1
|
Savickiene N, Raudone L. Trends in Plants Phytochemistry and Bioactivity Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3173. [PMID: 39599382 PMCID: PMC11597658 DOI: 10.3390/plants13223173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Biologically active compounds, derived from various natural sources, have garnered significant attention due to their potential therapeutic applications [...].
Collapse
Affiliation(s)
- Nijole Savickiene
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| | - Lina Raudone
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| |
Collapse
|
2
|
Chwil M, Mihelič R, Matraszek-Gawron R, Terlecka P, Skoczylas MM, Terlecki K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals (Basel) 2024; 17:1321. [PMID: 39458962 PMCID: PMC11510008 DOI: 10.3390/ph17101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0-71.3/46.0-63.0), carbohydrates (16.0-20.0/12.0-17.0), fats (0.9-14.2/6.4-14.3), polyphenolic compounds and phenols (7.3-33.2/7.8-44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Rok Mihelič
- Department of Agronomy, University of Ljubljana, Jamnikarjeva 101 Street, 1000 Ljubljana, Slovenia;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland
| | - Paulina Terlecka
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Basic Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H Street, 20-708 Lublin, Poland;
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Solidarności 8 Street, 20-841 Lublin, Poland;
| |
Collapse
|
3
|
Citi V, Torre S, Flori L, Usai L, Aktay N, Dunford NT, Lutzu GA, Nieri P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis ( Spirulina). Nutrients 2024; 16:1752. [PMID: 38892686 PMCID: PMC11174898 DOI: 10.3390/nu16111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41122 Modena, MO, Italy; (L.U.); (G.A.L.)
| | - Nazlim Aktay
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| |
Collapse
|
4
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
5
|
Liu M, Huang S, Park S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 2024; 23:463-478. [PMID: 38326693 DOI: 10.1007/s43630-023-00531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, 048011, China
| | - Shaokai Huang
- Department of Bioconvergence, Hoseo University, Asan, 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
6
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Zheng T, Gao Y, Zhang Z, Li X, Zang P, Zhao Y, He Z. A study on the anti-skin tumor and anti-UVB damage effects of Gastrodia elata Bl. Products transformed by Armillaria mellea. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tong Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhilong Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - XinYue Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Pu Zang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| |
Collapse
|
8
|
Zewail M, Gaafar PME, Youssef NAHA, Ali ME, Ragab MF, Kamal MF, Noureldin MH, Abbas H. Novel Siprulina platensis Bilosomes for Combating UVB Induced Skin Damage. Pharmaceuticals (Basel) 2022; 16:36. [PMID: 36678533 PMCID: PMC9865528 DOI: 10.3390/ph16010036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Nancy Abdel Hamid Abou Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria P.O. Box 21500, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mai F. Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo P.O. Box 11835, Egypt
| | - Miranda F. Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| |
Collapse
|
9
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
10
|
The Antioxidant Activity of a Commercial and a Fractionated Phycocyanin on Human Skin Cells In Vitro. Molecules 2022; 27:molecules27165276. [PMID: 36014514 PMCID: PMC9413548 DOI: 10.3390/molecules27165276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
The protective effects for cells against chemical and UVA stress of a commercial phycocyanin (PC) for food use and a PC extracted from Arthrospira platensis (Spirulina) in phosphate buffer were assessed. The purity of the commercial PC, spectrophotometrically estimated as A620/A280 and confirmed by HPLC, was higher than that of the fractionated PC (2.0 vs. 1.5) but was twofold less concentrated. The oxygen radical antioxidant capacities (ORACs) of the commercial and fractionated PCs were 12,141 ± 1928 and 32,680 ± 3295 TE/100 g, respectively. The degradation of PCs upon exposure to UVA was spectrophotometrically estimated, and cytotoxicity was evaluated with the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test on human fibroblasts and keratinocytes. A lower level of reactive oxygen species (ROS) was recorded in the two cell lines incubated with the commercial PC after menadione treatment (p < 0.01) and UVA exposure (p < 0.001) on fibroblasts after 5 min and keratinocytes up to 25 min, compared with controls. Differently, the fractionated PC was not protective and showed significant (p < 0.01) paradoxical prooxidant effects. Overall, the PC for food consumption demonstrated a high safety threshold and antioxidant ability to cells that, along with its coloring power, make it an excellent candidate for cosmetic formulations.
Collapse
|
11
|
Dranseikienė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Juodžiukynienė N, Hudz N, Gerbutavičienė RJ, Savickienė N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:1249. [PMID: 35567250 PMCID: PMC9101960 DOI: 10.3390/plants11091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
Cyano-phycocyanin is one of the active pigments of the blue-green algae and is usually isolated from the filamentous cyanobacteria Arthrospira platensis Gomont (Spirulina). Due to its multiple physiological functions and non-toxicity, cyano-phycocyanin may be a potential substance for the topical treatment of various skin diseases. Considering that the conventional medicine faces drug resistance, insufficient efficacy and side effects, the plant origin compounds can act as an alternative option. Thus, the aim of this paper was to review the wound healing, antimicrobial, antioxidative, anti-inflammatory, antimelanogenic and anticancer properties and mechanisms of cyano-phycocyanin topical activities on human skin. Moreover, possible applications and biotechnological requirements for pharmaceutical forms of cyano-phycocyanin for the treatment of various skin diseases are discussed in this review.
Collapse
Affiliation(s)
- Daiva Dranseikienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary, Academy of Veterinary, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania;
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska St, 69, 79000 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, Kopernika pl. 11a, 45-040 Opole, Poland
| | - Rima Jūratė Gerbutavičienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
12
|
Li Z, Jiang R, Jing C, Liu J, Xu X, Sun L, Zhao D. Protective effect of oligosaccharides isolated from Panax ginseng C. A. Meyer against UVB-induced skin barrier damage in BALB/c hairless mice and human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114677. [PMID: 34562563 DOI: 10.1016/j.jep.2021.114677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin barrier dysfunction can lead to water and electrolyte loss, triggering homeostatic imbalances that can trigger atopic dermatitis and anaphylaxis. Panax ginseng C.A. Meyer is a traditional Chinese medicinal herb with known therapeutic benefits for the treatment of skin diseases, including photodamage repair effects and reduction of pigmentation. However, few reports exist that describe effectiveness of ginseng active components for repair of skin barrier damage. MATERIALS AND METHODS Ginseng oligosaccharide extract (GSO) was prepared from P. ginseng via water extraction followed by ethanol precipitation and resin and gel purification. GSO composition and structural characteristics were determined using LC-MS, HPLC, FT-IR, and NMR. To evaluate GSO as a skin barrier repair-promoting treatment, skin of UVB-irradiated BALB/c hairless mice was treated with or without GSO then skin samples were evaluated for epidermal thickness, transepidermal water loss (TEWL), and stratum corneum water content. In addition, UVB-exposed skin samples and HaCaT cells were analyzed to assess GSO treatment effects on levels of epidermal cornified envelope (CE) protein and other skin barrier proteins, such as filaggrin (FLG), involucrin (IVL), and aquaporin-3 (AQP3). Meanwhile, GSO treatment was also evaluated for effects on UVB-irradiated hairless mouse skin and HaCaT cells based on levels of serine protease inhibitor Kazal type-5 (SPINK5), trypsin-like kallikrein-related peptidase 5 (KLK5), chymotrypsin-like KLK7, and desmoglein 1 (DSG1). These proteins are associated with UVB-induced skin barrier damage manifesting as dryness and desquamation. RESULTS GSO was shown to consist of oligosaccharides comprised of seven distinct types of monosaccharides with molecular weights of approximately 1 kDa that were covalently linked together via β-glycosidic bonds. In vivo, GSO applied to dorsal skin of BALB/c hairless mice attenuated UVB-induced epidermal thickening and moisture loss. Furthermore, GSO ameliorated UVB-induced reductions of levels of FLG, IVL, and AQP3 proteins. Additionally, GSO treatment led to increased DSG1 protein levels due to decreased expression of KLK7. In vitro, GSO treatment of UVB-irradiated HaCaT cells led to increases of FLG, IVL, and AQP3 mRNA levels and corresponding proteins, while mRNA levels of desquamation-related proteins SPINK5, KLK5, KLK7, and DSG1 and associated protein levels were restored to normal levels. CONCLUSION A P. ginseng oligosaccharide preparation repaired UVB-induced skin barrier damage by alleviating skin dryness and desquamation symptoms, highlighting its potential as a natural cosmetic additive that can promote skin barrier repair after UVB exposure.
Collapse
Affiliation(s)
- Zhenzhuo Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Chenxu Jing
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xiaohao Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| |
Collapse
|
13
|
Jin SE, Lee SJ, Park CY. Mass-produced Spirulina-mediated altered responses in ARPE-19 and HaCaT cells for biomedical applications. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Alkaloids and flavonoids exert protective effects against UVB-induced damage in a 3D skin model using human keratinocytes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
R-Phycoerythrin from Colaconema formosanum (Rhodophyta), an Anti-Allergic and Collagen Promoting Material for Cosmeceuticals. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.
Collapse
|