1
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Ying D, Zhang T, Qi M, Han B, Dong B. Artificial Bone Materials for Infected Bone Defects: Advances in Antimicrobial Functions. ACS Biomater Sci Eng 2025; 11:2008-2036. [PMID: 40085817 DOI: 10.1021/acsbiomaterials.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Infected bone defects, caused by bacterial contamination following disease or injury, result in the partial loss or destruction of bone tissue. Traditional bone transplantation and other clinical approaches often fail to address the therapeutic complexities of these conditions effectively. In recent years, advanced biomaterials have attracted significant attention for their potential to enhance treatment outcomes. This review explores the pathogenic mechanisms underlying infected bone defects, including biofilm formation and bacterial internalization into bone cells, which allow bacteria to evade the host immune system. To control bacterial infection and facilitate bone repair, we focus on antibacterial materials for bone regeneration. A detailed introduction is given on intrinsically antibacterial materials (e.g., metal alloys, oxide materials, carbon-based materials, hydroxyapatite, chitosan, and Sericin). The antibacterial functionality of bone repair materials can be enhanced through strategies such as the incorporation of antimicrobial ions, surface modification, and the combined use of multiple materials to treat infected bone defects. Key innovations discussed include biomaterials that release therapeutic agents, functional contact biomaterials, and bioresponsive materials, which collectively enhance antibacterial efficacy. Research on the clinical translation of antimicrobial bone materials has also facilitated their practical application in infection prevention and bone healing. In conclusion, advancements in biomaterials provide promising pathways for developing more biocompatible, effective, and personalized therapies to reconstruct infected bone defects.
Collapse
Affiliation(s)
- Di Ying
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Shirzad M, Salahvarzi A, Razzaq S, Javid-Naderi MJ, Rahdar A, Fathi-Karkan S, Ghadami A, Kharaba Z, Romanholo Ferreira LF. Revolutionizing prostate cancer therapy: Artificial intelligence - Based nanocarriers for precision diagnosis and treatment. Crit Rev Oncol Hematol 2025; 208:104653. [PMID: 39923922 DOI: 10.1016/j.critrevonc.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.
Collapse
Affiliation(s)
- Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Salahvarzi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore SPH, Punjab, Pakistan
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | |
Collapse
|
4
|
Izkovich B, Yiannakas A, Ne'eman S, Chandran SK, Rosenblum K, Edry E. Virally mediated expression of a biologically active peptide to restrain the nuclear functions of ERK1/2 attenuates learning extinction but not acquisition. Mol Brain 2025; 18:19. [PMID: 40087800 PMCID: PMC11908084 DOI: 10.1186/s13041-025-01190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
Peptide drug technologies offer powerful approaches to develop potent and selective lead molecules for therapeutic and research applications. However, new and optimized delivery approaches are necessary to overcome current pitfalls including fast degradation in cells and tissue. Extracellular signal-regulated kinases 1/2 (ERK1/2) exemplifies proteins that play crucial and varied roles within distinct cellular compartments. Here, we established an innovative method, based on viral vectors, which utilizes the endogenous biogenesis of neurotrophins to deliver and express a biologically active peptide to attenuate specifically ERK1/2 nuclear functions in specific brain area of the adult forebrain. In contrast to our hypothesis, nuclear functions of ERK1/2 in the forebrain are fundamental for the extinction of associative-aversive memories, but not for acquisition, nor for retrieval of these memories. Our research demonstrates the feasibility and applicability of viral vectors to deliver a peptide of interest to manipulate specific molecular processes and/or protein interactions in specific tissue.
Collapse
Affiliation(s)
- Bar Izkovich
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt, Germany
| | - Sapir Ne'eman
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | | | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| | - Efrat Edry
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Jiang S, Zu C, Wang B, Zhong Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines (Basel) 2025; 13:94. [PMID: 39852873 PMCID: PMC11768954 DOI: 10.3390/vaccines13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake. METHODS AND RESULTS In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.25. High-content imaging revealed that the S-Cr9T-plasmid complex stably adhered to the cell membrane, leading to enhanced plasmid uptake and transfection. In vivo, S-Cr9T significantly increased antigen expression and triggered a robust immune response, including a threefold increase in IFN-γ secretion and several hundred-fold increases in antibody levels compared to control groups. CONCLUSIONS These findings underscore the potential of S-Cr9T to enhance DNA vaccine efficacy, offering a promising platform for advanced gene therapy and vaccination strategies.
Collapse
Affiliation(s)
- Sheng Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhong
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Singh K, Gupta JK, Shrivastava A, Jain D, Yadav AP, Dwivedi S, Dubey A, Kumar S. Exploring the Pharmacological Effects of Bioactive Peptides on Human Nervous Disorders: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:32-46. [PMID: 39129294 DOI: 10.2174/0118715273316382240807120241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aman Shrivastava
- Department of Pharmacology, Institute of Professional Studies, College of Pharmacy, Gwalior, M.P. India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Sumeet Dwivedi
- Department of Pharmacognosy, Acropolis Institute of Pharmaceutical Education and Research, Indore (M.P.), India
| | - Anubhav Dubey
- Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
8
|
Nanjaiah H, Moudgil KD. Targeted Therapy of Antibody-Induced Autoimmune Arthritis Using Peptide-Guided Nanoparticles. Int J Mol Sci 2024; 25:12019. [PMID: 39596089 PMCID: PMC11593680 DOI: 10.3390/ijms252212019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and it affects over 18 million people worldwide. Despite the availability of a variety of potent drugs for RA, over 30-40 percent of patients fail to achieve adequate remission, and many patients suffer from systemic adverse effects. Thus, there is an urgent need for a joint-targeted drug delivery system. Nanotechnology-based drug delivery methods offer a promising resource that is largely untapped for RA. Using the T cell-driven rat adjuvant-induced arthritis (AA) model of human RA, we developed a peptide-targeted liposomal drug delivery system for arthritis therapy. It was based on a novel joint-homing peptide ART-2 to guide liposomes entrapping dexamethasone (Dex) to arthritic joints of rats, and this approach was more effective in suppressing arthritis than the unpackaged (free) drug. To de-risk the translation of our innovative drug delivery technology to RA patients, we undertook the validation of ART-2-liposomal delivery in a genetically and mechanistically distinct arthritis model in mice, the collagen antibody-induced arthritis (CAIA) model. Using live imaging for tissue distribution of liposomes in vivo, immunohistochemistry of paws for cellular binding of ART-2, and liposomal Dex delivery, our results fully validated the key findings of the rat model, namely, preferential homing of peptide-functionalized liposomes to arthritic joints compared to healthy joints, and higher efficacy of liposomal Dex than free Dex. These results offer a proof-of-concept for the benefits of targeted drug delivery to the joints and its potential translation to RA patients.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Spiaggia F, Aiello F, Sementa L, Campagne JM, Marcia de Figueiredo R, Uccello Barretta G, Balzano F. Unraveling the Source of Self-Induced Diastereomeric Anisochronism in Chiral Dipeptides. Chemistry 2024; 30:e202402637. [PMID: 39128878 DOI: 10.1002/chem.202402637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/13/2024]
Abstract
Mastering of analytical methods for accurate quantitative determinations of enantiomeric excess is a crucial aspect in asymmetric catalysis, chiral synthesis, and pharmaceutical applications. In this context, the phenomenon of Self-Induced Diastereomeric Anisochronism (SIDA) can be exploited in NMR spectroscopy for accurate determinations of enantiomeric composition, without using a chiral auxiliary that could interfere with the spectroscopic investigation. This phenomenon can be particularly useful for improving the quantitative analysis of mixtures with low enantiomeric excesses, where direct integration of signals can be tricky. Here, we describe a novel analysis protocol to correctly determine the enantiomeric composition of scalemic mixtures and investigate the thermodynamic and stereochemical features at the basis of SIDA. Dipeptide derivatives were chosen as substrates for this study, given their central role in drug design. By integrating the experiments with a conformational stochastic search that includes entropic contributions, we provide valuable information on the dimerization thermodynamics, the nature of non-covalent interactions leading to self-association, and the differences in the chemical environment responsible for the anisochronism, highlighting the importance of different stereochemical arrangement and tight association for the distinction between homochiral and heterochiral adducts. An important role played by the counterion was pointed out by computational studies.
Collapse
Affiliation(s)
- Fabio Spiaggia
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federica Aiello
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Luca Sementa
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Via G. Moruzzi 1, 56124, Pisa, Italy
| | | | | | - Gloria Uccello Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
10
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
11
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 PMCID: PMC11948293 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark W. Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
12
|
Vrbnjak K, Sewduth RN. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes 2024; 12:26. [PMID: 39311199 PMCID: PMC11417835 DOI: 10.3390/proteomes12030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Despite the advances in modern cancer therapy, malignant diseases are still a leading cause of morbidity and mortality worldwide. Conventional treatment methods frequently lead to side effects and drug resistance in patients, highlighting the need for novel therapeutic approaches. Recent findings have identified the existence of non-canonical micropeptides, an additional layer of the proteome complexity, also called the microproteome. These small peptides are a promising class of therapeutic agents with the potential to address the limitations of current cancer treatments. The microproteome is encoded by regions of the genome historically annotated as non-coding, and its existence has been revealed thanks to recent advances in proteomic and bioinformatic technology, which dramatically improved the understanding of proteome complexity. Micropeptides have been shown to be biologically active in several cancer types, indicating their therapeutic role. Furthermore, they are characterized by low toxicity and high target specificity, demonstrating their potential for the development of better tolerated drugs. In this review, we survey the current landscape of known micropeptides with a role in cancer progression or treatment, discuss their potential as anticancer agents, and describe the methodological challenges facing the proteome field of research.
Collapse
Affiliation(s)
- Katarina Vrbnjak
- VIB-KU Leuven Center for Cancer Biology (VIB), 3000 Leuven, Belgium
| | | |
Collapse
|
13
|
Wang Y, Li Y, Lu Y, Li J. Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. CHEM REC 2024; 24:e202400087. [PMID: 39148157 DOI: 10.1002/tcr.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Indexed: 08/17/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Collapse
Affiliation(s)
- Yan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| |
Collapse
|
14
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
15
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Ebrahimi F, Zargari NR, Akhlaghi M, Asghari SM, Abdi K, Balalaie S, Asadi M, Beiki D. Synthesis, Radiolabeling, and Biodistribution Study of a Novel DOTA-Peptide for Targeting Vascular Endothelial Growth Factor Receptors in the Molecular Imaging of Breast Cancer. Pharmaceutics 2024; 16:899. [PMID: 39065596 PMCID: PMC11279866 DOI: 10.3390/pharmaceutics16070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 07/28/2024] Open
Abstract
As angiogenesis plays a pivotal role in tumor progression and metastasis, leading to more cancer-related deaths, the angiogenic process can be considered as a target for diagnostic and therapeutic applications. The vascular endothelial growth factor receptor-1 (VEGR-1) and VEGFR-2 have high expression on breast cancer cells and contribute to angiogenesis and tumor development. Thus, early diagnosis through VEGFR-1/2 detection is an excellent strategy that can significantly increase a patient's chance of survival. In this study, the VEGFR1/2-targeting peptide VGB3 was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), using 6-aminohexanoic acid (Ahx) as a spacer to prevent steric hindrance in binding. DOTA-Ahx-VGB3 was radiolabeled with Gallium-68 (68Ga) efficiently. An in vitro cell binding assay was assessed in the 4T1 cell line. The tumor-targeting potential of [68Ga]Ga-DOTA-Ahx-VGB3 was conducted for 4T1 tumor-bearing mice. Consequently, high radiochemical purity [68Ga]Ga-DOTA-Ahx-VGB3 (RCP = 98%) was prepared and stabilized in different buffer systems. Approximately 17% of the radiopeptide was internalized after 2 h incubation and receptor binding as characterized by the IC50 value being about 867 nM. The biodistribution and PET/CT studies revealed that [68Ga]Ga-DOTA-Ahx-VGB3 reached the tumor site and was excreted rapidly by the renal system. These features convey [68Ga]Ga-DOTA-Ahx-VGB3 as a suitable agent for the noninvasive visualization of VEGFR-1/2 expression.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - S. Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran;
| | - Khosrou Abdi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran 158754416, Iran
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| |
Collapse
|
17
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
18
|
Renzu M, Hubers C, Conway K, Gibatova V, Mehta V, Taha W. Emerging Technologies in Endocrine Drug Delivery: Innovations for Improved Patient Care. Cureus 2024; 16:e62324. [PMID: 39006724 PMCID: PMC11246106 DOI: 10.7759/cureus.62324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Recent advancements in drug delivery systems for endocrine disorders have significantly improved patient outcomes by addressing the limitations of traditional methods such as oral tablets and injections. These innovations include non-invasive alternatives like inhaled insulin, which provides rapid absorption and better patient compliance, and robotic pills that deliver drugs directly to specific gastrointestinal sites, enhancing absorption and reducing side effects. Wearable artificial pancreas systems have revolutionized diabetes management by integrating continuous glucose monitoring with insulin pumps to automate blood glucose control. These systems demonstrate superior glycemic control and reduce hypoglycemic events. Additionally, smart insulin pens enhance diabetes care through dose tracking and real-time data sharing, improving accuracy and adherence. Microneedle patches offer a minimally invasive method for transdermal drug delivery, effectively administering hormones and therapeutic peptides without the pain and inconvenience of injections. These patches dissolve after use, eliminating biohazardous waste. Implantable devices provide long-term, controlled release of medications, significantly improving adherence and glycemic control of patients with diabetes. Hydrogels also offer new drug delivery options. This review examines these technologies' clinical efficacy, safety, advantages, and limitations, highlighting their potential to transform endocrine disorder management. Integrating advanced delivery systems marks a significant step towards personalized medicine, tailoring treatments to individual patient needs for better health outcomes.
Collapse
Affiliation(s)
- Mahvish Renzu
- Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, USA
| | - Carly Hubers
- Internal Medicine, School of Medicine, Wayne State University, Detroit, USA
| | - Kendall Conway
- Internal Medicine, School of Medicine, Wayne State University, Detroit, USA
| | | | | | - Wael Taha
- Endocrinology, Detroit Medical Center/Wayne State University, Detroit, USA
| |
Collapse
|
19
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
20
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
21
|
Xu S, Tian G, Zhi M, Liu Z, Du Y, Lu X, Li M, Bai J, Li X, Deng J, Ma S, Wang Y. Functionalized PLGA Microsphere Loaded with Fusion Peptide for Therapy of Bone Defects. ACS Biomater Sci Eng 2024; 10:2463-2476. [PMID: 38445948 DOI: 10.1021/acsbiomaterials.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The challenges in the treatment of extensive bone defects are infection control and bone regeneration. Bone tissue engineering is currently one of the most promising strategies. In this study, a short biopeptide with specific osteogenic ability is designed by fusion peptide technology and encapsulated with chitosan-modified poly(lactic acid-glycolic acid) (PLGA) microspheres. The fusion peptide (FP) mainly consists of an osteogenic functional sequence (P-15) and a bone-specific binding sequence (Asp-6), which can regulate bone formation accurately and efficiently. Chitosan-modified PLGA with antimicrobial and pro-healing effects is used to achieve the sustained release of fusion peptides. In the early stage, the antimicrobial and soft tissue healing effects can stop the wound infection as soon as possible, which is relevant for the subsequent bone regeneration process. Our data show that CS-PLGA@FP microspheres have antibacterial and pro-cell migration effects in vitro and excellent pro-wound-healing effects in vivo. In addition, CS-PLGA@FP microspheres promote the expression of osteogenic-related factors and show excellent bone regeneration in a rat defect model. Therefore, CS-PLGA@FP microspheres are an efficient biomaterial that can accelerate the recovery of bone defects.
Collapse
Affiliation(s)
- Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Min Zhi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Zihao Liu
- Zhongnuo Dental Hospital, Tianjin Nankai District, Tianjin 300101, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xuemei Lu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Jin Bai
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xuewen Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|
22
|
Wang H, Luo S, Xie M, Chen Z, Zhang Y, Xie Z, Zhang Y, Zhang Y, Yang L, Wu F, Chen X, Du G, Zhao J, Sun X. ACE2 Receptor-Targeted Inhaled Nanoemulsions Inhibit SARS-CoV-2 and Attenuate Inflammatory Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311537. [PMID: 38174591 DOI: 10.1002/adma.202311537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Three kinds of coronaviruses are highly pathogenic to humans, and two of them mainly infect humans through Angiotensin-converting enzyme 2 (ACE2)receptors. Therefore, specifically blocking ACE2 binding at the interface with the receptor-binding domain is promising to achieve both preventive and therapeutic effects of coronaviruses. Alternatively, drug-targeted delivery based on ACE2 receptors can further improve the efficacy and safety of inhalation drugs. Here, these two approaches are innovatively combined by designing a nanoemulsion (NE) drug delivery system (termed NE-AYQ) for inhalation that targets binding to ACE2 receptors. This inhalation-delivered remdesivir nanoemulsion (termed RDSV-NE-AYQ) effectively inhibits the infection of target cells by both wild-type and mutant viruses. The RDSV-NE-AYQ strongly inhibits Severe acute respiratory syndrome coronavirus 2 at two dimensions: they not only block the binding of the virus to host cells at the cell surface but also restrict virus replication intracellularly. Furthermore, in the mouse model of acute lung injury, the inhaled drug delivery system loaded with anti-inflammatory drugs (TPCA-1-NE-AYQ) can significantly alleviate the lung tissue injury of mice. This smart combination provides a new choice for dealing with possible emergencies in the future and for the rapid development of inhaled drugs for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Shuang Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingxin Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Yunming Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yongshun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lan Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fuhua Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoyan Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
23
|
Guo S, Wang J, Wang Q, Wang J, Qin S, Li W. Advances in peptide-based drug delivery systems. Heliyon 2024; 10:e26009. [PMID: 38404797 PMCID: PMC10884816 DOI: 10.1016/j.heliyon.2024.e26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Drug delivery systems (DDSs) are designed to deliver drugs to their specific targets to minimize their toxic effects and improve their susceptibility to clearance during targeted transport. Peptides have high affinity, low immunogenicity, simple amino acid composition, and adjustable molecular size; therefore, most peptides can be coupled to drugs via linkers to form peptide-drug conjugates (PDCs) and act as active pro-drugs. PDCs are widely thought to be promising DDSs, given their ability to improve drug bio-compatibility and physiological stability. Peptide-based DDSs are often used to deliver therapeutic substances such as anti-cancer drugs and nucleic acid-based drugs, which not only slow the degradation rate of drugs in vivo but also ensure the drug concentration at the targeted site and prolong the half-life of drugs in vivo. This article provides an profile of the advancements and future development in functional peptide-based DDSs both domestically and internationally in recent years, in the expectation of achieving targeted drug delivery incorporating functional peptides and taking full advantage of synergistic effects.
Collapse
Affiliation(s)
- Sijie Guo
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
24
|
Sahagun DA, Lopuszynski JB, Feldman KS, Pogodzinski N, Zahid M. Toxicity Studies of Cardiac-Targeting Peptide Reveal a Robust Safety Profile. Pharmaceutics 2024; 16:73. [PMID: 38258084 PMCID: PMC10818749 DOI: 10.3390/pharmaceutics16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Targeted delivery of therapeutics specifically to cardiomyocytes would open up new frontiers for common conditions like heart failure. Our prior work using a phage display methodology identified a 12-amino-acid-long peptide that selectively targets cardiomyocytes after an intravenous injection in as little as 5 min and was hence termed a cardiac-targeting peptide (CTP: APHLSSQYSRT). CTP has been used to deliver imaging agents, small drug molecules, photosensitizing nanoparticles, exosomes, and even miRNA to cardiomyocytes. As a natural extension to the development of CTP as a clinically viable cardiac vector, we now present toxicity studies performed with the peptide. In vitro viability studies were performed in a human left ventricular myocyte cell line with 10 µM of Cyanine-5.5-labeled CTP (CTP-Cy5.5). In vitro ion channel profiles were completed for CTP followed by extensive studies in stably transfected cell lines for several GPCR-coupled receptors. Positive data for GPCR-coupled receptors were interrogated further with RT-qPCRs performed on mouse heart tissue. In vivo studies consisted of pre- and post-blood pressure monitoring acutely after a single CTP (10 mg/Kg) injection. Further in vivo toxicity studies consisted of injecting CTP (150 µg/Kg) in 60, 6-week-old, wild-type CD1, male/female mice (1:1), with cohorts of mice euthanized on days 0, 1, 2, 7, and 14 with inhalational CO2, followed by blood collection via cardiac puncture, complete blood count analysis, metabolic profiling, and finally, liver, renal, and thyroid studies. Lastly, mouse cardiac MRI was performed immediately before and after CTP (150 µg/Kg) injection to assess changes in cardiac size or function. Human left ventricular cardiomyocytes showed no decrease in viability after a 30 min incubation with CTP-Cy5.5. No significant activation or inhibition of any of seventy-eight protein channels was observed other than OPRM1 and COX2 at the highest tested concentration, neither of which were expressed in mouse heart tissue as assessed using RT-qPCR. CTP (10 mg/Kg) injections led to no change in blood pressure. Blood counts and chemistries showed no evidence of significant hematological, hepatic, or renal toxicities. Lastly, there was no difference in cardiac function, size, or mass acutely in response to CTP injections. Our studies with CTP showed no activation or inhibition of GPCR-associated receptors in vitro. We found no signals indicative of toxicity in vivo. Most importantly, cardiac functions remained unchanged acutely in response to CTP uptake. Further studies using good laboratory practices are needed with prolonged, chronic administration of CTP conjugated to a specific cargo of choice before human studies can be contemplated.
Collapse
Affiliation(s)
- Daniella A. Sahagun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Jack B. Lopuszynski
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Kyle S. Feldman
- Clinical Virology Laboratory, Yale New Haven Hospital, New Haven, CT 06511, USA;
| | - Nicholas Pogodzinski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Maliha Zahid
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| |
Collapse
|
25
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
26
|
Coolich MK, Lanier OL, Cisneros E, Peppas NA. PEGylated insulin loaded complexation hydrogels for protected oral delivery. J Control Release 2023; 364:216-226. [PMID: 37890591 DOI: 10.1016/j.jconrel.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
While a number of enteric coatings and pH-sensitive oral delivery vehicles have been developed, they lack the ability to sufficiently protect proteins from proteolytic degradation once released from the carrier. In this work, we show that H-bonded, pH-sensitive poly(methacrylic acid-grafted ethylene glycol) glycol (henceforth designated as P(MAA-g-EG) gels) exhibit great promise as protein carriers, as they utilize poly(ethylene glycol) (PEG) chains to promote mucoadhesion in the small intestine, increasing the chances that the drug is released within the villus of the absorptive intestinal wall. Importantly, PEG was also conjugated to the B29-lysine (LysB29) position of insulin in order to protect the drug from proteolytic degradation once released in the small intestine and adhere the drug to the intestinal epithelium through improved mucoadhesion. PEG-conjugated (PEGylated) molecules were found to actively participate in the carrier loading and release mechanism, with the drug conjugate hydrogen bonding to the MAA while in the collapsed state and subsequently repulse the drug above the polymer's isoelectric point. This effect was enhanced through the evaluation of PEG graft density within the carrier. Cellular transport and changes in transepithelial resistance caused by the PEGylated insulin (PI) in the presence of P(MAA-g-EG) microparticles were analyzed using a 1:1 co-culture of human colon adenocarcinoma (Caco-2) and: the mucus-secreting human colon carcinoma cell(HT-29-MTX). Finally, the in vivo absorption of insulin was measured in Sprague-Dawley rats to ensure that the PEGylated insulin conjugates are biologically active, as well as to compare the bioavailability to control insulin. Collectively, these results lead toward the development of a novel system for improved insulin delivery, with improved stability of insulin through PEGylation.
Collapse
Affiliation(s)
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Ethan Cisneros
- Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
27
|
Donnarumma D, Di Salle A, Micalizzi G, Vento F, La Tella R, Iannotta P, Trovato E, Melone MAB, Rigano F, Donato P, Mondello L, Peluso G. Human blood lipid profiles after dietary supplementation of different omega 3 ethyl esters formulations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123922. [PMID: 37976941 DOI: 10.1016/j.jchromb.2023.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The validity of omega 3 fatty acids (ω3 FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as dietary supplements has been widely proved. It's well known in fact, that they protect against cardiovascular diseases, reduce the levels of triacylglycerides (TAGs) and cholesteryl esters (CEs) in blood, and have anti-inflammatory activity. For these reasons, in the last few years the production of dietary supplement containing ω3 has increased significantly. In this context, the possibility to obtain ω3 and other high value molecules from alternative sources as fish waste, in accordance with the principles of circular economy, becomes an enormous attractive. In addition, the opportunity of creating new products, with greater health benefits, represents an interesting challenge. The current study was focused on the extraction of ω3 fatty acids and peptides from tuna waste industry, to realize a new dietary supplement. To this purpose, a supercritical fluid extraction (SFE) method was developed to separate, isolate, and enrich the different fractions subsequently used to produce an innovative formulate. The obtained supplement was characterized in terms of fatty acids esterified ester (FAEE) composition by gas chromatography (GC) coupled to both flame ionization detection (FID) and mass spectrometry (MS), and content of heavy metals by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of ω3 supplementation on metabolism and circulating lipid profiles was tested on 12 volunteers and assessed by GC-FID analysis of whole blood collected on paper support (Dried Blood Spot, DBS) at the beginning of the study and after thirty days. The results of plasma fatty acids levels after 30 days showed a significant decrease in the ω6/ω3 ratio, as well as the saturated/polyunsaturated fatty acids (SFA/PUFA) ratio, compared to subjects who took the ω3 ethyl esters unformulated. The novel formulated supplements proved to be extremely interesting and promising products, due to a significant increase in bioavailability, that makes it highly competitive in the current panorama of the nutraceutical industry.
Collapse
Affiliation(s)
- Danilo Donnarumma
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Vento
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta La Tella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA.
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy; Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
28
|
Chen X, Dai W, Li H, Yan Z, Liu Z, He L. Targeted drug delivery strategy: a bridge to the therapy of diabetic kidney disease. Drug Deliv 2023; 30:2160518. [PMID: 36576203 PMCID: PMC9809356 DOI: 10.1080/10717544.2022.2160518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the main complication in diabetes mellitus (DM) and the main cause of end-stage kidney disease worldwide. However, sodium glucose cotransporter 2 (SGLT2) inhibition, glucagon-like peptide-1 (GLP-1) receptor agonist, mineralocorticoid receptor antagonists and endothelin receptor A inhibition have yielded promising effects in DKD, a great part of patients inevitably continue to progress to uremia. Newly effective therapeutic options are urgently needed to postpone DKD progression. Recently, accumulating evidence suggests that targeted drug delivery strategies, such as macromolecular carriers, nanoparticles, liposomes and so on, can enhance the drug efficacy and reduce the undesired side effects, which will be a milestone treatment in the management of DKD. The aim of this article is to summarize the current knowledge of targeted drug delivery strategies and select the optimal renal targeting strategy to provide new therapies for DKD.
Collapse
Affiliation(s)
- Xian Chen
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Wenni Dai
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hao Li
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhe Yan
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liyu He
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China,CONTACT Liyu He Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
29
|
Fan YL, Zhang NY, Hou DY, Hao Y, Zheng R, Yang J, Fan Z, An HW, Wang H. Programmable Peptides Activated Macropinocytosis for Direct Cytosolic Delivery. Adv Healthc Mater 2023; 12:e2301162. [PMID: 37449948 DOI: 10.1002/adhm.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Yan-Lei Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Yi Hao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
31
|
Puyathorn N, Tamdee P, Sirirak J, Okonogi S, Phaechamud T, Chantadee T. Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel. Pharmaceutics 2023; 15:2315. [PMID: 37765285 PMCID: PMC10537905 DOI: 10.3390/pharmaceutics15092315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This research investigates the gel formation behaviour and drug-controlling performance of doxycycline-loaded ibuprofen-based in-situ forming gels (DH-loaded IBU-based ISGs) for potential applications in periodontal treatment. The investigation begins by exploring the physical properties and gel formation behaviour of the ISGs, with a particular focus on determining their sustained release capabilities. To gain a deeper understanding of the molecular interactions and dynamics within the ISGs, molecular dynamic (MD) simulations are employed. The effects of adding IBU and DH on reducing surface tension and water tolerance properties, thus affecting molecular properties. The phase transformation phenomenon is observed around the interface, where droplets of ISGs move out to the water phase, leading to the precipitation of IBU around the interface. The optimization of drug release profiles ensures sustained local drug release over seven days, with a burst release observed on the first day. Interestingly, different organic solvents show varying abilities to control DH release, with dimethyl sulfoxide (DMSO) demonstrating superior control compared to N-Methyl-2-pyrrolidone (NMP). MD simulations using AMBER20 software provide valuable insights into the movement of individual molecules, as evidenced by root-mean-square deviation (RMSD) values. The addition of IBU to the system results in the retardation of IBU molecule movement, particularly evident in the DMSO series, with the diffusion constant value of DH reducing from 1.2452 to 0.3372 and in the NMP series from 0.3703 to 0.2245 after adding IBU. The RMSD values indicate a reduction in molecule fluctuation of DH, especially in the DMSO system, where it decreases from over 140 to 40 Å. Moreover, their radius of gyration is influenced by IBU, with the DMSO system showing lower values, suggesting an increase in molecular compactness. Notably, the DH-IBU configuration exhibits stable pairing through H-bonding, with a higher amount of H-bonding observed in the DMSO system, which is correlated with the drug retardation efficacy. These significant findings pave the way for the development of phase transformation mechanistic studies and offer new avenues for future design and optimization formulation in the ISG drug delivery systems field.
Collapse
Affiliation(s)
- Napaphol Puyathorn
- Programme of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Poomipat Tamdee
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Takron Chantadee
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Ngo HM, Thai MT, Kahveci T. QuTIE: quantum optimization for target identification by enzymes. BIOINFORMATICS ADVANCES 2023; 3:vbad112. [PMID: 37786534 PMCID: PMC10541652 DOI: 10.1093/bioadv/vbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023]
Abstract
Summary Target identification by enzymes (TIE) problem aims to identify the set of enzymes in a given metabolic network, such that their inhibition eliminates a given set of target compounds associated with a disease while incurring minimum damage to the rest of the compounds. This is a NP-hard problem, and thus optimal solutions using classical computers fail to scale to large metabolic networks. In this article, we develop the first quantum optimization solution, called QuTIE (quantum optimization for target identification by enzymes), to this NP-hard problem. We do that by developing an equivalent formulation of the TIE problem in quadratic unconstrained binary optimization form. We then map it to a logical graph, and embed the logical graph on a quantum hardware graph. Our experimental results on 27 metabolic networks from Escherichia coli, Homo sapiens, and Mus musculus show that QuTIE yields solutions that are optimal or almost optimal. Our experiments also demonstrate that QuTIE can successfully identify enzyme targets already verified in wet-lab experiments for 14 major disease classes. Availability and implementation Code and sample data are available at: https://github.com/ngominhhoang/Quantum-Target-Identification-by-Enzymes.
Collapse
Affiliation(s)
- Hoang M Ngo
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| | - My T Thai
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Tamer Kahveci
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
33
|
Ghorai SM, Deep A, Magoo D, Gupta C, Gupta N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023; 15:1999. [PMID: 37514185 PMCID: PMC10384895 DOI: 10.3390/pharmaceutics15071999] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood-brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood-brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood-brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals.
Collapse
Affiliation(s)
- Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Auroni Deep
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Devanshi Magoo
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| |
Collapse
|
34
|
Shi YY, Wang AJ, Liu XL, Dai MY, Cai HB. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. Front Immunol 2023; 14:1193222. [PMID: 37325638 PMCID: PMC10262918 DOI: 10.3389/fimmu.2023.1193222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target immune checkpoints that suppress immune cell activity. Low efficiency and high resistance are currently the main barriers to their clinical application. As a representative technology of targeted protein degradation, proteolysis-targeting chimeras (PROTACs) are considered to have potential for addressing these limitations. Methods We synthesized a stapled peptide-based PROTAC (SP-PROTAC) that specifically targeted palmitoyltransferase ZDHHC3 and resulted in the decrease of PD-L1 in human cervical cancer cell lines. Flow cytometry, confocal microscopy, protein immunoblotting, Cellular Thermal Shift Assay (CETSA), and MTT assay analyses were conducted to evaluate the effects of the designed peptide and verify its safety in human cells. Results In cervical cancer celllines C33A and HeLa, the stapled peptide strongly downregulated PD-L1 to < 50% of baseline level at 0.1 μM. DHHC3 expression decreased in both dosedependentand time-dependent manners. MG132, the proteasome inhibitor, can alleviate the SP-PROTAC mediated degradation of PD-L1 in human cancer cells. In a co-culture model of C33A and T cells, treatment with the peptide induced IFN-γ and TNF-α release in a dose-dependent manner by degrading PD-L1. These effects were more significant than that of the PD-L1 inhibitor, BMS-8. Conclusions Cells treated with 0.1 μM of SP-PROTAC or BMS-8 for 4 h revealed that the stapled peptide decreased PD-L1 more effectively than BMS-8. DHHC3-targeting SP-PROTAC decreased PD-L1 in human cervical cancer more effectively than the inhibitor BMS-8.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - An-Jin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Xue-Lian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
35
|
Lu L, Wang L, Zhao L, Liao J, Zhao C, Xu X, Wang F, Zhang X. A Novel Blood-Brain Barrier-Penetrating and Vascular-Targeting Chimeric Peptide Inhibits Glioma Angiogenesis. Int J Mol Sci 2023; 24:ijms24108753. [PMID: 37240099 DOI: 10.3390/ijms24108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The high vascularization of glioma highlights the potential value of anti-angiogenic therapeutics for glioma treatment. Previously, we designed a novel vascular-targeting and blood-brain barrier (BBB)-penetrating peptide, TAT-AT7, by attaching the cell-penetrating peptide TAT to a vascular-targeting peptide AT7, and we demonstrated that TAT-AT7 could target binding to the vascular endothelial growth factor receptor 2 (VEGFR-2) and Neuropilin-1 (NRP-1), which are both highly expressed in endothelial cells. TAT-AT7 has been proven to be a good targeting peptide which could effectively deliver the secretory endostatin gene to treat glioma via the TAT-AT7-modified polyethyleneimine (PEI) nanocomplex. In the current study, we further explored the molecular binding mechanisms of TAT-AT7 to VEGFR-2 and NRP-1 and its anti-glioma effects. Accordingly, TAT-AT7 was proven to competitively bind to VEGFR-2 and NRP-1 and prevent VEGF-A165 binding to the receptors by the surface plasmon resonance (SPR) assay. TAT-AT7 inhibited endothelial cells' proliferation, migration, invasion, and tubule formation, as well as promoted endothelial cells' apoptosis in vitro. Further research revealed that TAT-AT7 inhibited the phosphorylation of VEGFR-2 and its downstream PLC-γ, ERK1/2, SRC, AKT, and FAK kinases. Additionally, TAT-AT7 significantly inhibited angiogenesis of zebrafish embryo. Moreover, TAT-AT7 had a better penetrating ability and could penetrate the BBB into glioma tissue and target glioma neovascularization in an orthotopic U87-glioma-bearing nude mice model, and exhibited the effect of inhibiting glioma growth and angiogenesis. Taken together, the binding and function mechanisms of TAT-AT7 were firstly revealed, and TAT-AT7 was proven to be an effective and promising peptide for the development of anti-angiogenic drugs for targeted treatment of glioma.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
36
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
37
|
Nanjaiah H, Moudgil KD. The Utility of Peptide Ligand-Functionalized Liposomes for Subcutaneous Drug Delivery for Arthritis Therapy. Int J Mol Sci 2023; 24:ijms24086883. [PMID: 37108047 PMCID: PMC10138553 DOI: 10.3390/ijms24086883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Liposomes and other types of nanoparticles are increasingly being explored for drug delivery in a variety of diseases. There is an impetus in the field to exploit different types of ligands to functionalize nanoparticles to guide them to the diseased site. Most of this work has been conducted in the cancer field, with relatively much less information from autoimmune diseases, such as rheumatoid arthritis (RA). Furthermore, in RA, many drugs are self-administered by patients subcutaneously (SC). In this context, we have examined the attributes of liposomes functionalized with a novel joint-homing peptide (denoted ART-1) for arthritis therapy using the SC route. This peptide was previously identified following phage peptide library screening in the rat adjuvant arthritis (AA) model. Our results show a distinct effect of this peptide ligand on increasing the zeta potential of liposomes. Furthermore, liposomes injected SC into arthritic rats showed preferential homing to arthritic joints, following a migration profile in vivo similar to that of intravenously injected liposomes, except for a less steep decline after the peak. Finally, liposomal dexamethasone administered SC was more effective than the unpackaged (free) drug in suppressing arthritis progression in rats. We suggest that with suitable modifications, this SC liposomal treatment modality can be adapted for human RA therapy.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Xu Y, Guo J, Liu Y, Guan F, Li Z, Yao Q, Bao D. Dual-stimuli responsive skin-core structural fibers with an in situ crosslinked alginate ester for hydrophobic drug delivery. J Mater Chem B 2023; 11:2762-2769. [PMID: 36880839 DOI: 10.1039/d2tb02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
To solve the problems of low bioavailability and low intestinal release efficiency of curcumin as a hydrophobic drug in the treatment of diabetes, a novel alginate ester/Antarctic krill protein/2-formylphenylboronic acid (AE/AKP/2-FPBA) skin-core structural fiber with pH and glucose stimulation responsiveness was prepared by an acid-catalyzed polyol in situ crosslinked phase separation method as a drug delivery system. The reaction mechanism and apparent morphology of the fiber were studied. The controlled release ability of the fiber in simulated liquids was evaluated. AE targeted the release of curcumin by pH stimulation; the release amount in the simulated colonic fluid reached 100%, while the release amount in the simulated digestive fluid was less than 12%. 2-FPBA controlled the release rate of curcumin by glucose stimulation, which increases with the increase of 2-FPBA content. Moreover, the cytotoxicity test confirmed that the skin-core structural fiber was non-toxic. These results suggest that skin-core structural fibers have great potential as curcumin delivery systems.
Collapse
Affiliation(s)
- Yi Xu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuanfa Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
39
|
Duart G, Elazar A, Weinstein JY, Gadea-Salom L, Ortiz-Mateu J, Fleishman SJ, Mingarro I, Martinez-Gil L. Computational design of BclxL inhibitors that target transmembrane domain interactions. Proc Natl Acad Sci U S A 2023; 120:e2219648120. [PMID: 36881618 PMCID: PMC10089226 DOI: 10.1073/pnas.2219648120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Several methods have been developed to explore interactions among water-soluble proteins or regions of proteins. However, techniques to target transmembrane domains (TMDs) have not been examined thoroughly despite their importance. Here, we developed a computational approach to design sequences that specifically modulate protein-protein interactions in the membrane. To illustrate this method, we demonstrated that BclxL can interact with other members of the B cell lymphoma 2 (Bcl2) family through the TMD and that these interactions are required for BclxL control of cell death. Next, we designed sequences that specifically recognize and sequester the TMD of BclxL. Hence, we were able to prevent BclxL intramembrane interactions and cancel its antiapoptotic effect. These results advance our understanding of protein-protein interactions in membranes and provide a means to modulate them. Moreover, the success of our approach may trigger the development of a generation of inhibitors targeting interactions between TMDs.
Collapse
Affiliation(s)
- Gerard Duart
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, Burjassot46100, Spain
| | - Assaf Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot76100, Israel
| | - Jonathan Y. Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot76100, Israel
| | - Laura Gadea-Salom
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, Burjassot46100, Spain
| | - Juan Ortiz-Mateu
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, Burjassot46100, Spain
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot76100, Israel
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, Burjassot46100, Spain
| | - Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, Burjassot46100, Spain
| |
Collapse
|
40
|
Hemmati S, Rasekhi Kazerooni H. Polypharmacological Cell-Penetrating Peptides from Venomous Marine Animals Based on Immunomodulating, Antimicrobial, and Anticancer Properties. Mar Drugs 2022; 20:md20120763. [PMID: 36547910 PMCID: PMC9787916 DOI: 10.3390/md20120763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Complex pathological diseases, such as cancer, infection, and Alzheimer's, need to be targeted by multipronged curative. Various omics technologies, with a high rate of data generation, demand artificial intelligence to translate these data into druggable targets. In this study, 82 marine venomous animal species were retrieved, and 3505 cryptic cell-penetrating peptides (CPPs) were identified in their toxins. A total of 279 safe peptides were further analyzed for antimicrobial, anticancer, and immunomodulatory characteristics. Protease-resistant CPPs with endosomal-escape ability in Hydrophis hardwickii, nuclear-localizing peptides in Scorpaena plumieri, and mitochondrial-targeting peptides from Synanceia horrida were suitable for compartmental drug delivery. A broad-spectrum S. horrida-derived antimicrobial peptide with a high binding-affinity to bacterial membranes was an antigen-presenting cell (APC) stimulator that primes cytokine release and naïve T-cell maturation simultaneously. While antibiofilm and wound-healing peptides were detected in Synanceia verrucosa, APC epitopes as universal adjuvants for antiviral vaccination were in Pterois volitans and Conus monile. Conus pennaceus-derived anticancer peptides showed antiangiogenic and IL-2-inducing properties with moderate BBB-permeation and were defined to be a tumor-homing peptide (THP) with the ability to inhibit programmed death ligand-1 (PDL-1). Isoforms of RGD-containing peptides with innate antiangiogenic characteristics were in Conus tessulatus for tumor targeting. Inhibitors of neuropilin-1 in C. pennaceus are proposed for imaging probes or therapeutic delivery. A Conus betulinus cryptic peptide, with BBB-permeation, mitochondrial-targeting, and antioxidant capacity, was a stimulator of anti-inflammatory cytokines and non-inducer of proinflammation proposed for Alzheimer's. Conclusively, we have considered the dynamic interaction of cells, their microenvironment, and proportional-orchestrating-host- immune pathways by multi-target-directed CPPs resembling single-molecule polypharmacology. This strategy might fill the therapeutic gap in complex resistant disorders and increase the candidates' clinical-translation chance.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Correspondence: ; Tel.: +98-7132-424-128
| | | |
Collapse
|
41
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
42
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
43
|
Furman O, Zaporozhets A, Tobi D, Bazylevich A, Firer MA, Patsenker L, Gellerman G, Lubin BCR. Novel Cyclic Peptides for Targeting EGFR and EGRvIII Mutation for Drug Delivery. Pharmaceutics 2022; 14:1505. [PMID: 35890400 PMCID: PMC9318536 DOI: 10.3390/pharmaceutics14071505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
The epidermal growth factor-epidermal growth factor receptor (EGF-EGFR) pathway has become the main focus of selective chemotherapeutic intervention. As a result, two classes of EGFR inhibitors have been clinically approved, namely monoclonal antibodies and small molecule kinase inhibitors. Despite an initial good response rate to these drugs, most patients develop drug resistance. Therefore, new treatment approaches are needed. In this work, we aimed to find a new EGFR-specific, short cyclic peptide, which could be used for targeted drug delivery. Phage display peptide technology and biopanning were applied to three EGFR expressing cells, including cells expressing the EGFRvIII mutation. DNA from the internalized phage was extracted and the peptide inserts were sequenced using next-generation sequencing (NGS). Eleven peptides were selected for further investigation using binding, internalization, and competition assays, and the results were confirmed by confocal microscopy and peptide docking. Among these eleven peptides, seven showed specific and selective binding and internalization into EGFR positive (EGFR+ve) cells, with two of them-P6 and P9-also demonstrating high specificity for non-small cell lung cancer (NSCLC) and glioblastoma cells, respectively. These peptides were chemically conjugated to camptothecin (CPT). The conjugates were more cytotoxic to EGFR+ve cells than free CPT. Our results describe a novel cyclic peptide, which can be used for targeted drug delivery to cells overexpressing the EGFR and EGFRvIII mutation.
Collapse
Affiliation(s)
- Olga Furman
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| | - Alisa Zaporozhets
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Dror Tobi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Michael A. Firer
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Ariel Center for Applied Cancer Research, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel; (A.Z.); (A.B.); (L.P.); (G.G.)
- Ariel Center for Applied Cancer Research, Ariel 40700, Israel
| | - Bat Chen R. Lubin
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 40700, Israel; (O.F.); (M.A.F.)
- Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel
| |
Collapse
|
44
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
45
|
Berillo D. Comparative Toxicity of Interferon Beta-1a Impurities of Heavy Metal Ions. Medicina (B Aires) 2022; 58:medicina58040463. [PMID: 35454302 PMCID: PMC9027684 DOI: 10.3390/medicina58040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Providing a proper quality control of drugs is essential for efficient treatment of various diseases minimizing the possible side effects of pharmaceutical active substances and potential impurities. Recent in vitro and in vivo studies have shown that certain heavy metalloids and metals interfere with protein folding of nascent proteins in cells and their biological function can be altered. It is unknown whether the drug impurities including heavy metals may affect the tertiary protein structure. Materials and Methods: ReciGen and Rebif are pharmaceutical interferon beta-1a (IFNβ-1a) contained in preparations that are used for parenteral administration. Heavy metal impurities of these samples have been studied by gel electrophoresis, Fourier-transform infrared spectroscopy (FTIR) and inductively coupled plasma mass spectrometry analysis (ICP MS). The concentration of heavy metals including mercury, arsenic, nickel, chromium, iron, and aluminum did not exceed permitted levels established by International Council for Harmonisation guideline for elemental impurities. Results: The ICP MS analysis revealed the presence of heavy metals, moreover zeta potential was significantly different for IFNβ-1a, which can be an indirect indication of the difference in composition of ReciGen and Rebif samples, respectively. FTIR analysis revealed very similar amide I and II bonds at 1654 and 1560 cm−1 attributed to the peptide absorption peaks of IFNβ-1a in Rebif and ReciGen. Conclusions: It was hypothesized that the IFNβ-1a complex binds heavy metals affecting the tertiary protein structure and may lead to some side effects of drug administration. Further testing of IFNβ-1a bioequivalence for parenteral application is necessary.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
- Atchabarov Research Institute of Fundamental and Applied Medicine, Almaty 050000, Kazakhstan
| |
Collapse
|
46
|
Rodríguez-Mejía LC, Romero-Estudillo I, Rivillas-Acevedo LA, French-Pacheco L, Silva-Martínez GA, Alvarado-Caudillo Y, Colín-Castelán D, Rodríguez-Ríos D, Wrobel K, Wrobel K, Lund G, Zaina S. The DNA Methyltransferase Inhibitor RG108 is Converted to Activator Following Conjugation with Short Peptides. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|