Saman
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Mohd Yasir
- Department of Pharmacy (Pharmaceutics), College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Iti Chauhan
- Department of Pharmacy, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, India
| |
Collapse
|
7
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
8
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
9
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK;
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
10
|
Nezir AE, Bolat ZB, Ozturk N, Kocak P, Zemheri E, Gulyuz S, Ozkose UU, Yilmaz O, Vural I, Bozkır A, Sahin F, Telci D. Targeting prostate cancer with docetaxel-loaded peptide 563-conjugated PEtOx-co-PEI 30%-b-PCL polymeric micelle nanocarriers. Amino Acids 2023; 55:1023-1037. [PMID: 37318626 DOI: 10.1007/s00726-023-03292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Prostate cancer is a global disease that negatively affects the quality of life. Although various strategies against prostate cancer have been developed, only a few achieved tumor-specific targeting. Therefore, a special emphasis has been placed on the treatment of cancer using nano-carrier-encapsulated chemotherapeutic agents conjugated with tumor-homing peptides. The targeting strategy coupling the drugs with nanotechnology helps to overcome the most common barriers, such as high toxicity and side effects. Prostate-specific membrane antigen has emerged as a promising target molecule for prostate cancer and shown to be targeted with high affinity by GRFLTGGTGRLLRIS peptide known as peptide 563 (P563). Here, we aimed to assess the in vitro and in vivo targeting efficiency, safety, and efficacy of P563-conjugated, docetaxel (DTX)-loaded polymeric micelle nanoparticles (P563-PEtOx-co-PEI30%-b-PCL-DTX) against prostate cancer. To this end, we analyzed the cytotoxic activity of P563-PEtOx-co-PEI30%-b-PCL and P563-PEtOx-co-PEI30%-b-PCL-DTX by a cell proliferation assay using PNT1A and 22Rv1 cells. We have also determined the targeting selectivity of P563-PEtOx-co-PEI30%-b-PCL-FITC by flow cytometry and assessed the induction of cell death by western blot and TUNEL assays for P563-PEtOx-co-PEI30%-b-PCL-DTX in 22Rv1 cells. To investigate the in vivo efficacy, we administered DTX in the free form or in polymeric micelle nanoparticles to athymic CD-1 nu/nu mice 22Rv1 xenograft models and performed histopathological analyses. Our study showed that targeting prostate cancer with P563-conjugated PEtOx-co-PEI30%-b-PCL polymeric micelles could exert a potent anti-cancer activity with low side effects.
Collapse
Affiliation(s)
- Ayca Ece Nezir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi, Atasehir, 34755, Istanbul, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi, Atasehir, 34755, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, 34303, Istanbul, Turkey
| | - Naile Ozturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Battalgazi, 44280, Malatya, Turkey
| | - Polen Kocak
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi, Atasehir, 34755, Istanbul, Turkey
| | - Ebru Zemheri
- Department of Pathology, Umraniye Training and Research Hospital, University of Health Sciences, Umraniye, Istanbul, Turkey
| | - Sevgi Gulyuz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Umut Ugur Ozkose
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
- Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Tuzla, Istanbul, Turkey
| | - Ozgur Yilmaz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Asuman Bozkır
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Yeni Mahalle, 06560, Ankara, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi, Atasehir, 34755, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi, Atasehir, 34755, Istanbul, Turkey.
| |
Collapse
|
11
|
Mahami S, Salehi M, Mehrabi M, Vahedi H, Hassani MS, Bitaraf FS, Omri A. pH-sensitive HPMCP-chitosan nanoparticles containing 5-aminosalicylic acid and berberine for oral colon delivery in a rat model of ulcerative colitis. Int J Biol Macromol 2023:125332. [PMID: 37302632 DOI: 10.1016/j.ijbiomac.2023.125332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Ulcerative colitis (UC) with continuous and extensive inflammation is limited to the colon mucosa and can lead to abdominal pain, diarrhea, and rectal bleeding. Conventional therapies are associated with several limitations, such as systemic side effects, drug degradation, inactivation, and limited drug uptake, leading to poor bioavailability. These restrictions necessitate drug delivery to the colon so that the drug passes through the stomach unchanged and has selective access to the colon. The present study aimed to formulate 5-aminosalicylic acid (5-ASA) and berberine (BBR) in chitosan nanoparticles cross-linked by HPMCP (hydroxypropyl methylcellulose phthalate) as a colon drug delivery system for UC. Spherical nanoparticles were prepared. They showed appropriate drug release in the simulated intestinal fluid (SIF), while the release did not occur in the simulated gastric fluid (SGF). They improved disease activity parameters (DAI) and ulcer index, increased the length of the colon, and decreased the wet weight of the colon. Furthermore, histopathological colon studies showed an improved therapeutic effect of 5-ASA/HPMCP/CSNPs and BBR/HPMCP/CSNPs. In conclusion, although 5-ASA/HPMCP/CSNPs showed the best effect in the treatment of UC, BBR/HPMCP/CSNPs, and 5-ASA/BBR/HPMCP/CSNPs were also effective in vivo study, and this study anticipated they could be helpful in future clinical applications for the management of UC.
Collapse
Affiliation(s)
- Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran.
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Maryam Sadat Hassani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
12
|
Cardoso de Souza Z, Humberto Xavier Júnior F, Oliveira Pinheiro I, de Souza Rebouças J, Oliveira de Abreu B, Roberto Ribeiro Mesquita P, de Medeiros Rodrigues F, Costa Quadros H, Manuel Fernandes Mendes T, Nguewa P, Marques Alegretti S, Paiva Farias L, Rocha Formiga F. Ameliorating the antiparasitic activity of the multifaceted drug ivermectin through a polymer nanocapsule formulation. Int J Pharm 2023; 639:122965. [PMID: 37084836 DOI: 10.1016/j.ijpharm.2023.122965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4,266.5 ± 38.6 μg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4°C and 25°C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.
Collapse
Affiliation(s)
- Zilyane Cardoso de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Irapuan Oliveira Pinheiro
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil
| | | | - Brenda Oliveira de Abreu
- Graduate Program in Health Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | | | | | - Helenita Costa Quadros
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | | | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), 31009, Pamplona, Spain
| | - Silmara Marques Alegretti
- Departament of Animal Biology, State University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Leonardo Paiva Farias
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
| | - Fabio Rocha Formiga
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130, Recife, PE, Brazil; Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
13
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Kumar A, Singam A, Swaminathan G, Killi N, Tangudu NK, Jose J, Gundloori Vn R, Dinesh Kumar L. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models. NANOSCALE 2022; 14:492-505. [PMID: 34913453 DOI: 10.1039/d1nr04411g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer is a debilitating disease and one of the leading causes of death in the world. In spite of the current clinical management being dependent on applying robust pathological variables and well-defined therapeutic strategies, there is an imminent need for novel and targeted therapies with least side effects. RNA interference (RNAi) has gained attention due to its precise potential for targeting multiple genes involved in cancer progression. Nanoparticles with their enhanced permeability and retention (EPR) effect have been found to overcome the limitations of RNAi-based therapies. With their high transportation capacity, nanocarriers can target RNAi molecules to tumor tissues and protect them from enzymatic degradation. Accumulating evidence has shown that tyrosine kinase Ephb4 is overexpressed in various cancers. Therefore, we report here the development and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers. The proposed bio-drug is non-toxic and bio-compatible with a higher uptake efficiency and through our experimental results we have demonstrated the effective site-specific delivery of this biodrug and the successfull silencing of their respective target genes in vivo in autochthonous knockout models of breast and colon cancer. While mammary tumors showed a considerable decrease in size, oral administration of the biodrug conjugate to Apc knockout colon models prolonged the animal survival period by six months. Hence, this study has provided empirical proof that the combinatorial approach involving RNA interference and nanotechnology is a promising alliance for next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Amarnath Singam
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Guruprasadh Swaminathan
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Naresh Killi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Naveen Kumar Tangudu
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Jedy Jose
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| | - Rathna Gundloori Vn
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
15
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
16
|
Elbatanony RS, Parvathaneni V, Kulkarni NS, Shukla SK, Chauhan G, Kunda NK, Gupta V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in-vitro efficacy. Drug Deliv Transl Res 2021; 11:927-943. [PMID: 32557351 PMCID: PMC7738377 DOI: 10.1007/s13346-020-00802-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Afatinib (AFA) is a potent aniline-quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: - 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 μm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies. Graphical abstract.
Collapse
Affiliation(s)
- Rasha S Elbatanony
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA.
| |
Collapse
|
17
|
Abstract
Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.
Collapse
|
18
|
Gosselin EA, Noshin M, Black SK, Jewell CM. Impact of Excipients on Stability of Polymer Microparticles for Autoimmune Therapy. Front Bioeng Biotechnol 2021; 8:609577. [PMID: 33644005 PMCID: PMC7906284 DOI: 10.3389/fbioe.2020.609577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
Therapies for autoimmune diseases such as multiple sclerosis and diabetes are not curative and cause significant challenges for patients. These include frequent, continued treatments required throughout the lifetime of the patient, as well as increased vulnerability to infection due to the non-specific action of therapies. Biomaterials have enabled progress in antigen-specific immunotherapies as carriers and delivery vehicles for immunomodulatory cargo. However, most of this work is in the preclinical stage, where small dosing requirements allow for on-demand preparation of immunotherapies. For clinical translation of these potential immunotherapies, manufacturing, preservation, storage, and stability are critical parameters that require greater attention. Here, we tested the stabilizing effects of excipients on the lyophilization of polymeric microparticles (MPs) designed for autoimmune therapy; these MPs are loaded with peptide self-antigen and a small molecule immunomodulator. We synthesized and lyophilized particles with three clinically relevant excipients: mannitol, trehalose, and sucrose. The biophysical properties of the formulations were assessed as a function of excipient formulation and stage of addition, then formulations were evaluated in primary immune cell culture. From a manufacturing perspective, excipients improved caking of lyophilized product, enabled more complete resuspension, increased product recovery, and led to smaller changes in MP size and size distribution over time. Cocultures of antigen-presenting cells and self-reactive T cells revealed that MPs lyophilized with excipients maintained tolerance-inducing function, even after significant storage times without refrigeration. These data demonstrate that excipients can be selected to drive favorable manufacturing properties without impacting the immunologic properties of the tolerogenic MPs.
Collapse
Affiliation(s)
- Emily A. Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Maeesha Noshin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Sheneil K. Black
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Robert E Fischell Institute of Biomedical Devices, University of Maryland, College Park, College Park, MD, United States
- United States Department of Veterans Affairs, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States
| |
Collapse
|
19
|
Thubelihle Ndebele R, Yao Q, Shi YN, Zhai YY, Xu HL, Lu CT, Zhao YZ. Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.
Collapse
Affiliation(s)
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Nan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
20
|
Singh M, Chauhan D, Das AK, Iqbal Z, Solanki PR. PVA
/
PMMA
polymer blended composite electrospun nanofibers mat and their potential use as an anti‐biofilm product. J Appl Polym Sci 2020. [DOI: 10.1002/app.50340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Manvi Singh
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
- Department of Pharmaceutics School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India
| | - Deepika Chauhan
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Ayan K. Das
- Department of Microbiology Hamdard Institute of Medical Sciences and Research, Jamia Hamdard New Delhi 110062 India
| | - Zeenat Iqbal
- Department of Pharmaceutics School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India
| | - Pratima R. Solanki
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
21
|
Elsewedy HS, Dhubiab BEA, Mahdy MA, Elnahas HM. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv 2020; 27:1134-1146. [PMID: 32729331 PMCID: PMC7470130 DOI: 10.1080/10717544.2020.1797237] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
The application of nanotechnology to drug delivery systems for cancer therapy has progressively received great attention. The most heavily investigated approach is the development of nanoparticles (NPs) utilizing biodegradable and biocompatible polymers such as poly (lactic-co-glycolic acid) (PLGA). These NPs could be further improved by surface modification utilizing a hydrophilic biodegradable polymer such as polyethylene glycol (PEG) to achieve passive targeting. Modified NPs can deliver drugs such as brucine (BRU), which has shown its potential in cancer therapy. The objective of the current investigation was to develop and evaluate the passive targeting of long-circulating PLGA NPs loaded with BRU. NPs were characterized in terms of drug-excipient compatibility studies, including FTIR and DSC; physicochemical evaluations including particle size, zeta potential, morphological evaluation, entrapment efficiency and percentage yield; total serum protein adsorbed onto NP surfaces; and in vitro release of the loaded drug. Factorial design was employed to attain optimal PLGA-loaded NPs. Finally, the in vivo anti-tumor activity of BRU-loaded PLGA NPs was evaluated in tumor-bearing mice. The NPs obtained had smooth surfaces with particle sizes ranged from 94 ± 3.05 to 253 ± 8.7 nm with slightly positive surface charge ranged from 1.09 ± 0.15 to 3.71 ± 0.44 mV. Entrapment of BRU ranged between 37.5 ± 1.8% and 77 ± 1.3% with yields not less than 70.8%. Total protein adsorbed was less than 25.5 µg total protein/1 mg NP. In vitro drug release was less than 99.1% at 168 h. Finally, significant reductions in tumor growth rate and mortality rate were observed for PEG PLGA NP formulations compared to both BRU solution and naked NPs.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
- Department of Pharmaceutical Sciences, College
of Clinical Pharmacy, King Faisal University, Saudi
Arabia
| | - Bandar E. Al Dhubiab
- Department of Pharmaceutical Sciences, College
of Clinical Pharmacy, King Faisal University, Saudi
Arabia
| | - Mahmoud A. Mahdy
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
| | - Hanan M. Elnahas
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
| |
Collapse
|
22
|
Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater Sci Eng 2020; 6:4969-4984. [PMID: 33455290 DOI: 10.1021/acsbiomaterials.0c00429] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality. Antioxidant compounds of plant origin with potential anti-tumor effect have been recognized as alternate modes in cancer treatment and chemoprevention. Resveratrol (RS) is a model natural nonflavonoid drug known for its anti-cancer activity. However, its clinical application is limited due to its poor bioavailability. The current research work aims to formulate, optimize, and characterize RS loaded cationic liposomes (RLs) for specific delivery in HCC. The optimized liposomes formulation (RL5) was spherical with a vesicle size (VS) of 145.78 ± 9.9 nm, ζ potential (ZP) of 38.03 ± 9.12 mV, and encapsulation efficiency (EE) of 78.14 ± 8.04%. In vitro cytotoxicity studies in HepG2 cells demonstrated an improved anti-cancer activity of RL5 in comparison with free RS. These outcomes were supported by a cell uptake study in HepG2 cells, in which RL5 exhibited a higher uptake than free RS. Furthermore, confocal images of HepG2 cells after 3 and 5 h of incubation showed higher internalization of coumarin 6 (C6) loaded liposomes (CL) as compared to those of the free C6. Pharmacokinetic and pharmacodynamic (prophylactic and therapeutic treatment modalities) studies were performed in N-nitrosodiethylamine (NDEA-carcinogen) induced HCC in rats. Pharmacokinetic evaluation of RL5 demonstrated increased localization of RS in cancerous liver tissues by 3.2- and 2.2-fold increase in AUC and Cmax, respectively, when compared to those of the free RS group. A pharmacodynamic investigation revealed a significant reduction in hepatocyte nodules in RL5 treated animals when compared to those of free RS. Further, on treatment with RL5, HCC-bearing rats showed a significant decrease in the liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin levels, γ-glutamyl transpeptidase, and α-fetoprotein), in comparison with that of the disease control group. Our findings were supported by histopathological analysis, and we were first to demonstrate that NDEA induced detrimental effect on rat livers was successfully reversed with the treatment of RL5 formulation. These results implied that delivery of RS loaded cationic liposomes substantially controlled the severity of HCC and that they can be considered as a promising nanocarrier in the management of HCC.
Collapse
Affiliation(s)
- Satveer Jagwani
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kiran Jadhav
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Line Bazar, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Upper New Castle, Galway, H91 W2TY, Ireland
| |
Collapse
|
23
|
Characteristics, Cryoprotection Evaluation and In Vitro Release of BSA-Loaded Chitosan Nanoparticles. Mar Drugs 2020; 18:md18060315. [PMID: 32549252 PMCID: PMC7345782 DOI: 10.3390/md18060315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Chitosan nanoparticles (CS-NPs) are under increasing investigation for the delivery of therapeutic proteins, such as vaccines, interferons, and biologics. A large number of studies have been taken on the characteristics of CS-NPs, and very few of these studies have focused on the microstructure of protein-loaded NPs. In this study, we prepared the CS-NPs by an ionic gelation method, and bovine serum albumin (BSA) was used as a model protein. Dynamic high pressure microfluidization (DHPM) was utilized to post-treat the nanoparticles so as to improve the uniformity, repeatability and controllability. The BSA-loaded NPs were then characterized for particle size, Zeta potential, morphology, encapsulation efficiency (EE), loading capacity (LC), and subsequent release kinetics. To improve the long-term stability of NPs, trehalose, glucose, sucrose, and mannitol were selected respectively to investigate the performance as a cryoprotectant. Furthermore, trehalose was used to obtain re-dispersible lyophilized NPs that can significantly reduce the dosage of cryoprotectants. Multiple spectroscopic techniques were used to characterize BSA-loaded NPs, in order to explain the release process of the NPs in vitro. The experimental results indicated that CS and Tripolyphosphate pentasodium (TPP) spontaneously formed the basic skeleton of the NPs through electrostatic interactions. BSA was incorporated in the basic skeleton, adsorbed on the surface of the NPs (some of which were inlaid on the NPs), without any change in structure and function. The release profiles of the NPs showed high consistency with the multispectral results.
Collapse
|
24
|
Pantshwa JM, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. Nanodrug Delivery Systems for the Treatment of Ovarian Cancer. Cancers (Basel) 2020; 12:E213. [PMID: 31952210 PMCID: PMC7017423 DOI: 10.3390/cancers12010213] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Despite advances achieved in medicine, chemotherapeutics still has detrimental side effects with ovarian cancer (OC), accounting for numerous deaths among females. The provision of safe, early detection and active treatment of OC remains a challenge, in spite of improvements in new antineoplastic discovery. Nanosystems have shown remarkable progress with impact in diagnosis and chemotherapy of various cancers, due to their ideal size; improved drug encapsulation within its interior core; potential to minimize drug degradation; improve in vivo drug release kinetics; and prolong blood circulation times. However, nanodrug delivery systems have few limitations regarding its accuracy of tumour targeting and the ability to provide sustained drug release. Hence, a cogent and strategic approach has focused on nanosystem functionalization with antibody-based ligands to selectively enhance cellular uptake of antineoplastics. Antibody functionalized nanosystems are (advanced) synthetic candidates, with a broad range of efficiency in specific tumour targeting, whilst leaving normal cells unaffected. This article comprehensively reviews the present status of nanosystems, with particular emphasis on nanomicelles for molecular diagnosis and treatment of OC. In addition, biomarkers of nanosystems provide important prospects as chemotherapeutic strategies to upsurge the survival rate of patients with OC.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.M.P.); (P.P.D.K.); (Y.E.C.); (T.M.)
| |
Collapse
|