1
|
Hyder F. Commentary to "Task activation results in regional 13C-lactate signal increase in the human brain". J Cereb Blood Flow Metab 2025:271678X251327935. [PMID: 40215405 PMCID: PMC11993549 DOI: 10.1177/0271678x251327935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Metabolism is fundamental to functional brain imaging. While functional MRI (fMRI) has greatly benefited neuroscience, 13C-MRS measures coupling between neuroenergetics and neurotransmission. However, a hyperpolarized 13C-MRI study in human brain shows increased 13C-lactate (i.e., cytosolic aerobic glycolysis) with no 13C-bicarbonate change (i.e., mitochondrial oxidation) within fMRI-defined activated areas. We discuss (dis)advantages of hyperpolarized vs. non-hyperpolarized 13C experiments and metabolic implications regarding the lactate increase: Is lactate a fuel for oligodendrocytes, astrocytes, or neurons? Is lactate a neuromodulator or a vasomodulator? Is lactate a byproduct of astrocytic glycogenolysis? Caveats aside, there is great enthusiasm for hyperpolarized 13C-fMRI.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Quantitative Neuroimaging with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Yeung K, Ng KL, McGing JJ, Axford A, Birkhoelzer S, Shinozaki A, Ricchi M, Sgambelluri N, Zaccagna F, Mills R, Lewis AJM, Rayner JJ, Ravetz Z, Berner L, Jacob K, McIntyre A, Durrant M, Rider OJ, Schulte RF, Gleeson FV, Tyler DJ, Grist JT. Evaluation of an integrated variable flip angle protocol to estimate coil B 1 for hyperpolarized MRI. Magn Reson Med 2025; 93:1615-1628. [PMID: 39552169 PMCID: PMC11782732 DOI: 10.1002/mrm.30378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B1 in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity. THEORY AND METHODS Simulations were run to assess performance of the VFA B1 mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain. B1 maps obtained were used to correct transmit and receive inhomogeneity in the images. RESULTS Simulations showed improved performance of the VFA approach over the CFA approach with reduced sensitivity to T1. For xenon-129, the B1 maps accurately reflected the variation of signal depolarization, but in some cases could not be used to correct for coil receive inhomogeneity due to a lack of transmit-receive reciprocity resulting from suboptimal coil positioning. For carbon-13, the B1 maps showed good agreement with a separately acquired B1 map of a phantom and were effectively used to correct coil-induced signal inhomogeneity. CONCLUSION A simple, versatile, and effective VFA B1 mapping method was implemented and evaluated. Inclusion of the B1 mapping method in hyperpolarized imaging studies can enable more robust signal quantification.
Collapse
Affiliation(s)
- Kylie Yeung
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of OncologyUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
| | - Kher Lik Ng
- Department of RadiologyOxford University HospitalsOxfordUK
- Oxford Respiratory ServiceOxford University HospitalsOxfordUK
| | - Jordan J. McGing
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Aaron Axford
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Sarah Birkhoelzer
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - Mattia Ricchi
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of Computer SciencesUniversity of PisaPisaItaly
- National Institute of Nuclear Physics (INFN)Division of BolognaBolognaItaly
| | - Noemi Sgambelluri
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Alma Mater StudoriumUniversity of BolognaBolognaItaly
| | - Fulvio Zaccagna
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of RadiologyCambridge University HospitalsCambridgeUK
| | - Rebecca Mills
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Andrew J. M. Lewis
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Jennifer J. Rayner
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | - Zack Ravetz
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- RRPPSUniversity Hospitals BirminghamBirminghamUK
| | - Lise Berner
- Department of RadiologyOxford University HospitalsOxfordUK
| | - Kenneth Jacob
- Department of RadiologyOxford University HospitalsOxfordUK
| | | | | | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
| | | | - Fergus V. Gleeson
- Department of OncologyUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
| | - Damian J. Tyler
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - James T. Grist
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford
OxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
4
|
Horvat-Menih I, Khan AS, McLean MA, Duarte J, Serrao E, Ursprung S, Kaggie JD, Gill AB, Priest AN, Crispin-Ortuzar M, Warren AY, Welsh SJ, Mitchell TJ, Stewart GD, Gallagher FA. K-Means Clustering of Hyperpolarised 13C-MRI Identifies Intratumoral Perfusion/Metabolism Mismatch in Renal Cell Carcinoma as the Best Predictor of the Highest Grade. Cancers (Basel) 2025; 17:569. [PMID: 40002163 PMCID: PMC11852806 DOI: 10.3390/cancers17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Early and accurate grading of renal cell carcinoma (RCC) improves patient risk stratification and has implications for clinical management and mortality. However, current diagnostic approaches using imaging and renal mass biopsy have limited specificity and may lead to undergrading. Methods: This study explored the use of hyperpolarised [1-13C]pyruvate MRI (HP 13C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC) as a method to guide biopsy targeting and to reduce undergrading. Six patients with ccRCC underwent presurgical HP 13C-MRI and conventional contrast-enhanced MRI. From the imaging data, three k-means clusters were computed by combining the kPL as a marker of metabolic activity, and the 13C-pyruvate signal-to-noise ratio (SNRPyr) as a perfusion surrogate. The combined clusters were compared to those derived from individual parameters and to those derived from the percentage of enhancement on the nephrographic phase (%NG). The diagnostic performance of each cluster was assessed based on its ability to predict the highest histological tumour grade in postsurgical tissue samples. The postsurgical tissue samples underwent immunohistochemical staining for the pyruvate transporter (monocarboxylate transporter 1, MCT1), as well as RNA and whole-exome sequencing. Results: The clustering approach combining SNRPyr and kPL demonstrated the best performance for predicting the highest tumour grade: specificity 85%; sensitivity 64%; positive predictive value 82%; and negative predictive value 68%. Epithelial MCT1 was identified as the major determinant of the HP 13C-MRI signal. The perfusion/metabolism mismatch cluster showed an increased expression of metabolic genes and markers of aggressiveness. Conclusions: This study demonstrates the potential of using HP 13C-MRI-derived metabolic clusters to identify intratumoral variations in tumour grade with high specificity. This work supports the use of metabolic imaging to guide biopsies to the most aggressive tumour regions and could potentially reduce sampling error.
Collapse
Affiliation(s)
- Ines Horvat-Menih
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Alixander S. Khan
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Mary A. McLean
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joao Duarte
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Eva Serrao
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Andrew B. Gill
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Royal Papworth Hospitals NHS Foundation Trust, Cambridge CB2 0AY, UK
| | - Andrew N. Priest
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | | | - Anne Y. Warren
- Department of Pathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Sarah J. Welsh
- Pinto Medical Consultancy, Cart House 2 Copley Hill Business Park, Cambridge CB22 3GN, UK;
| | - Thomas J. Mitchell
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| |
Collapse
|
5
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2025; 35:8-32. [PMID: 38160135 PMCID: PMC11910262 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Hui SCN, Andescavage N, Limperopoulos C. The Role of Proton Magnetic Resonance Spectroscopy in Neonatal and Fetal Brain Research. J Magn Reson Imaging 2025. [PMID: 39835523 DOI: 10.1002/jmri.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. 1H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to 1H-MRS in the fetal-neonatal brain and 2) the role of 1H-MRS in early fetal-neonatal development brain research. We performed a PubMed search to identify original studies using 1H-MRS in neonates and fetuses to establish the clinical applications of 1H-MRS. The eligible studies for this review included original research with 1H-MRS applications to the fetal-neonatal brain in healthy and high-risk conditions. We ran our search between 2000 and 2023, then added in several high-impact landmark publications from the 1990s. A total of 366 results appeared. After, we excluded original studies that did not include fetuses or neonates, non-proton MRS and non-neurological studies. Eventually, 110 studies were included in this literature review. Overall, the function of 1H-MRS in healthy fetal-neonatal brain studies focuses on measuring the change of metabolite concentrations during neurodevelopment and the physical properties of the metabolites such as T1/T2 relaxation times. For high-risk neonates, studies in very low birth weight preterm infants and full-term neonates with hypoxic-ischemic encephalopathy, along with examining the associations between brain biochemistry and cognitive neurodevelopment are most common. Additional high-risk conditions included infants with congenital heart disease or metabolic diseases, as well as fetuses of pregnant women with hypertensive disorders were of specific interest to researchers using 1H-MRS. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steve C N Hui
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Division of Neonatology, Children's National Hospital, Washington, D.C., USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Prenatal Pediatric Institute, Children's National Hospital, Washington, D.C., USA
| |
Collapse
|
7
|
Aisu Y, Oshima N, Hyodo F, Elhelaly AE, Masuo A, Okada T, Hisamori S, Tsunoda S, Hida K, Morimoto T, Miyoshi H, Taketo MM, Matsuo M, Neckers LM, Sakai Y, Obama K. Dual inhibition of oxidative phosphorylation and glycolysis exerts a synergistic antitumor effect on colorectal and gastric cancer by creating energy depletion and preventing metabolic switch. PLoS One 2024; 19:e0309700. [PMID: 39666615 PMCID: PMC11637386 DOI: 10.1371/journal.pone.0309700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 12/14/2024] Open
Abstract
Pyruvate is situated at the intersection of oxidative phosphorylation (OXPHOS) and glycolysis, which are the primary energy-producing pathways in cells. Cancer therapies targeting these pathways have been previously documented, indicating that inhibiting one pathway may lead to functional compensation by the other, resulting in an insufficient antitumor effect. Thus, effective cancer treatment necessitates concurrent and comprehensive suppression of both. However, whether a metabolic switch between the metabolic pathways occurs in colorectal and gastric cancer cells and whether blocking it by inhibiting both pathways has an antitumor effect remain to be determined. In the present study, we used two small molecules, namely OXPHOS and glycolysis inhibitors, to target pyruvate metabolic pathways as a cancer treatment in these cancer cells. OXPHOS and glycolysis inhibition each augmented the other metabolic pathway in vitro and in vivo. OXPHOS inhibition alone enhanced glycolysis and showed antitumor effects on colorectal and gastric cancer cells in vitro and in vivo. Moreover, glycolysis inhibition in addition to OXPHOS inhibition blocked the metabolic switch from OXPHOS to glycolysis, causing an energy depletion and deterioration of the tumor microenvironment that synergistically enhanced the antitumor effect of OXPHOS inhibitors. In addition, using hyperpolarized 13C-magnetic resonance spectroscopic imaging (HP-MRSI), which enables real-time and in vivo monitoring of molecules containing 13C, we visualized how the inhibitors shifted the flux of pyruvate and how this dual inhibition in colorectal and gastric cancer mouse models altered the two pathways. Integrating dual inhibition of OXPHOS and glycolysis with HP-MRSI, this therapeutic model shows promise as a future "cancer theranostics" treatment option.
Collapse
Affiliation(s)
- Yuki Aisu
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobu Oshima
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
| | | | - Akihiko Masuo
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Okada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Hisamori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeru Tsunoda
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koya Hida
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Morimoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto M. Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
| | - Leonard M. Neckers
- National Cancer Institute, Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland, United States of America
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Xu J, Vaeggemose M, Schulte RF, Yang B, Lee CY, Laustsen C, Magnotta VA. PyAMARES, an Open-Source Python Library for Fitting Magnetic Resonance Spectroscopy Data. Diagnostics (Basel) 2024; 14:2668. [PMID: 39682576 PMCID: PMC11639817 DOI: 10.3390/diagnostics14232668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Magnetic resonance spectroscopy (MRS) is a valuable tool for studying metabolic processes in vivo. While numerous quantification methods exist, the advanced method for accurate, robust, and efficient spectral fitting (AMARES) is among the most used. This study introduces pyAMARES, an open-source Python implementation of AMARES, addressing the need for a flexible, user-friendly, and versatile MRS quantification tool within the Python ecosystem. Methods: PyAMARES was developed as a Python library, implementing the AMARES algorithm with additional features such as multiprocessing capabilities and customizable objective functions. The software was validated against established AMARES implementations (OXSA and jMRUI) using both simulated and in vivo MRS data. Monte Carlo simulations were conducted to assess robustness and accuracy across various signal-to-noise ratios and parameter perturbations. Results: PyAMARES utilizes spreadsheet-based prior knowledge and fitting parameter settings, enhancing flexibility and ease of use. It demonstrated comparable performance to existing software in terms of accuracy, precision, and computational efficiency. In addition to conventional AMARES fitting, pyAMARES supports fitting without prior knowledge, frequency-selective AMARES, and metabolite residual removal from mobile macromolecule (MM) spectra. Utilizing multiple CPU cores significantly enhances the performance of pyAMARES. Conclusions: PyAMARES offers a robust, flexible, and user-friendly solution for MRS quantification within the Python ecosystem. Its open-source nature, comprehensive documentation, and integration with popular data science tools enhance reproducibility and collaboration in MRS research. PyAMARES bridges the gap between traditional MRS fitting methods and modern machine learning frameworks, potentially accelerating advancements in metabolic studies and clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Michael Vaeggemose
- GE HealthCare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Rolf F. Schulte
- GE HealthCare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany;
| | | | - Chu-Yu Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Chen J, Chao D, Tran UP, Billingsley KL. Design, Synthesis, and Assessment of Tricarboxylic Acid Cycle Probes. SYNTHESIS-STUTTGART 2024; 56:2909-2917. [PMID: 39896865 PMCID: PMC11784938 DOI: 10.1055/a-2335-8736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hyperpolarized 13C magnetic resonance spectroscopy can provide unique insights into metabolic activity in vivo. Despite the advantages of this technology, certain metabolic pathways such as the tricarboxylic acid (TCA) cycle are more challenging to examine due to the limitations associated with currently available hyperpolarized 13C probes. In this report, we systematically employ computational analyses, synthetic techniques, and in vitro studies to facilitate the design of new chemical probes for the TCA cycle. This platform allows for the rapid identification of probe scaffolds that are amenable to hyperpolarized 13C experimentation. Using these results, we have developed two 13C-labeled chemical probes, [1,4-13C2]-dipropyl succinate and [1,4-13C2]-diallyl succinate, which are employed in hyperpolarized 13C metabolic studies.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Darrian Chao
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA
| | - Uyen Phuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA
| | - Kelvin L Billingsley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
10
|
Katz I, Schmidt A, Ben-Shir I, Javitt M, Kouřil K, Capozzi A, Meier B, Lang A, Pokroy B, Blank A. Long-lived enhanced magnetization-A practical metabolic MRI contrast material. SCIENCE ADVANCES 2024; 10:eado2483. [PMID: 38996017 PMCID: PMC11244432 DOI: 10.1126/sciadv.ado2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.
Collapse
Affiliation(s)
- Itai Katz
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Schmidt
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ira Ben-Shir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Arad Lang
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
11
|
Barker S, Dagys L, Levitt MH, Utz M. Efficient Parahydrogen-Induced 13C Hyperpolarization on a Microfluidic Device. J Am Chem Soc 2024; 146:18379-18386. [PMID: 38916928 PMCID: PMC11240250 DOI: 10.1021/jacs.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
We show the direct production and detection of 13C-hyperpolarized fumarate by parahydrogen-induced polarization (PHIP) in a microfluidic lab-on-a-chip (LoC) device and achieve 8.5% 13C polarization. This is the first demonstration of 13C-hyperpolarization of a metabolite by PHIP in a microfluidic device. LoC technology allows the culture of mammalian cells in a highly controlled environment, providing an important tool for the life sciences. In-situ preparation of hyperpolarized metabolites greatly enhances the ability to quantify metabolic processes in such systems by microfluidic NMR. PHIP of 1H nuclei has been successfully implemented in microfluidic systems, with mass sensitivities in the range of pmol/s. However, metabolic NMR requires high-yield production of hyperpolarized metabolites with longer spin life times than is possible with 1H. This can be achieved by transfer of the polarization onto 13C nuclei, which exhibit much longer T1 relaxation times. We report an improved microfluidic PHIP device, optimized using a finite element model, that enables the direct and efficient production of 13C-hyperpolarized fumarate.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Chemical Physics, Vilnius University, Vilnius 01513, Lithuania
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
12
|
Frijia F, Flori A, Giovannetti G, Barison A, Menichetti L, Santarelli MF, Positano V. MRI Application and Challenges of Hyperpolarized Carbon-13 Pyruvate in Translational and Clinical Cardiovascular Studies: A Literature Review. Diagnostics (Basel) 2024; 14:1035. [PMID: 38786333 PMCID: PMC11120300 DOI: 10.3390/diagnostics14101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.
Collapse
Affiliation(s)
- Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Alessandra Flori
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Andrea Barison
- Cardiology and Cardiovascular Medicine Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy;
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Maria Filomena Santarelli
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| |
Collapse
|
13
|
Tayler MCD, Bodenstedt S. NMRduino: A modular, open-source, low-field magnetic resonance platform. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107665. [PMID: 38598992 DOI: 10.1016/j.jmr.2024.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The NMRduino is a compact, cost-effective, sub-MHz NMR spectrometer that utilizes readily available open-source hardware and software components. One of its aims is to simplify the processes of instrument setup and data acquisition control to make experimental NMR spectroscopy accessible to a broader audience. In this introductory paper, the key features and potential applications of NMRduino are described to highlight its versatility both for research and education.
Collapse
Affiliation(s)
- Michael C D Tayler
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | - Sven Bodenstedt
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
14
|
Bøgh N, Sørensen CB, Alstrup AKO, Hansen ESS, Andersen OM, Laustsen C. Mice and minipigs with compromised expression of the Alzheimer's disease gene SORL1 show cerebral metabolic disturbances on hyperpolarized [1- 13C]pyruvate and sodium MRI. Brain Commun 2024; 6:fcae114. [PMID: 38650831 PMCID: PMC11034025 DOI: 10.1093/braincomms/fcae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The sortilin-related receptor 1 (SORL1) gene, encoding the cellular endosomal sorting-related receptor with A-type repeats (SORLA), is now established as a causal gene for Alzheimer's disease. As the latest addition to the list of causal genes, the pathophysiological effects and biomarker potential of SORL1 variants remain relatively undiscovered. Metabolic dysfunction is, however, well described in patients with Alzheimer's disease and is used as an imaging biomarker in clinical diagnosis settings. To understand the metabolic consequences of loss-of-function SORL1 mutations, we applied two metabolic MRI technologies, sodium (23Na) MRI and MRI with hyperpolarized [1-13C]pyruvate, in minipigs and mice with compromised expression of SORL1. At the age analysed here, both animal models display no conventional imaging evidence of neurodegeneration but show biochemical signs of elevated amyloid production, thus representing the early preclinical disease. With hyperpolarized MRI, the exchange from [1-13C]pyruvate to [1-13C]lactate and 13C-bicarbonate was decreased by 32 and 23%, respectively, in the cerebrum of SORL1-haploinsufficient minipigs. A robust 11% decrease in the sodium content was observed with 23Na-MRI in the same minipigs. Comparably, the brain sodium concentration gradually decreased from control to SORL1 haploinsufficient (-11%) to SORL1 knockout mice (-23%), suggesting a gene dose dependence in the metabolic dysfunction. The present study highlights that metabolic MRI technologies are sensitive to the functional, metabolic consequences of Alzheimer's disease and Alzheimer's disease-linked genotypes. Further, the study suggests a potential avenue of research into the mechanisms of metabolic alterations by SORL1 mutations and their potential role in neurodegeneration.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
- A&E, Gødstrup Hospital, 7400 Herning, Denmark
| | | | - Aage K O Alstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
15
|
Montrazi ET, Sasson K, Agemy L, Scherz A, Frydman L. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies. SCIENCE ADVANCES 2024; 10:eadm8600. [PMID: 38478615 PMCID: PMC10936946 DOI: 10.1126/sciadv.adm8600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Yeste J, Azagra M, Ortega MA, Portela A, Matajsz G, Herrero-Gómez A, Kim Y, Sriram R, Kurhanewicz J, Vigneron DB, Marco-Rius I. Parallel detection of chemical reactions in a microfluidic platform using hyperpolarized nuclear magnetic resonance. LAB ON A CHIP 2023; 23:4950-4958. [PMID: 37906028 PMCID: PMC10661666 DOI: 10.1039/d3lc00474k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023]
Abstract
The sensitivity of NMR may be enhanced by more than four orders of magnitude via dissolution dynamic nuclear polarization (dDNP), potentially allowing real-time, in situ analysis of chemical reactions. However, there has been no widespread use of the technique for this application and the major limitation has been the low experimental throughput caused by the time-consuming polarization build-up process at cryogenic temperatures and fast decay of the hyper-intense signal post dissolution. To overcome this limitation, we have developed a microfluidic device compatible with dDNP-MR spectroscopic imaging methods for detection of reactants and products in chemical reactions in which up to 8 reactions can be measured simultaneously using a single dDNP sample. Multiple MR spectroscopic data sets can be generated under the same exact conditions of hyperpolarized solute polarization, concentration, pH, and temperature. A proof-of-concept for the technology is demonstrated by identifying the reactants in the decarboxylation of pyruvate via hydrogen peroxide (e.g. 2-hydroperoxy-2-hydroxypropanoate, peroxymonocarbonate and CO2). dDNP-MR allows tracing of fast chemical reactions that would be barely detectable at thermal equilibrium by MR. We envisage that dDNP-MR spectroscopic imaging combined with microfluidics will provide a new high-throughput method for dDNP enhanced MR analysis of multiple components in chemical reactions and for non-destructive in situ metabolic analysis of hyperpolarized substrates in biological samples for laboratory and preclinical research.
Collapse
Affiliation(s)
- Jose Yeste
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Marc Azagra
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Maria A Ortega
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Alejandro Portela
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Gergő Matajsz
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Alba Herrero-Gómez
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Irene Marco-Rius
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
17
|
Montrazi ET, Sasson K, Agemy L, Peters DC, Brenner O, Scherz A, Frydman L. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models. Sci Rep 2023; 13:19998. [PMID: 37968574 PMCID: PMC10652017 DOI: 10.1038/s41598-023-47301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Kaggie JD, Khan AS, Matys T, Schulte RF, Locke MJ, Grimmer A, Frary A, Menih IH, Latimer E, Graves MJ, McLean MA, Gallagher FA. Deuterium metabolic imaging and hyperpolarized 13C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism. Neuroimage 2022; 257:119284. [PMID: 35533826 DOI: 10.1016/j.neuroimage.2022.119284] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.
Collapse
Affiliation(s)
- Joshua D Kaggie
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Alixander S Khan
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | | | - Matthew J Locke
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ashley Grimmer
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ines Horvat Menih
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Elizabeth Latimer
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Imaging Neurodegenerative Metabolism in Amyotrophic Lateral Sclerosis with Hyperpolarized [1-13C]pyruvate MRI. Tomography 2022; 8:1570-1577. [PMID: 35736877 PMCID: PMC9231312 DOI: 10.3390/tomography8030129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
The cause of amyotrophic lateral sclerosis (ALS) is still unknown, and consequently, early diagnosis of the disease can be difficult and effective treatment is lacking. The pathology of ALS seems to involve specific disturbances in carbohydrate metabolism, which may be diagnostic and therapeutic targets. Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate is emerging as a technology for the evaluation of pathway-specific changes in the brain’s metabolism. By imaging pyruvate and the lactate and bicarbonate it is metabolized into, the technology is sensitive to the metabolic changes of inflammation and mitochondrial dysfunction. In this study, we performed hyperpolarized MRI of a patient with newly diagnosed ALS. We found a lateralized difference in [1-13C]pyruvate-to-[1-13C]lactate exchange with no changes in exchange from [1-13C]pyruvate to 13C-bicarbonate. The 40% increase in [1-13C]pyruvate-to-[1-13C]lactate exchange corresponded with the patient’s symptoms and presentation with upper-motor neuron affection and cortical hyperexcitability. The data presented here demonstrate the feasibility of performing hyperpolarized MRI in ALS. They indicate potential in pathway-specific imaging of dysfunctional carbohydrate metabolism in ALS, an enigmatic neurodegenerative disease.
Collapse
|
22
|
von Morze C, Blazey T, Baeza R, Garipov R, Whitehead T, Reed GD, Garbow JR, Shoghi KI. Multi-band echo-planar spectroscopic imaging of hyperpolarized 13 C probes in a compact preclinical PET/MR scanner. Magn Reson Med 2022; 87:2120-2129. [PMID: 34971459 DOI: 10.1002/mrm.29145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Hyperpolarized (HP) 13 C MRI has enabled real-time imaging of specific enzyme-catalyzed metabolic reactions, but advanced pulse sequences are necessary to capture the dynamic, localized metabolic information. Herein we describe the design, implementation, and testing of a rapid and efficient HP 13 C pulse sequence strategy on a cryogen-free simultaneous positron emission tomography/MR molecular imaging platform with compact footprint. METHODS We developed an echo planar spectroscopic imaging pulse sequence incorporating multi-band spectral-spatial radiofrequency (SSRF) pulses for spatially coregistered excitation of 13 C metabolites with differential individual flip angles. Excitation profiles were measured in phantoms, and the SSRF-echo planar spectroscopic imaging sequence was tested in rats in vivo and compared to conventional echo planar spectroscopic imaging. The new sequence was applied for 2D dynamic metabolic imaging of HP [1-13 C]pyruvate and its molecular analog [1-13 C] α -ketobutyrate at a spatial resolution of 5 mm × 5 mm × 20 mm and temporal resolution of 4 s. We also obtained simultaneous 18 F-fluorodeoxyglucose positron emission tomography data for comparison with HP [1-13 C]pyruvate data acquired during the same scan session. RESULTS Measured SSRF excitation profiles corresponded well to Bloch simulations. Multi-band SSRF excitation facilitated efficient sampling of the multi-spectral kinetics of [1-13 C]pyruvate and [1-13 C] α - ketobutyrate . Whereas high pyruvate to lactate conversion was observed in liver, corresponding reduction of α -ketobutyrate to [1-13 C] α -hydroxybutyrate ( α HB) was largely restricted to the kidneys and heart, consistent with the known expression pattern of lactate dehydrogenase B. CONCLUSION Advanced 13 C SSRF imaging approaches are feasible on our compact positron emission tomography/MR platform, maximizing the potential of HP 13 C technology and facilitating direct comparison with positron emission tomography.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | - Timothy Whitehead
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Hansen K, Hansen ESS, Jespersen NRV, Bøtker HE, Pedersen M, Wang T, Laustsen C. Hyperpolarized
13
C
MRI Reveals Large Changes in Pyruvate Metabolism During Digestion in Snakes. Magn Reson Med 2022; 88:890-900. [PMID: 35426467 PMCID: PMC9321735 DOI: 10.1002/mrm.29239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 11/05/2022]
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine Aarhus University Aarhus Denmark
- Zoophysiology, Department of Biology Aarhus University Aarhus Denmark
- Department of Forensic Medicine Aarhus University Aarhus Denmark
| | | | | | - Hans Erik Bøtker
- Cardiology, Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology Aarhus University Aarhus Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine Aarhus University Aarhus Denmark
| |
Collapse
|
24
|
TomHon P, Abdulmojeed M, Adelabu I, Nantogma S, Kabir MSH, Lehmkuhl S, Chekmenev EY, Theis T. Temperature Cycling Enables Efficient 13C SABRE-SHEATH Hyperpolarization and Imaging of [1- 13C]-Pyruvate. J Am Chem Soc 2022; 144:282-287. [PMID: 34939421 PMCID: PMC8785411 DOI: 10.1021/jacs.1c09581] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular metabolic imaging in humans is dominated by positron emission tomography (PET). An emerging nonionizing alternative is hyperpolarized MRI of 13C-pyruvate, which is innocuous and has a central role in metabolism. However, similar to PET, hyperpolarized MRI with dissolution dynamic nuclear polarization (d-DNP) is complex costly, and requires significant infrastructure. In contrast, Signal Amplification By Reversible Exchange (SABRE) is a fast, cheap, and scalable hyperpolarization technique. SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) can transfer polarization from parahydrogen to 13C in pyruvate; however, polarization levels remained low relative to d-DNP (1.7% with SABRE-SHEATH versus ≈60% with DNP). Here we introduce a temperature cycling method for SABRE-SHEATH that enables >10% polarization on [1-13C]-pyruvate, sufficient for successful in vivo experiments. First, at lower temperatures, ≈20% polarization is accumulated on SABRE catalyst-bound pyruvate, which is released into free pyruvate at elevated temperatures. A kinetic model of differential equations is developed that explains this effect and characterizes critical relaxation and buildup parameters. With the large polarization, we demonstrate the first 13C pyruvate images with a cryogen-free MRI system operated at 1.5 T, illustrating that inexpensive hyperpolarization methods can be combined with low-cost MRI systems to obtain a broadly available, yet highly sensitive metabolic imaging platform.
Collapse
Affiliation(s)
- Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Isaiah Adelabu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | | | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
- Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Physics, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
25
|
Jørgensen SH, Bøgh N, Hansen E, Væggemose M, Wiggers H, Laustsen C. Hyperpolarized MRI - An update and future perspectives. Semin Nucl Med 2021; 52:374-381. [PMID: 34785033 DOI: 10.1053/j.semnuclmed.2021.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
In recent years, hyperpolarized 13C magnetic resonance spectroscopic (MRS) imaging has emerged as a complementary metabolic imaging approach. Hyperpolarization via dissolution dynamic nuclear polarization is a technique that enhances the MR signal of 13C-enriched molecules by a factor of > 104, enabling detection downstream metabolites in a variety of intracellular metabolic pathways. The aim of the present review is to provide the reader with an update on hyperpolarized 13C MRS imaging and to assess the future clinical potential of the technology. Several carbon-based probes have been used in hyperpolarized studies. However, the first and most widely used 13C-probe in clinical studies is [1-13C]pyruvate. In this probe, the enrichment of 13C is performed at the first carbon position as the only modification. Hyperpolarized [1-13C]pyruvate MRS imaging can detect intracellular production of [1-13C]lactate and 13C-bicarbonate non-invasively and in real time without the use of ionizing radiation. Thus, by probing the balance between oxidative and glycolytic metabolism, hyperpolarized [1-13C]pyruvate MRS imaging can image the Warburg effect in malignant tumors and detect the hallmarks of ischemia or viability in the myocardium. An increasing number of clinical studies have demonstrated that clinical hyperpolarized 13C MRS imaging is not only possible, but also it provides metabolic information that was previously inaccessible by non-invasive techniques. Although the technology is still in its infancy and several technical improvements are warranted, it is of paramount importance that nuclear medicine physicians gain knowledge of the possibilities and pitfalls of the technique. Hyperpolarized 13C MRS imaging may become an integrated feature in combined metabolic imaging of the future.
Collapse
Affiliation(s)
- S H Jørgensen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark; The Department of Cardiology, North Denmark Regional Hospital, Hjørring, Denmark
| | - N Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ess Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Væggemose
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; GE Healthcare, Brøndby, Denmark
| | - H Wiggers
- The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - C Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|