1
|
Bulumulla S, Xiao L, Feng Y, Ash A, Ryan U, Barbosa AD. Update on transmission of zoonotic Giardia in cattle. Trends Parasitol 2025; 41:210-221. [PMID: 39893145 DOI: 10.1016/j.pt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Giardia is the most common protozoan cause of diarrhoeal illness in humans worldwide. Despite this, our understanding of the zoonotic transmission of Giardia, and in particular the role of cattle as a zoonotic reservoir, is not well understood, due to the limitations of current typing systems and a recent taxonomic revision of the genus. Newly improved multilocus sequencing typing tools are not yet widely used and are not applicable to all species. However, data generated to date suggest that zoonotic transmission of Giardia of bovine origin is limited. Carefully designed epidemiological investigations using improved typing tools are essential to understand the extent of zoonotic transmission from cattle. Improved on-farm biosecurity measures are also needed to control the transmission of zoonotic Giardia in cattle.
Collapse
Affiliation(s)
- Sugandika Bulumulla
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Amanda Ash
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Amanda D Barbosa
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| |
Collapse
|
2
|
Baazizi R, Taibi M, Senouci N, Baroudi D, Khodja S, Belala R, Khelef D, Mimoune N. Prevalence and risk factors of Cryptosporidium spp. and Giardia infestation in cattle and in broiler chickens in Algeria. VET MED-CZECH 2025; 70:68-76. [PMID: 40115530 PMCID: PMC11922057 DOI: 10.17221/82/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/17/2025] [Indexed: 03/23/2025] Open
Abstract
Cryptosporidiosis and giardiasis are zoonotic protozoan diseases with significant public health and economic concerns. In Algeria, epidemiological data on these parasites in livestock are limited. This study aimed to estimate the prevalence of Cryptosporidium spp. and Giardia in dairy calves and broiler chickens and to identify the associated risk factors. A microscopic analysis of 200 faecal samples revealed a Cryptosporidium spp. prevalence of 56% in calves and 60% in broiler chickens, while the Giardia prevalence was 8% in calves and absent in chickens. In cattle, the data showed that age constituted a potential risk factor for both parasites (P < 0.000 1 for Cryptosporidium; P < 0.000 5 for Giardia). Interestingly, the risk of a Cryptosporidium infection decreased with age, while the Giardia infestation risk increased. The sex was not a significant factor for Cryptosporidium (P = 0.115 0), but was impactful for Giardia (P < 0.000 1), with males at higher risk. These results highlighted the distinct epidemiological characteristics of Cryptosporidium and Giardia infestations in Algerian livestock. The contrasting age-related risks and sex-specific susceptibility to Giardia underline the need for targeted, age and sex prevention strategies. This study provides valuable data to inform public health policies and to improve livestock management practices in Algeria, contributing to the wider understanding of these zoonotic parasites in North African agricultural farming.
Collapse
Affiliation(s)
- Ratiba Baazizi
- HASAQ Laboratory, Higher National Veterinary School, Algiers, Algeria
| | - Messaouda Taibi
- Animal Health and Production Laboratory (SPA), Higher National Veterinary School, Algiers, Algeria
| | - Nour Senouci
- HASAQ Laboratory, Higher National Veterinary School, Algiers, Algeria
| | - Djamel Baroudi
- HASAQ Laboratory, Higher National Veterinary School, Algiers, Algeria
| | - Sarah Khodja
- HASAQ Laboratory, Higher National Veterinary School, Algiers, Algeria
| | - Redha Belala
- Biotechnologies Platform for Animal Medicine and Reproduction (BIOMERA), Saad Dahleb Blida University, Blida, Algeria
- Biotechnologies Laboratory Related to Animal Reproduction (LBRA), Institute of Veterinary Sciences, Saad Dahleb, Blida University, Blida, Algeria
| | - Djamel Khelef
- Animal Health and Production Laboratory (SPA), Higher National Veterinary School, Algiers, Algeria
| | - Nora Mimoune
- Animal Health and Production Laboratory (SPA), Higher National Veterinary School, Algiers, Algeria
- Biotechnologies Platform for Animal Medicine and Reproduction (BIOMERA), Saad Dahleb Blida University, Blida, Algeria
- Biotechnologies Laboratory Related to Animal Reproduction (LBRA), Institute of Veterinary Sciences, Saad Dahleb, Blida University, Blida, Algeria
| |
Collapse
|
3
|
Ali M, Xu C, Wang M, Hina Q, Ji Y, Anwar S, Lu S, He Q, Qiu Y, Li K. Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review. Vet Sci 2025; 12:85. [PMID: 40005845 PMCID: PMC11861801 DOI: 10.3390/vetsci12020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Cryptosporidiosis is a zoonotic protozoan parasite-born disease, equally significant in both animals and humans, especially affecting immunocompromised individuals (e.g., AIDS patients) and neonates. The prime concerns of this review article are to demonstrate the disruption of the intestinal barrier and variations in the gut microbiome during cryptosporidiosis, and to explore host gut-parasite interactions that can lead to the development of novel therapeutics. The review concluded that the enteric barrier is particularly maintained by tight junction proteins (e.g., occludin, claudin, and ZO-1, etc.) and mucosal immunity, both of which are severely compromised during Cryptosporidium spp. infections, resulting in increased intestinal barrier permeability, inflammatory responses, diarrhea, and ultimately death in severe cases. Cryptosporidium-induced dysbiosis is characterized by reduced microbial diversity and richness, a shift from commensal to pathogenic bacteria, as evidenced by increased pro-inflammatory taxa like Proteobacteria, and reduced proportions of beneficial SCFAs producing bacteria, e.g., Firmicutes. Recent investigations have highlighted the interrelations between gut microbiota and epithelial barrier integrity, especially during cryptosporidiosis, demonstrating the modulations regarding tight junctions (TJs), immune reactions, and SCFA production, all of which are main players in alleviating this protozoal parasitic infection. This review comprehensively describes the fine details underlying these impairments, including autophagy-mediated TJs' degradation, inflammasome activation, and gut microbiome-driven alterations in metabolic pathways, providing the latest relevant, and well-organized piece of knowledge regarding intestinal barrier alterations and microbial shifts during cryptosporidiosis. This work emphasizes the future need for longitudinal studies and advanced sequencing techniques to understand host gut microbiota-parasite interactions, aiming to formulate innovative strategies to mitigate cryptosporidiosis.
Collapse
Affiliation(s)
- Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yaru Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Subiha Anwar
- Department of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yawei Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Huang SX, Hu K, Fu PF, Li SA, Liu Y, Niu Z, Zhou DH. Occurrence and Multi-Locus Genotyping of Giardia duodenalis in Black Goats from Fujian Province, China. Animals (Basel) 2025; 15:199. [PMID: 39858199 PMCID: PMC11758307 DOI: 10.3390/ani15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Giardia duodenalis is a zoonotic parasite that causes gastrointestinal diseases in both humans and animals. To evaluate the prevalence and genetic diversity of G. duodenalis in black goats, we collected 539 fecal samples from nine districts in Fujian Province, China. The presence of G. duodenalis was confirmed through nested PCR targeting the SSU rRNA gene, and genotyping was performed at the beta-giardin, glutamate dehydrogenase, and triosephosphate isomerase loci. Among the samples, 115 tested positive, yielding an overall infection rate of 21.34%. Assemblages A and E were identified, with assemblage E being predominant. Statistical analysis revealed significant regional differences in infection rates (p < 0.01), with Zhangzhou exhibiting the highest infection rate (39%) and Fuzhou the lowest (3.13%). No significant differences in infection rates were observed based on age: 24.56% (56/228) for goats <1 year, 14.92% (27/181) for goats 1-2 years, 26.8% (26/97) for goats 2-3 years, and 18.18% (6/33) for goats ≥ 3 years. Similarly, no significant differences were found between sexes: 24.84% (40/161) for males and 19.84% (75/378) for females. Notably, assemblage A, a zoonotic genotype, was detected, indicating a potential risk of cross-species transmission. This study contributes to a deeper understanding of G. duodenalis in black goats and provides critical data for the development of targeted control strategies in Fujian Province.
Collapse
Affiliation(s)
- Shou-Xiao Huang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Kai Hu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
- Fujian Zhuyian Agriculture Development Co., Ltd., Fuzhou 350000, China
| | - Peng-Fei Fu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Si-Ang Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Yang Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Zhipeng Niu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.-X.H.); (K.H.); (P.-F.F.); (S.-A.L.); (Y.L.)
| |
Collapse
|
5
|
Shahid Y, Emman B, Abid S. Liver parasites: A global endemic and journey from infestation to intervention. World J Gastroenterol 2025; 31:101360. [PMID: 39777245 PMCID: PMC11684182 DOI: 10.3748/wjg.v31.i1.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
Parasites have coexisted with humans throughout history, forming either symbiotic relationships or causing significant morbidity and mortality. The liver is particularly vulnerable to parasitic infections, which can reside in, pass through, or be transported to the liver, leading to severe damage. This editorial explores various parasites that infect the liver, their clinical implications, and diagnostic considerations, as discussed in the article "Parasites of the liver: A global problem?". Parasites reach the liver primarily through oral ingestion, mucosal penetration, or the bloodstream, with some larvae even penetrating the skin. Hepatic parasites such as cestodes (Echinococcus), trematodes (Clonorchis, Opisthorchis), nematodes (Ascaris), and protozoa (Entamoeba histolytica) can also cause systemic infections like visceral leishmaniasis, malaria, cryptosporidiosis, and toxoplasmosis. Chronic infections like clonorchiasis and opisthorchiasis are linked to persistent hepatobiliary inflammation, potentially progressing to cholangiocarcinoma, a fatal bile duct cancer, particularly prevalent in Southeast Asia. The global nature of liver parasite infestations is alarming, with hundreds of millions affected worldwide. However, control over treatment quality remains suboptimal. Given the significant public health threat posed by these parasites, international medical organizations must prioritize improved diagnosis, treatment, and preventive measures. Strengthening educational efforts and enhancing healthcare provider training are critical steps toward mitigating the global impact of parasitic liver diseases.
Collapse
Affiliation(s)
- Yumna Shahid
- Department of Medicine, Section of Gastroenterology, Aga Khan University Hospital, Karachi 75500, Sindh, Pakistan
| | - Bushra Emman
- Aga Khan Medical College, Aga Khan University Hospital, Karachi 75500, Sindh, Pakistan
| | - Shahab Abid
- Department of Medicine, Section of Gastroenterology, Aga Khan University Hospital, Karachi 75500, Sindh, Pakistan
| |
Collapse
|
6
|
Guilavogui T, Gantois N, Desramaut J, Cissé FI, Touré SC, Kourouma BL, Preda C, Chabé M, Viscogliosi E, Certad G. Cryptosporidium spp. prevalence in the general population in Guinea: first large-scale screening study. Parasite 2024; 31:70. [PMID: 39536174 PMCID: PMC11560126 DOI: 10.1051/parasite/2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cryptosporidium is a leading cause of diarrheal mortality in children in Africa and Asia. Despite the public health significance of this parasite, its molecular epidemiology and circulation in Guinea remain poorly understood. Therefore, this study aimed to determine the prevalence and genotype distribution of Cryptosporidium in the Guinean general population. To achieve this, fecal samples were collected from 834 individuals, both with and without digestive disorders, at two hospitals in Conakry. The presence of the parasite in the stool samples was detected using nested PCR targeting the SSU rDNA gene, followed by sequencing of the PCR products for genotyping of the isolates. The PCR-based prevalence was 0.12% for the whole cohort, and 0.2% among adults. The low frequency of Cryptosporidium observed in the current study is thus consistent with the prevalence of this parasite already reported in certain other African countries. The species identified in the positive samples was Cryptosporidium hominis. This study is the first to report the prevalence of Cryptosporidium in the general population of Guinea. Given the potential of this parasite to cause life-threatening diarrhea, further studies are needed to clarify the epidemiology of Cryptosporidium in this country.
Collapse
Affiliation(s)
- Timothé Guilavogui
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
- Unité d’Appui à la Gestion et la Coordination des Programmes, Ministère de la Santé et de l’Hygiène Publique Conakry BP 585 Guinea
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
| | - Jérémy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
| | - Fode Ibrahima Cissé
- Hôpital National Ignace Deen CHU de Conakry, Laboratoire de Parasitologie Conakry BP 1263 Guinea
| | - Salif Cherif Touré
- Hôpital National Ignace Deen CHU de Conakry, Laboratoire de Parasitologie Conakry BP 1263 Guinea
| | | | - Cristian Preda
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, Lille Catholic University 59000 Lille France
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille 59000 Lille France
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, Lille Catholic University 59000 Lille France
| |
Collapse
|
7
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
8
|
Luo C, Xu Y, Zhang J, Tian Q, Guo Y, Li N, Feng Y, Xu R, Xiao L. Cryptosporidium parvum disrupts intestinal epithelial barrier in neonatal mice through downregulation of cell junction molecules. PLoS Negl Trop Dis 2024; 18:e0012212. [PMID: 38787872 PMCID: PMC11156435 DOI: 10.1371/journal.pntd.0012212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.
Collapse
Affiliation(s)
- Chaowei Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Qing Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. The risk of wild birds contaminating source water with zoonotic Cryptosporidium and Giardia is probably overestimated. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169032. [PMID: 38123098 DOI: 10.1016/j.scitotenv.2023.169032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Cryptosporidium and Giardia are important waterborne protozoan parasites that are resistant to disinfectants commonly used for drinking water. Wild birds, especially wild migratory birds, are often implicated in the contamination of source and wastewater with zoonotic diseases, due to their abundance near water and in urban areas and their ability to spread enteric pathogens over long distances. This review summarises the diversity of Cryptosporidium and Giardia in birds, with a focus on zoonotic species, particularly in wild and migratory birds, which is critical for understanding zoonotic risks. The analysis revealed that both avian-adapted and zoonotic Cryptosporidium species have been identified in birds but that avian-adapted Cryptosporidium species dominate in wild migratory birds. Few studies have examined Giardia species and assemblages in birds, but the non-zoonotic Giardia psittaci and Giardia ardeae are the most commonly reported species. The identification of zoonotic Cryptosporidium and Giardia in birds, particularly C. parvum and G. duodenalis assemblages A and B in wild migratory birds, is likely due to mechanical carriage or spillback from birds co-grazing pastures contaminated with C. parvum from livestock. Therefore, the role of wild migratory birds in the transmission of zoonotic Cryptosporidium and Giardia to source water is likely overestimated. To address knowledge gaps, it is important to conduct more extensive studies on the prevalence of Cryptosporidium and Giardia in a broader range of migratory wild birds. There is also a need to investigate the extent to which zoonotic infections with C. hominis/C. parvum and G. duodenalis assemblages A and B are mechanical and/or transient, and to assess the load and viability of zoonotic oo/cysts shed in avian faeces. Understanding the contribution of birds to zoonoses is essential for effective disease surveillance, prevention, and control.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|